

Scientific redactor doc. Ing. Michal Zábovský, PhD.

Reviewers prof. Ing. Marcel Harakaľ, PhD.

 doc. Ing. Jarmila Škrinárová, PhD.

Copyright © University of Žilina

© M. Kvet, K. Matiaško, Š. Toth, 2022

ISBN 978-80-554-1880-3

Contents i

Contents

Preface ... 11
Introduction ... 11
Acknowledgment ... 11
Oracle Academy .. 12
Organization of the book ... 14

Lab 1 – Oracle Cloud Infrastructure (OCI) .. 15
1.1 SQL Developer connection specification ... 38
1.2 SQL*Plus command-line – SQL Client ... 41

1.2.1 Alternative 1 – full definition .. 42
1.2.2 Alternative 2 – connect identifiers... 44
1.2.3 Capturing activities in SQL ... 49
1.2.4 Working with Help .. 50
1.2.5 Working with multiple commands .. 51
1.2.6 Comments.. 51
1.2.7 Working with procedures and functions .. 52
1.2.8 Connection and session termination .. 54

1.3 Syntax symbols .. 55
Lab 2 – Basics of data retrieval ... 57

2.1 Introduction .. 57
2.2 Projection, selection, column alias ... 58

2.2.1 Personal_id structure ... 61
2.2.2 Dual table .. 61

2.3 Using functions .. 61
2.3.1 Character string functions ... 62

ASCII function .. 62
CONCAT function .. 62
String character case management (LOWER, UPPER, INITCAP functions) ... 63
LENGTH function... 64
SUBSTR function ... 64
TRIM function .. 64

2.3.2 Numeric and Math functions ... 65
ABS function ... 65
CEIL function .. 65
ROUND function .. 66
FLOOR function ... 66
TRUNC function ... 66
MOD function ... 67

2.3.3 Date and Time functions ... 67
SYSDATE function... 68
SYSTIMESTAMP function .. 68
ADD_MONTHS function ... 69
EXTRACT function .. 69
LAST_DAY function .. 70
MONTHS_BETWEEN function ... 70
NEXT_DAY function ... 71

ii Contents

TRUNC function ... 72
2.3.4 Conversion functions ... 73

TO_CHAR function .. 73
TO_DATE function... 75
TO_NUMBER function .. 75
TO_TIMESTAMP function .. 75

2.3.5 Advanced functions ... 76
CASE conversion function .. 76
COALESCE function .. 77
DECODE function .. 77
NULLIF function .. 78
NVL function .. 78
NVL2 function .. 78
USER function .. 79
SYS_CONTEXT function ... 79

2.4 Managing NULL values ... 80
2.5 Comparing strings (equality, operator Like) .. 81
2.6 Using Order By clause ... 83
2.7 Table joining .. 85
2.8 Cartesian product ... 88
2.9 SETs operations (IN, EXISTS) .. 90
2.10 Managing duplicate values ... 94
2.11 Table alias .. 95
2.12 Practice ... 96

Lab 3 – Insert, Update, Delete statements and transactions 99
3.1 Introduction .. 99
3.2 Insert statement .. 99

3.2.1 Insert – values type .. 100
3.2.2 Insert – Select type .. 101

3.3 Update statement .. 102
3.4 Delete statement ... 104
3.5 The order of operations .. 105
3.6 Foreign key definition .. 105
3.7 Changing the primary key value .. 106
3.8 Transactions ... 107
3.9 Practice ... 109

3.9.1 Insert statements .. 109
3.9.2 Update statements.. 110
3.9.3 Delete statements ... 110

Lab 4 – Data modeling ... 113
4.1 Introduction .. 113

4.1.1 System analysis ... 113
4.1.2 System design .. 114
4.1.3 Technical design .. 114

4.2 Creating data model ... 114
4.3 Conceptual modeling ... 117
4.4 Entity-relational conceptual model .. 118

Contents iii

4.4.1 Identifying key .. 119
4.5 Conceptual schema notation in E-R model .. 119

4.5.1 Linear notation .. 119
4.6 Type diagram / Occurrence E-R diagram ... 119

4.6.1 Type diagram ... 120
4.6.2 Occurrence E-R diagram ... 120

4.7 Attributes .. 120
4.7.1 Non-atomic attributes .. 122
4.7.2 Group attributes ... 122
4.7.3 Multiple value attributes .. 122

4.8 Relationships and integrity constraints... 123
4.8.1 Identifying and non-identifying relationship 123
4.8.2 Relationship cardinality ... 124

Cardinality 1:1 ... 124
Cardinality 1:N .. 125
Cardinality M:N .. 125

4.8.3 Decomposition of the M:N relationship cardinality 126
4.8.4 Associative entity .. 128
4.8.5 Membership types ... 129
4.8.6 Multiple relationships between same tables .. 130
4.8.7 Recursive (self) relationships .. 131

4.9 Data modeling in Toad Modeler tool ... 131
4.9.1 Environment settings ... 132
4.9.2 Entity management .. 133
4.9.3 User-defined domain ... 137
4.9.4 Relationship management ... 141
4.9.5 Generating SQL script ... 142
4.9.6 Executing script on the server ... 145
4.9.7 Working with directories and files .. 146

4.10 Practice ... 148
Lab 5 – Create, Alter and Drop commands ... 151

5.1 Introduction .. 151
5.2 Data types ... 152
5.3 User management ... 153
5.4 Table management ... 155

5.4.1 Create command .. 156
Foreign key .. 158
Domain definition (check constraint) .. 159
Default value ... 160
Constraint naming ... 160
Create table as Select ... 160

5.4.2 Alter command .. 162
Add option ... 162
Modify option .. 163
Drop option ... 164
Table renaming .. 164

5.4.3 Drop command .. 165

iv Contents

Recycle bin .. 165
5.5 Index .. 167

5.5.1 ROWID ... 167
5.5.2 Index management .. 168
5.5.3 Types of indexes .. 168

B+ tree index type ... 168
Bitmap index ... 171
Index organized table .. 172

5.5.4 Access methods ... 172
5.6 Practice ... 173

Lab 6 – Data loading .. 175
6.1 Introduction .. 175
6.2 SQL Loader .. 175
6.3 EXP / IMP utility ... 184
6.4 Creating import/export using dump files .. 185

6.4.1 Import using data pump ... 185
Object storage .. 186
Bucket ... 186
Create_credentials procedure .. 189
Authentication token ... 190
Data Pump Import Wizard .. 195
Bucket ... 205
Object .. 205

6.4.2 ExpDp ... 207
6.4.3 Useful notes ... 216

Lab 7 – Managing privileges ... 217
7.1 Introduction .. 217
7.2 Grant command .. 217

7.2.1 System privilege management ... 217
7.2.2 Object privilege management .. 219

7.3 Accessing another schema object ... 220
7.4 Revoke command ... 220
7.5 Grouping privileges to roles ... 223
7.6 Practice ... 224

Lab 8 – Advanced techniques of data retrieval.. 225
8.1 Introduction .. 225
8.2 Aggregate functions ... 225
8.3 Fundamentals for Group By clause management ... 227
8.4 Working with aggregate function Count and Group By clause 228
8.5 Having clause ... 233
8.6 Extended versions of table joining ... 235

8.6.1 INNER JOIN type ... 236
8.6.2 ON / USING CLAUSE ... 237
8.6.3 LEFT OUTER JOIN type .. 237
8.6.4 RIGHT OUTER JOIN type ... 238
8.6.5 FULL OUTER JOIN type ... 238
8.6.6 SEMI JOIN type .. 239

Contents v

8.6.7 ANTI JOIN type .. 239
8.6.8 NATURAL JOIN type .. 240

8.7 Relational algebra operations ... 240
8.7.1 Union operation ... 241
8.7.2 Difference operation .. 244
8.7.3 Intersection operation .. 245

8.8 Recursive relationships .. 246
8.9 Using the same table multiple times in the Select statement 249
8.10 Practice ... 250

Lab 9 – Procedures, functions and packages ... 253
9.1 Introduction .. 253
9.2 Code preliminaries ... 254

9.2.1 Variable definition ... 254
9.2.2 Assignment, NULL ... 254
9.2.3 Conditional processing .. 255

IF condition ... 255
Condition CASE .. 259

9.2.4 LOOPs ... 263
Infinite loop, EXIT condition .. 263
WHILE loop type .. 264
FOR loop type ... 264

9.3 PL/SQL anonymous block ... 265
9.4 Procedure, function .. 266

9.4.1 Procedure syntax ... 267
9.4.2 Function syntax ... 268

9.5 Executing stored method .. 269
9.5.1 Disable procedure .. 270
9.5.2 Enable procedure ... 270
9.5.3 Get_line procedure .. 271
9.5.4 Get_lines procedure ... 271
9.5.5 New_line procedure .. 271
9.5.6 Put procedure ... 271
9.5.7 Put_line procedure ... 272

9.6 Calling function from the Select statement .. 273
9.7 Exception handling... 275
9.8 Ways of passing parameters ... 282

9.8.1 Position way of passing parameters... 282
9.8.2 Passing parameters using names ... 283
9.8.3 Hybrid passing ... 284

9.9 Differences between anonymous and stored (named) PL/SQL block 284
9.10 Removing procedures and functions .. 284
9.11 Select statement in PL/SQL ... 285

9.11.1 SELECT INTO type .. 285
9.11.2 CURSOR ... 286

9.12 Increasing control – access rights ... 292
9.13 Packages ... 296

9.13.1 Package specification syntax ... 297

vi Contents

9.13.2 Package body syntax ... 298
9.13.3 Overloading ... 301
9.13.4 Initialization block ... 302

9.14 Practice ... 305
Lab 10 – Triggers ... 307

10.1 Introduction .. 307
10.2 Syntax .. 308
10.3 Restrictions for trigger definition ... 311
10.4 Triggers turning on and off .. 311
10.5 Changes monitoring ... 311
10.6 Default values .. 314
10.7 Conditions for trigger firing ... 315
10.8 One trigger – multiple operations ... 318
10.9 Referential integrity management .. 320
10.10 Changing the value of the primary key .. 322
10.11 Sequences and triggers... 323

10.11.1 Sequence syntax .. 323
10.11.2 Sequence and transaction correlation .. 326

10.12 DDL triggers .. 327
10.13 Event triggers ... 329
10.14 Practice .. 330

Lab 11 – Relational integrity ... 331
11.1 Introduction .. 331
11.2 Integrity constraints classification .. 331
11.3 Entity integrity ... 332

11.3.1 Primary key candidate ... 332
11.3.2 Primary key ... 332
11.3.3 Alternative key .. 333
11.3.4 Superkey .. 333

11.4 Referential integrity ... 333
11.4.1 Referential integrity rule ... 333
11.4.2 Referential integrity consequences .. 334
11.4.3 Cascade option example .. 334
11.4.4 Restricted option example ... 336
11.4.5 Nullified option example ... 337

11.5 User integrity.. 338
11.6 Column integrity .. 338
11.7 Domain integrity .. 339
11.8 Integrity constraints controlling and processing... 339
11.9 Practice ... 339

Lab 12 – Views .. 341
12.1 Introduction .. 341
12.2 Syntax .. 341
12.3 Exceptions .. 342
12.4 Managing data in views ... 344
12.5 Attribute name redefinition in views .. 347
12.6 Check option clause ... 347

Contents vii

12.7 Read only view ... 349
12.8 View based on multiple tables and triggers .. 350
12.9 Triggers associated with views .. 350
12.10 Summary .. 351
12.11 Practice .. 351

Lab 13 – Date and Time value management .. 353
13.1 NLS parameters & session format ... 358

13.1.1 NLS_Language .. 359
13.1.2 NLS_Territory ... 360
13.1.3 NLS_Date_Language .. 360
13.1.4 NLS_Date_format ... 361

13.2 Transformation of the personal_id into the date of birth 361
13.3 Get the list of persons who celebrate a birthday today 362
13.4 Get the list of students who passed the exam this month 363
13.5 Get the list of students who passed the exam previous last month 364
13.6 Get the list of the persons, who will celebrate their birthday next Sunday .. 366
13.7 Get the Date of the second Sunday of the month ... 368
13.8 Get the list of the persons, who will celebrate their birthday next week 369
13.9 Get the difference between Date values ... 370
13.10 Get the difference between Date values – a sophisticated solution 370
13.11 YY vs. RR .. 372
13.12 Actual employees ... 373
13.13 Period models and Allen relationships .. 374
13.14 Unlimited validity definition ... 377
13.15 Data type Interval management ... 378

13.15.1 Interval Year to Month data type .. 378
13.15.2 Interval Day to Second data type .. 379
13.15.3 Examples – Interval data types ... 380
13.15.4 Update validity definition based on Interval data value 380

Lab 14 – Data dictionary views ... 383
14.1 Introduction .. 383
14.2 Data dictionary – structure ... 384
14.3 Querying data dictionary .. 387

14.3.1 List of tables owned actual user .. 387
14.3.2 List of table attributes .. 387
14.3.3 Get attribute data type and characteristics ... 387
14.3.4 Get system identifier and definition of the primary key 389
14.3.5 Get system identifier and definition of the foreign key 390
14.3.6 Listing triggers for a particular table ... 392
14.3.7 Listing developed methods (procedures, functions) 392
14.3.8 Managing sequences.. 396

14.4 Practice ... 397
Lab 15 – Reports .. 399

15.1 Overview .. 399
15.2 Environment settings, background ... 400
15.3 Filtering, sorting ... 406
15.4 Hidden columns ... 413

viii Contents

15.5 Binding multiple reports – Master – Child ... 414
15.6 Graph reports.. 422
15.7 Pie graph type reports... 426
15.8 Line type reports .. 428
15.9 Three-dimensional (3D) graph types .. 434
15.10 Binding multiple reports of various types .. 436
15.11 Exports ... 438

15.11.1 CSV format ... 440
15.11.2 Delimited format ... 441
15.11.3 Text format.. 442
15.11.4 Excel format .. 443
15.11.5 XML format .. 445
15.11.6 HTML format .. 446
15.11.7 Exporting to PDF .. 450

15.12 Script format (Insert) ... 453
Summary ... 455
References ... 457
Abbreviations .. 461
Index .. 465
Appendix A – Model Student .. 473

Table PERSONAL_DATA ... 473
Table STUDENT ... 476
Table STUDY_SUBJECTS ... 479
Table ST_FIELD ... 482
Table SUBJECT .. 484
Table TEACHER ... 486
Table SUBJECT_YEAR ... 488
Table ST_PROGRAM ... 490
Table CONTACT .. 493

Appendix B – Model Flight .. 495
Table L_PERSON ... 495
Table L_FLIGHT TICKET ... 497
Table L_CLASS .. 500
Table L_FLIGHT .. 502
Table L_PLANE .. 505
Table L_EMPLOYEE ... 507
Table L_AIRPORT.. 510
Table L_PLANE_TYPE .. 512
Table L_COUNTRY ... 514
Table L_TOWN ... 515
Table L_AIR_COMPANY .. 517

Appendix C – Model Library .. 519
Table K_PERSON ... 519
Table K_READER .. 522
Table K_RENT_BOOKS .. 524
Table K_BOOK ... 526
Table K_TITLE ... 528

Contents ix

Table K_AUTHOR.. 530
Table K_AUTHORS_OF_BOOK ... 532

Appendix D – Syntax .. 535
Appendix E – File management .. 543

Errata
Authors make every effort to make sure no errors are present in the text. If you find any

typo or mistake, that has not been reported, yet, please, let us know. Errata sheets are available

here: https://gofile.me/4voWB/mK3v2SzfU

https://gofile.me/4voWB/mK3v2SzfU

Preface 11

Preface

Introduction
We have just prepared the first edition of the book for people to increase practical

knowledge and skills in the area of Database systems. The content and labs of the textbook

are prepared under our experiences with the education of Database systems at the University

of Žilina, Slovakia, supervised by the discussion with the consortium members, experts,

and Oracle Academy.

From time to time, we perceive that students, researchers, or practitioners have problems

with the correct way of using Database systems during the implementation processes

into any information systems.

This book was written for students and practitioners. It is intended as a practical guide

for them and other developers to analyze, design, and implement commercial information

systems. The language and diagram conventions apply ANSI standards with the strength of

the Oracle Autonomous Database used in Oracle Cloud. Toad data modeler is used for data

modeling and visual data model preparation.

We suppose that readers can recognize that using database systems and SQL is essential

knowledge for the design process, with opportunities for choice and creativity. Nowadays,

cloud technology is ubiquitous and provides a robust general solution. Therefore, we have

chosen to use the Oracle Cloud environment. Moreover, Free Tier and Always Free option

gives you many benefits (autonomous transaction processing database, data warehouse,

APEX (tool for data-driven applications definitions), object storage, etc.) free of charge.

Such an option is mainly devoted to the testing and development environment but can

perfectly fit the self-teaching process. You do not need extra hardware; no installation and

administration are necessary.

The text proposes many practical exercises highlighting the problems, solutions, tricks,

and improvements to provide a robust, reliable solution and knowledge extension. Each

chapter consists of a brief theory overview supervised by the discussion and practical

examples.

Acknowledgment

These textbook and e-book versions were prepared during the

implementation of the Cloud cOmputing for Digital Education

Innovation (CodeIn) project – Erasmus+ Strategic Partnerships, Key

Action 2, Project Number: 2020-1-HR01-KA226-HE-094713. It is devoted to education

using Cloud technology computing. Oracle Cloud focuses on the Oracle autonomous

databases (transaction processing (ATP), data warehouse (ADW), or JSON).

The proposed book is partially covered by the Erasmus+ project Better Employability

for Everyone with APEX (BeeAPEX), supporting the digital

transformation of higher education institutions through

the development of the digital readiness, resilience, and capacity

of educators and students. Grant No.: 2021-1-SI01-KA220-HED-

000032218.

Proper knowledge of SQL and PL/SQL is crucial for the data driven application

development.

12 Preface

Oracle Academy
Oracle Academy welcomes the publication of this

textbook written by experts from the University of Žilina

in Slovakia as a significant contribution to the teaching

and learning about Oracle technologies, not just at the

university but also in the Slovak Republic and the broader

international community of educators and learners. It demonstrates how the determination

and innovation of lecturers, and the availability of state-of-the-art technologies provide new

learning opportunities for students, helping them gain skills and knowledge for their future

careers in both local and global IT markets. In this section, we would like to provide a short

overview of this program and its free resources that can benefit educators and students using

this textbook to achieve their teaching and learning objectives.

About Oracle Academy

As Oracle’s global, philanthropic educational program, Oracle Academy advances

computing education around the world to increase knowledge, innovation, skills

development, and diversity in technology fields. This program engages with thousands of

educational institutions and educators in more than 130 countries, helping millions of

students become college and career ready.

Oracle Academy provides educators with free teaching resources for computing

education including curriculum focused on Java, database, cloud, and project management;

Oracle Cloud and Autonomous Database technologies through the Oracle Academy Cloud

Program; Oracle APEX low code learning environments; a wide range of software;

professional certification resources; and continuing professional development for educators.

All teaching and learning resources are designed for degree-granting academic programs of

study.

Oracle Academy Cloud Program

The Oracle Academy Cloud Program offers Oracle Academy members exclusive access

to the Oracle Cloud Free Tier, a set of services educators and students can continue to use for

an unlimited time, even after their graduation, with easy, accelerated signup and no need for

a credit card, mobile phone contact information, or any approval delays.

With this free program, Oracle Academy members can teach and learn in the cloud. They

can build, learn, and explore the full functionality of Oracle Autonomous Database, the

world’s only self-driving database, and Oracle Cloud infrastructure for an unlimited time.

Plus, they can use free developer tools and get started quickly and learn and practice new

technologies with just a one-time classroom setup, saving hundreds of hours of time over

years of teaching.

A simple signup process enables member educators and students to also access Compute

Virtual Machine or VM, object storage, data egress, and other essential developer building

blocks. Educators easily can provision student accounts, and classes are up and running in

minutes in a cloud environment without the need to download, install, patch, or maintain

software or databases.

New services continually are added to the Always Free Services, and in addition, at the

time of publication of this textbook, member educators and their students also receive

US$300 of free credits for one year to prototype applications, run machine learning models

Preface 13

in notebooks, or try software from Oracle Cloud Marketplace. These credits can be spent

without providing any credit card details.

Teachers and students enjoy always free access to tools including Oracle Application

Express (APEX) for low code Web application development, SQL Developer Web for

working with Oracle Autonomous Databases, SQL Notebooks for Machine Learning, Oracle

REST Data Services for web interfaces, and Oracle Instant Client for the most popular

programming languages. Other cloud technologies include Linux, AI/ML, and digital

assistants; students can develop in SQL, NoSQL, APEX, Java, Node.js, Python, PHP, and

Ruby.

Supported by Oracle Academy’s comprehensive curriculum and hands-on labs, educators

and students can teach, build, learn, explore, and develop in the cloud.

In the global classroom, educators and students can take advantage of Oracle Cloud

technology for teaching and learning ― anytime, anywhere. The cloud is always available,

in and out of the classroom, using only an Internet browser, through the Oracle Academy

Cloud Program.

Students must be the age of legal majority in their country of residence to access a cloud

account.

Faculty can learn more and sign up at https://academy.oracle.com/cloud.

Oracle Cloud Infrastructure Foundations I Curriculum

Oracle Cloud Infrastructure (OCI) leads cloud computing with a deep and broad platform

of cloud services that enables customers to build and run a wide range of applications in a

scalable, secure, highly available and high-performance environment.

The new Oracle Academy Cloud Infrastructure Foundations I curriculum helps students

build foundational knowledge of cloud computing by focusing on OCI concepts and

terminology through lesson slides, corresponding videos and demonstrations, hands-on labs,

and midterm and final exams. Throughout the course, learners gain an understanding of the

core infrastructure of cloud, how it works with databases, and information on security,

administration, monitoring, and management.

This curriculum is currently available in English only. The recommended total course

time, which includes instruction, self-study, videos, and assessment is 90 hours.

Access the full course description under the Cloud Curriculum section of the Oracle

Academy website, academy.oracle.com.

Join Oracle Academy

Oracle Academy requires Institutional membership for those institutions and their

educators who wish to take advantage of our wide range of free teaching and learning

resources. Membership requires completing an agreement and is free.

Members access our free resources through the Oracle Academy

Member Hub, a state-of-the-art learning management system. They

simply log in on the home page of https://academy.oracle.com

It is easy to join Oracle Academy ― and it is free.

https://academy.oracle.com/cloud
https://academy.oracle.com/
https://academy.oracle.com/en/oa-web-overview.html

14 Preface

Organization of the book
The textbook itself is divided into nine parts organized into fifteen chapters. Besides

the Introduction where we described the aims, prerequisites, and necessary environment

for the correct work with the Database system, extended by the Oracle academy membership

registration and web access structure, the following parts can be recognized:

• Data Manipulation Language (DML),

• Data modeling,

• Data Definition Language (DDL) and the data loading process,

• Advanced SELECT statements,

• PL/SQL introduction,

• Data integrity (DI),

• Data dictionary and additional SQL extension,

• Data reports.

Each chapter contains a short description of the theory, examples, and tasks to evaluate

the received knowledge.

During lab 1, we enclosed the documentation:

• for the Oracle Cloud registration,

• advantages of using the Oracle Cloud Always Free option,

• resource categories available for you,

• basic environment navigation,

• first examples of the verification of the functionality.

In the sections highlighting the DML statements, the first attempts with SELECT

statements are included with a detailed description of the INSERT, DELETE and UPDATE

statements.

The next part is represented by the fifth chapter characterizing the independent part

with all necessary knowledge about data modeling.

The part about DDL includes details about Data Definition Language, statement syntax

and categorization, description of the available data types, Data Access statements

(DAS, Data Control Language (DCL)), and about importing and exporting data

to and from the database.

Advanced SELECT statements include a description of the aggregate functions

and their management, Group By clause management fundamentals, and table joining

options.

Lab. 9 covers the procedural extension of the SQL language. It deals with the procedures,

functions, and packages. It also deals with Select statement management in blocks, exception

handling, and details about work with methods, and cursors. Lab. 10 deals with the triggers

associating the code with the operations fired automatically.

The part about data integrity offers the rules to keep the database in a correct

and consistent state. This part contains information about working with views and their

influence on the data integrity, as well.

The last part extends the practical knowledge and skills related to working with temporal

data types and reports covered by the data dictionary. In the end, we added the Appendix

with three models for the practices and the verification of embedded examples and tasks.

We believe that this textbook will be a helpful document for gaining theoretical

and practical knowledge of modern database systems.

Žilina, May 2022 Authors

Lab 1 – Oracle Cloud Infrastructure (OCI) 15

Lab 1 – Oracle Cloud Infrastructure (OCI)

This lab will drive you through the cloud management principles using the architecture

and product types. It will discuss the registration process followed by the terminology

summary and database provisioning. Access to the database is done by the SQL Developer

application (web or desktop version) or SQL Client.

Connection specification is made of the host, port, service name or SID. It can be specified

by the full connection, or stored connect identifiers can be used, referenced by the

TNS_ADMIN variable, commonly stored as an environment variable. Whereas the whole

communication between the cloud repository and client is secured, encryption keys must be

properly used and stored in the Oracle Wallet.

Reader will understand the basic primitives showing him a simple query, procedure, and

function execution (deeper discussion is in the lab. 9). There is also discussion related to the

table structure and data types of the attributes.

The complex code should use comments for the consecutive reference, evaluation, and

upgrade, respectively, which can be either one-line or multi-line types. Each data operation

is part of the transaction. If the data were changed, it is necessary to navigate the database

system to the approval or operation reject. Reaching Exit automatically approves the active

transaction (Commit).

Finally, there is a summary of the syntax notation. Note that the principles and syntax can

be found in the documentation, but the Help command can also be used. Individual activities

can be recorded using the Spool command.

Oracle Cloud Infrastructure (OCI) uses the Infrastructure as a Service (IaaS) principles

to extend the original on-premise systems with high-performance computing power running

in a cloud environment. The main advantage is the elasticity, so the system can dynamically

reflect current workload, processing demands, and user activity. It uses Oracle autonomous

services, an integrated security layer, robust functionality, and optimization techniques.

OCI brings many benefits to your performance and processing by autonomous services,

easy migration, costs reduction, or performance enhancements.

OCI is a residual and exclusive location of the Oracle Autonomous Database. It is self-

administering, self-repairing, or self-patching. Leveraging machine learning to automate

routine tasks, Autonomous Database delivers higher performance, better security,

and improved operational efficiency, and frees up more time to focus on building enterprise

applications (https://www.oracle.com/cloud/).

This chapter will navigate you through the process of the Oracle Cloud account creation,

registration, up to the connection possibilities using the SQL developer installed either locally

or by using web sources. Before we start, let me summarize products available in OCI:

• Oracle analytics using built-in machine learning and artificial intelligence

to propose a robust solution for the company and offer better decision-making

opportunities. It covers Oracle Analytics Cloud, Oracle Big Data Service, Oracle

Big Data SQL Cloud Service, Oracle Data Science, Oracle Cloud Infrastructure

Data Flow, and many more.

• Application development environment pointing to the data-driven application

development simplifying the whole process. It covers API Gateways, Blockchain,

https://www.oracle.com/cloud/

16 Lab 1 – Oracle Cloud Infrastructure (OCI)

Data Science, Digital Assistants, Java functionality, Events Services, Mobile Hubs

or Oracle MySQL Database Service, Oracle MySQL Database Service (and many

more). Two solutions should be emphasized – Oracle Application Express (APEX)

and Visual Builder. These tools provide you with a complex environment to create

web or mobile-based applications based on the SQL, PL/SQL, or JavaScript

functionality. Thus, by using these tools, implementation is far easier ensured

by the rapid development. The solution can be created from evening to morning.

• Applied Software Technologies like AI, Blockchain, machine learning, data

science, digital assistants, etc.

• Compute – scalability reflecting the workload to ensure performance.

• Database – Autonomous Transaction Processing, Autonomous Data Warehouse,

Autonomous JSON Database, Database Cloud Service (Bare Metal / Virtual

Machine), Exadata Cloud Service, ...

• Integration (API Gateway, Application Integration, Oracle GoldenGate, Oracle

Data Integrator, Oracle Cloud Infrastructure Data Integration, SOA Cloud Service).

• Observability and Management (Logging, Monitoring, Notifications, Resource

Manager, ...).

• Networking and Connectivity (DNS, E-mail delivery, FastConnect, Health Checks,

Load Balancing, Virtual Cloud Network, ...).

• Security, Identity, and Compliance.

• Storage (Archive Storage, Block Volumes, Data Transfer, File Storage, Local

NVMe SSD, Object Storage, Storage Gateway).

Oracle Cloud technology is widespread across the whole world, divided into commercial

and government types. In Europe, clouds are located in multiple cities, like Amsterdam,

London, Frankfurt, Zürich, or Newport. New region centers opened in 2021 are in Sweden,

France, and Italy. Oracle is constantly expanding and opening new data centers within its

Oracle Public Cloud. Fig. 1.1 shows the reference of January 2022. More about the current

state can be tracked using the https://www.oracle.com/cloud/ web address.

Fig. 1.1: Cloud regions (source: Oracle Cloud presentation, © Oracle)

Oracle Cloud Infrastructure is prepared chiefly for the commercial and government

environment to use all the benefits. It is paid based on resource consumption. Thus, it can

https://www.oracle.com/cloud/
https://www.oracle.com/cloud/architecture-and-regions/

Lab 1 – Oracle Cloud Infrastructure (OCI) 17

lower the total costs and demands of the organization by shifting the environment and

administration to Oracle.

OCI has launched a significant project to offer cloud services to the students, as well.

Oracle Cloud Always Free version is provided to the students or for the testing environment

suitability. Services are time-unlimited with the following resource limitations:

• 2 Autonomous Databases limited by the 1 OCPU and 20GB of disc storage for each,

• Compute Virtual Machines (VMs),

• 2 Block Volume Storage – 100 GB in total,

• 10 GB object storage,

• 10 GB archive storage.

Offered free sources provide more than twice the capacity compared to Amazon Web

Services (AWS) (source: https://www.oracle.com/cloud/free/).

For this book, we will use Oracle Cloud Always Free option, which is implemented inside

the Oracle Cloud Free Tier, which provides you 30-day Free Trial. The 300$ free credits

limit the trial version, access to the wide range of Oracle Cloud services during the trial period

(containing Databases, Analytics, Compute and Container Engine for Kubernetes),

up to 8 instances across proposed services, and up to 5TB of storage.

So much for an introduction. Let’s get started creating an account and registering. We

will use the Oracle Cloud Infrastructure for studying SQL and procedural language PL/SQL,

so we will primarily use the Transaction Processing Database type.

Oracle Cloud Always Free option is available at the following web address:

https://www.oracle.com/cloud/free/

Fig. 1.2: The QR code of the Oracle Cloud website

https://www.oracle.com/cloud/free/
https://www.oracle.com/cloud/free/

18 Lab 1 – Oracle Cloud Infrastructure (OCI)

We will drive you through the whole process. To start the registration process, please

click on the “Start for free” button (fig. 1.3):

Fig. 1.3: Oracle Cloud – Free Tier, step 1

In the next screen (fig. 1.4), provided resources are summarized in the left part. The right

part consists of your registration information, namely: country, first name, surname, and

contact e-mail. Please fill in the required inputs.

Fig. 1.4: Oracle Cloud – Free Tier, step 2

Then, an e-mail confirmation will be sent to you.

Fig. 1.5: Oracle Cloud – Free Tier, step 3

You have 2 minutes to verify the e-mail account by clicking on the link you receive there.

Lab 1 – Oracle Cloud Infrastructure (OCI) 19

Fig. 1.6: Oracle Cloud – Free Tier, step 4

Then, you will be navigated to the web address, where the password, company, and home

region should be specified. Note that the password should be strong enough. It must contain

a minimum of 8 characters. At least one of them should be lowercase, uppercase, and special

character (except spaces, ~, <, >, or \). The password cannot contain your first name, surname,

or e-mail address for security reasons. The size limit of the password is 40 characters.

Cloud account name will be generated and provided to you, so please remember such

value (it can be changed for any available unique value).

The Home region defines the geographic location of the Oracle Cloud provided to you.

There, the resources will be created and allocated. Note that it is not possible to change it after

the registration process. For Central Europe, two choices are recommended – Netherlands

Northwest (Amsterdam) or Germany Central (Frankfurt). I will use the Frankfurt location.

However, the selection is total, up to you.

Fig. 1.7: Oracle Cloud – Free Tier, step 5

By clicking on the See Regions link (https://www.oracle.com/cloud/data-regions/#emea),

it is possible to get more specific information about the available sources in each destination.

Currently, all Always Free Cloud Services are accessible at each location. For these labs,

Oracle Autonomous Transaction Processing, Oracle Autonomous Data Warehouse,

and Oracle Cloud Infrastructure Object Storage will be inevitable, supervised by the Oracle

Application Express (APEX) and SQL Developer Web.

https://www.oracle.com/cloud/data-regions/#emea

20 Lab 1 – Oracle Cloud Infrastructure (OCI)

Then, the address is required. The account is verified by using a mobile phone. Follow

the instructions and provide the system required codes. The system requires your bank

account. Do not worry; no charges will be applied. It is used for the possibility to transfer

the Always Free account to the more complex charged, anytime based on your requirement.

Fig. 1.8: Oracle Cloud – Free Tier, step 6

Finally, read the agreement carefully, confirm it and register your account by clicking

on the “Start my free trial” button (fig. 1.9):

Fig. 1.9: Oracle Cloud – Free Tier, step 7

Now, your account is created so that you can enjoy the robustness of the cloud services.

Please, logon to the system (https://www.oracle.com/cloud/free/):

Fig. 1.10: The QR code of Oracle Cloud – Always Free login page

https://www.oracle.com/cloud/free/

Lab 1 – Oracle Cloud Infrastructure (OCI) 21

Fig. 1.11: Oracle Cloud – Free Tier, step 8

Specify your Cloud Account Name – it has been generated during the registration process.

In my case, the Cloud Name is “kvetmichal”.

Fig. 1.12: Oracle Cloud – Free Tier, step 9

Click on the “Next” button and write your username and password specified during

the registration, as well. The username is the same as the e-mail account address (fig. 1.13).

Fig. 1.13: Oracle Cloud – Free Tier, step 10

22 Lab 1 – Oracle Cloud Infrastructure (OCI)

Click on the “Sign In”. You are now connected to the Cloud. You will be navigated to the

main dashboard screen. At the top of the screen, resources, services, or documentation can

be searched. Then, the geographical location of the used Cloud is specified (in my case, it is

Germany Central (Frankfurt)). Then, some notifications can be present. Language can be set

to your mother language (Slovak or Czech language is also available). For this book, we will

use the English language.

The last button reflects your profile information.

Fig. 1.14: Oracle Cloud – Home Screen

Home screen dashboard can always be obtained by clicking on the Oracle Cloud logo

button.

Profile info contains your identification, tenancy, user settings, etc.

Fig. 1.15: Profile

Note that the web address always consists of the region specification.

Fig. 1.16: Web address – region

Lab 1 – Oracle Cloud Infrastructure (OCI) 23

Note that many sources, recommendations, examples, and discussions are available

in Free training from Oracle University (https://cloud.oracle.com/?tile=get-started-oracle-

university®ion=eu-frankfurt-1). In addition, there are also key concepts and terminology

(https://cloud.oracle.com/?tile=key-concepts-terminology®ion=eu-frankfurt-1),

introduction to APEX (https://cloud.oracle.com/?tile=intro-to-apex®ion=eu-frankfurt-1)

or Resource Manager (https://cloud.oracle.com/?tile=intro-resource-manager®ion=eu-

frankfurt-1). Such sources can be located in the bottom part of the Home screen.

Fig. 1.17: Exploring sources

Before we start with the database creation itself, it is necessary to list some used

terminology (note that the whole terminology can be found directly in the specified location,

we will name just the most important ones relevant for this book):

Region, availability domain

The region is a geographical location from which the resources are provided (e.g., virtual

cloud network). Each region consists of at least one availability domain (supervising,

e.g., compute instance). Each availability domain is independent, isolated from other

domains, fault-tolerant. Thus, configuring multiple availability domains can ensure high

availability and failure resistance.

Realm

The realm is a logical collection of regions. Each realm is isolated does not share any

data with any other. The tenancy is associated with just one realm and has access to the region

set belonging to the realm.

Console

Cloud console is a web source application providing access and management of the OCI.

Tenancy

The tenancy is a specific cloud repository, usually devoted to the organization or company

providing secure and isolated storage and processing partition. You can manage, create and

associate cloud resources and services across the tenancy.

Compartment

The compartment comprises cloud resources (instances, virtual cloud networks, etc.)

with specific privileges and quotas. It is rather a logical unit as a physical container.

https://cloud.oracle.com/?tile=get-started-oracle-university®ion=eu-frankfurt-1
https://cloud.oracle.com/?tile=get-started-oracle-university®ion=eu-frankfurt-1
https://cloud.oracle.com/?tile=key-concepts-terminology®ion=eu-frankfurt-1
https://cloud.oracle.com/?tile=intro-to-apex®ion=eu-frankfurt-1
https://cloud.oracle.com/?tile=intro-resource-manager®ion=eu-frankfurt-1
https://cloud.oracle.com/?tile=intro-resource-manager®ion=eu-frankfurt-1

24 Lab 1 – Oracle Cloud Infrastructure (OCI)

Note that Oracle provides you a tenancy after the registration, which is a root compartment

holding and managing all provided cloud resources. Then, you can create a resource

categorization tree. Each resource is associated with the compartment by definition. The core

principle is based on granting users only resources inevitable for their work, no more.

Virtual Cloud Network (VCN)

VCN is a virtualized network of the conventional network, including subnets, routers,

gateways, etc. It is located within one region and can spread multiple availability domains.

Instance

Instance is a compute host running in the cloud. Its main advantage is flexibility. You can

utilize the sources (physical hardware) on-demand to ensure performance, high availability,

robustness, to pass your set security rules.

Image

Image is a specific template covering the operating system and other software installed.

In addition, Oracle provides you with several virtual hard drives applicable to the cloud

system, like Oracle Linux, CentOS, Ubuntu, or Windows Server. The list and specification

can be found in the documentation:

https://docs.oracle.com/en-us/iaas/Content/Compute/References/images.htm.

Storage management

Storage management is an inevitable part of data processing and resisting and accessing.

Block volume is defined as a virtual hard drive providing persistent data storage space. Their

principles are similar to the hard drives in ordinary computers. It is possible to attach or

detach it on demand, even to another instance, without any data or application loss. Object

storage is a storage repository architecture available and accessible via web interface

anywhere. Physical data can have any structure and any type. The size is limited to 50 GB

per file. Object storage is a standard repository for backups or large data objects, which are

not commonly changed very often. The bucket is a lower architectural definition.

It is denoted as a logical container within the Object storage. Several buckets can be present

in any Object storage. The amount of the data in size and count aspect is unlimited.

Now, it is time to create the database and enjoy cloud resources.

Database creation

Please, connect to the Home screen of the cloud. There is a list of technologies and

resources available to you in the Quick actions menu (fig.1.18).

Fig. 1.18: Quick actions

https://docs.oracle.com/en-us/iaas/Content/Compute/References/images.htm

Lab 1 – Oracle Cloud Infrastructure (OCI) 25

Each name delimits the element, category, estimated time consumption for the creation

and mark, whether such resource is available in the Always Free option, or the specific

licensing is necessary. In this phase, we will create two Autonomous Transaction Processing

(ATP) databases. One will be used for the Student model. The second one will be used later

to deal with the Library. So click on the “Create an ATP database” button:

Fig. 1.19: Autonomous transaction processing

You will be navigated to the new window with the database parameter specification.

You have to define a compartment (you have just one, so the pre-selected variant is suitable).

Then, there is an input for the Display Name – user-friendly database name for easy

identification and Database Name (it can contain only letters and numbers. The first character

should be a letter. Note that the maximum size is 14 characters).

Fig. 1.20: Autonomous database definition

Then, the Workload Type should be selected. It depends on future usage. Data Warehouse

(DW) is suitable for complex evaluation and analytics, where the main emphasis is taken

on the data retrieval process. The amount of data stored inside is enormous. Update

operations are not present or are rare. In DW, data are loaded in batches, and processing such

a procedure is not time crucial.

In contrast, the system contains several indexes, and also denormalized tuples and values

can be present to improve data retrieval efficiency, which is mainly highlighted. Transaction

Processing type is suitable for online short-running queries and transactions. It is based

on the data normalization and high concurrency of the processing. Built-in JSON type

representation is mainly associated with the document API or storage management in a JSON

format style. JSON type is now available in the Free Tier, as well. APEX workload type

is characterized by the storage for the APEX application development – data-driven system

creation and deployment. For this study, we will select the Transaction Processing type.

Then, select the deployment type, which can be either shared or dedicated. We will use

Shared Exadata infrastructure, which is free in our option (see Fig. 1.21).

Then, configure the database (OCPU and storage capacity), all options are pre-selected.

As already stated, the Always Free option is limited to one OCPU and 20 GB of storage (valid

at the time of writing this book). If paid option is chosen, the Autoscaling option can be used,

as well, by altering the system sources up to three times of the provisioned cores

and resources if the workload demands rise.

26 Lab 1 – Oracle Cloud Infrastructure (OCI)

Fig. 1.21: Database parameter definition

When writing this book, the current database version is 21c. However, feel free to use

the newest one. It is also possible to choose at least one older version due to compatibility

reasons. Make sure that the Always Free selection is chosen.

Fig. 1.22: Database version selection

The next step is to set administrator credentials. For the Always Free option, the username

is ADMIN, and it cannot be edited. Please, specify the password twice. Note that the password

must contain at least 12 characters (by not more than 30). It must have at least one uppercase,

one lowercase, and one number inside for security reasons. Password cannot contain double

quotes (“) or the word “admin” (or username generally).

Fig. 1.23: Database administrator credentials

Follow the instructions and specify network access, which can be generally limited

to the IP address range. In our case, select the general option “Allow secure access

from everywhere”.

Lab 1 – Oracle Cloud Infrastructure (OCI) 27

Fig. 1.24: Network access definition

Finally, choose the “License Included” option, whereas you do not have your own

licensing.

Fig. 1.25: Licensing

At the bottom, you can optionally Show Advanced Options to define tags allowing you

to organize and track resources in the tenancy. Such an element is not attractive for us.

End the specification process by clicking on the “Create Autonomous Database” button.

Now, it is almost done. Just wait a few minutes until the database and resources

are provisioned.

Fig. 1.26: Create autonomous database

Now, you should see the following screen. The abbreviation of the database type

is present in the left part – ATP representing Autonomous Transaction Processing.

The current status is below the signature, now shown in orange color (fig. 1.27) representing

the provisioning process.

Fig. 1.27: Provisioning

28 Lab 1 – Oracle Cloud Infrastructure (OCI)

Provisioning is a process of creating and associating resources. In the right part,

the summary is present consisting of the database name, workload type, compartment,

and database system parameters.

Wait approximately 3-5 minutes until the database is available by replacing the status

with the “Available”, denoted by the green color (fig. 1.28). Now, the system is available

for management and processing.

Fig. 1.28: Database availability status

The above screen shows the home screen for the created StudentDB database. The bottom

part contains usage resource statistics and metrics – CPU Utilization, Storage Utilization,

Sessions, Execute Count, Running statements, and Queued Statements. Returned results can

be filtered out based on the time intervals. Now, the graphs are empty, whereas no activity

has been done.

Fig. 1.29: Resource statistics

Lab 1 – Oracle Cloud Infrastructure (OCI) 29

So, let´s return to the database Home screen. In the upper part, several buttons and tabs

are present, which will be consecutively described.

Fig. 1.30: Database home screen

DB Connection provides you the client credentials and connection information to connect

to the cloud database. In addition, it will offer you the zipped file consisting of the Client

Credentials (Wallet) in an encrypted manner. We will use it to connect the SQL developer

client environment launched locally in the client computer.

Performance Hub consists of extended statistics monitoring activity like average active

sessions, SQL monitoring, Automatic Database Diagnostic Monitor (ADDM), Workload,

Blocking sessions, etc.

Fig. 1.31: Performance hub

30 Lab 1 – Oracle Cloud Infrastructure (OCI)

Service Console provides you with the statistics needed for the administration. It focuses

on the activity and administration parameter definition. The service console is always

associated with the defined database. At the Administration level, the wallet

can be downloaded, resource management rules can be set, and administrator password

can be set. There, Oracle Machine Learning users accounts can be specified and managed.

The form to provide feedback to Oracle is present there, intending to give you the best

services and experience. The development part of the Service Console allows

you to download Oracle Instant Client, download SODA drivers, access the Oracle APEX,

SQL Developer Web, RESTful services, etc.

Oracle Instant Client is a set of tools, libraries, and SDKs for building and connecting

applications. SQL*Plus tool is present there, and import and export functionality is executed

either in the client-side or cloud instance. Oracle strongly recommends using Data Pump

functionality for data import and export, which is done on the server-side, so there are

no additional demands on the internet connection. Thus, a large data amount

can be processed. Even if the connection fails during the execution, whereas the whole

process is done in the cloud environment, the client just supervises the activity and progress.

Libraries provide a layer for the API interface of various languages – PHP, Python, Node.js

and access for OCI, OCCI, JDBC, ODBC, and Pro*C applications.

We will use Oracle Instant Client for the access and import activity.

Simple Oracle Document Access (SODA) is a set of APIs for managing JSON documents

in the Oracle database. Drivers are available for Java, C, PL/SQL, Python, Node.js, and REST.

Oracle APEX is a low code application tool providing the environment for the data-driven

web application definition. The created application can be directly deployed in the cloud

environment. Access is then done via the web browser. It is optimized for desktop and mobile

systems, as well.

SQL Developer Web provides a web-based interface for the object and data definition and

management, as well as the administration of the Oracle Autonomous Database. We will use

SQL Developer Web and a desktop variant of the product installed on the client-side.

Fig. 1.32: Scalability definition

Scale-Up/Down allows you to react dynamically to the processing demands and workload

and optimize processing unit amount and storage demands to provide robust

Lab 1 – Oracle Cloud Infrastructure (OCI) 31

and performance-resistant solutions. Automatic scalability can be applied there, as well.

In that case, the number of CPUs can change dynamically up to 3 times the defined limit.

In the Always Free option, particular settings cannot be done, and only 1 OCPU and 20 GB

of storage can be used free.

The More Actions combo box button groups several activities, which can be done

for the defined database, like Start, Stop, Restart, Clone, Rename, or Terminate. ATP version

can be converted to the Autonomous JSON database. Reflecting the licensing, the license

type can be enhanced, or the management can be extended by shifting the option to the paid

type.

Fig. 1.33: Available action list

Now, let´s describe the available tabs in the database Home screen. Autonomous

Database Information consists of the instance and database summary. Tools tab provides

you connection to the accessible application directly in the web browser. Namely, SQL

Developer Web is a suitable solution for the data and object definition and enhancements and

for administering the database and instance itself. Oracle Application Express (APEX)

can be launched from such a repository, too. There are also Oracle Machine Learning (ML)

User Administration tools and SODA Drivers modules.

Fig. 1.34: Main database administration tab

32 Lab 1 – Oracle Cloud Infrastructure (OCI)

Now, choose the Tools tab and start SQL Developer Web by clicking on the Open

Database Actions button of the Database Actions type.

Fig. 1.35: Launching SQL Developer Web (1)

A new browser tab will be opened by requesting the username and password. In our case,

we will specify administrator user, set during the database definition and applied in the

provisioning process.

Fig. 1.36: Launching SQL Developer Web (2)

Thus, the username will be “admin” and use the password specified in the database

definition.

Fig. 1.37: Launching SQL Developer Web (3)

Note, that the standard user is not allowed to access Oracle Developer Web.

The privileges can be maintained by the following script executed by the admin. Parameter

p_schema and p_url_mapping_pattern references the username of the particular user,

in the following case, the name is “Michal”.

Lab 1 – Oracle Cloud Infrastructure (OCI) 33

begin

 ords_admin.enable_schema

 (p_enabled => TRUE,

 p_schema => 'MICHAL', -- username for the grant

 p_url_mapping_type => 'BASE_PATH',

 p_url_mapping_pattern => 'michal',

 p_auto_rest_auth => NULL

);

 commit;

end;

/

Click on the Sign in. Now, the SQL Developer Web environment is provided.

There are four categories there:

• Development – consisting of the SQL definition environment, Data modeler,

JSON, REST, and APEX.

• Data tools – consisting of the tools for the data loading, catalog to understand

object dependencies, data insights, and business models.

• Administration – user and privilege management.

• Monitoring – performance analysis, statistics.

Fig. 1.38: SQL Developer Web – main screen

Click on the SQL. Such an environment allows you to specify and execute SQL

commands.

34 Lab 1 – Oracle Cloud Infrastructure (OCI)

Fig. 1.39: SQL definition module

The environment consists of three parts. The left part reflects individual objects'

navigation and allows you to search for structure and stored types. The upper part is used

for the SQL statements definition, result set, or the information summary is then in the bottom

part.

Fig. 1.40: SQL definition environment

Let´s write your first SQL statement obtaining the current server date:

select sysdate from dual;

Sysdate is a function call providing you the server date and time. Note that it gives Date

data type. In DBS Oracle, it always consists of the Date and Time elements, as well.

So be aware of it when querying!

The dual table is a specific table present in the Oracle database. It has only one attribute

called Dummy, and the value is X. Its owner is the user SYS, and each user can select data

from it. It cannot be modified, and it is used for obtaining function results. Thus, it produces

the result just in one row.

Execute the query by clicking on the “Run statement” button or by pressing

the shortcut CTRL+Enter. The produced result set is above the script in a separate part.

Fig. 1.41: Query result

Alternatively, the whole script can be executed by clicking the “Run script”
or pressing F5.

Lab 1 – Oracle Cloud Infrastructure (OCI) 35

select sysdate from dual;

select user from dual;

The script result:

SYSDATE

2021-06-29T06:32:22Z

Elapsed: 00:00:00.003

1 rows selected.

USER

ADMIN

Elapsed: 00:00:00.007

1 rows selected.

Note that the function call User provides you the login of the currently connected session

user. In our case, we are connected as user “Admin”.

SQL Developer, either in the web or desktop version, proposes a robust, user-friendly

environment for the SQL or procedural language (PL/SQL definition), administration, etc.

Moreover, it allows you to create a data model, either manually or reverse engineering,

to analyze existing systems and data dictionary.

SQL Developer can be launched locally in the desktop environment. In that case, you can

download the tool from the official site of Oracle. When writing this material, the newest

version is SQL Developer 21.4.3. However, feel free to download the most up to date here:

https://www.oracle.com/tools/downloads/sqldev-downloads.html.

Fig. 1.42: SQL Developer installation link

There are several versions for individual operating systems, so choose the best suitable

based on your environment. In the case of using Windows, I recommend downloading

the version including the Java Development Kit (JDK); otherwise, you have to install it

manually. SQL Developer is written in Java and does not need to be installed. Just download

the archive, extract it and store it in the file system. There is a file “SQL developer”, by which

the application is launched. So, download it and run.

https://www.oracle.com/tools/downloads/sqldev-downloads.html

36 Lab 1 – Oracle Cloud Infrastructure (OCI)

Fig. 1.43: SQL developer environment

Before we start, connecting to the cloud instance is necessary to access the sources

and database itself.

Click on the “ ” button in the left part (in the Connection list). The new window

is launched, requesting you to provide connection details. As already stated, credentials

to the cloud instance can be obtained by downloading the wallet from the Cloud console

or Home screen. Return to the database Home screen of the cloud environment. In the left

panel button list, select the Oracle Database and Autonomous Transaction Processing.

Fig. 1.44: Cloud menu

Choose the relevant database to be connected (in our case, we have just one database

to be reached). Click on its description (Display name).

Lab 1 – Oracle Cloud Infrastructure (OCI) 37

Fig. 1.45: List of available databases

Then click on the DB Connection button and follow the instructions.

Fig. 1.46: Obtaining DB Connection

Set the Wallet type to Instance wallet and just click on the Download Wallet. Instance

wallet is used for the specific database connection details definition, whereas the other option

(Regional wallet) covers all databases and is used for administration purposes.

Fig. 1.47: Download wallet

A connection always uses a secure type. This file will be necessary to be associated with

the SQL Developer desktop connection details. Whereas some database clients will require

a wallet and password to your database, please specify the password twice and download it.

The name of the downloaded file archive contains two-part – keyword “wallet”

and identification of your database name. In my case, the name is “Wallet_studentDB” with

a .zip extension. You do not need to extract such a file. The whole repository is associated

with the connection directly. However, looking at the storage internally, the downloaded

wallet consists of several files. I will just mention the most relevant for this book:

• Tnsnames.ora – connection details – protocols, hosts, ports, etc. Note that the cloud

connection is enhanced by the five categories reflecting the importance (low,

medium, high, tp, and urgent).

• Sqlnet.ora – wallet location and encryption types.

• Ewallet – encryption wallet details.

38 Lab 1 – Oracle Cloud Infrastructure (OCI)

1.1 SQL Developer connection specification
Return to the SQL Developer and define new connection parameters.

Fig. 1.48: SQL Developer connection definition (1)

Connection name is necessary to be specified, by which it can be easily located

in the Connection list. The name is up to you. Database Type is Oracle. Optionally, you can

install several drivers to connect to MySQL, Postgres, etc. Let's leave the Authentication Type

to Default. Username is the login of the user associated with the database. In our case,

we will use user “admin”. Define the password specified during the database definition

and provisioning. Optionally, you can store the password by using the checkbox. Let remain

the Role to the Default value (you do not have granted particular privilege group,

like SYSDBA, SYSOPER, etc.). Connection Type selection should be “Cloud Wallet”.

In the Detail tab, navigate to the folder where the Oracle Cloud wallet is stored and save it.

Fig. 1.49: SQL Developer connection definition (2)

Lab 1 – Oracle Cloud Infrastructure (OCI) 39

Test the connection by clicking on the Test button. In the left part, you should

see the status “Success”. Otherwise, the exception will be raised navigating you to the issue.

Solve the problem and try again. If the status is “Success”, click on Connect button.

The connection definition will be saved, and you will be routed to the SQL Developer

environment allowing you to access the defined database using the connection.

Fig. 1.50: SQL Developer connection definition (3)

The currently selected connection is visible in the right part of the screen, as well.

It is helpful in the case of using multiple connections in parallel. The service combo box

shows the list of connections loaded from the TNSNAMES.ORA is stored inside the wallet.

There are five types in general. Low, medium and high are primarily used for the data

warehouses, whereas tp and tpurgent focus on the transaction database service connection.

The differences are based on sources and parallelism used.

By default, the SQL Developer environment consists of two parts. The left part consists

of the Navigator, a list of connections, and other types made visible (in case of the following

figure, Reports are listed, as well, we will drive you through the reporting possibilities

later in the next chapter). The right part is used for the SQL and PL/SQL code specifications.

After the execution, such part is divided, the upper part remains original, the bottom part

shows the results (similarly to the SQL Developer Web).

Let's write the following query and execute it. The command can be executed by clicking

on the “Run statement” button or by using CTRL+Enter shortcut.

select sysdate from dual;

The whole (selected) script is executed by clicking on the “Run script” button

or invoking execution using the F5 shortcut.

40 Lab 1 – Oracle Cloud Infrastructure (OCI)

Fig. 1.51: SQL Developer environment

Do not be confused due to the different formats produced for the Date value. It depends

on the server or SQL developer session selection, respectively.

Create a new table named TAB containing only one numeric attribute ID:

Create table TAB(id integer);

Fig. 1.52: Table definition

Note that the font and size can be altered in the following menu context:

Tools => Preferences => Code Editor => Fonts:

Lab 1 – Oracle Cloud Infrastructure (OCI) 41

Fig. 1.53: Environment font specification

1.2 SQL*Plus command-line – SQL Client
Connection to the Cloud instance can be made by the console tool of the Instant Client

or sqlplus application itself. Oracle Instant Client can be downloaded from the following

website: https://www.oracle.com/database/technologies/instant-client/downloads.html

Fig. 1.54: The QR code of the Oracle Instant Client installation repository

Please, select the appropriate operating system version. It is available for Windows, Linux,

macOS, Solaris, HP, or AIX. Then, choose the newest version and download three packages

based on the name:

• Basic Package,

• SQL*Plus Package,

• Tools Package (including SQL Loader, Import, Export functionality, and Data

Pump tools).

Each file consists of one archive file with the .zip extension (for OS Windows). Extract

all downloaded files and copy the content to one common repository consisting of all files.

Inside the destination folder, several tools can be found, like Adrci, Exp, Expdp, Imp, Impdp,

Sqlldr or Sqlplus, and some others, however, the listed tools will be used. As stated,

https://www.oracle.com/database/technologies/instant-client/downloads.html

42 Lab 1 – Oracle Cloud Infrastructure (OCI)

connection to the database cloud instance can be made by using the sqlplus command-line

tool. After launching it, username and connection details are necessary to be specified.

Username consists of two parts – login and connection details defined either by the full

(entire) connect string or by connect identifier pointing to the stored connect definition:

login@connect_string

login@connect_identifier

Fig. 1.55: SQL*Plus command-line connection specification

The login value is clear. It has been specified during the database definition or during

new user creation, respectively. For us, we have identified only one user called “admin”.

Connection details can be, in principle, specified by two alternatives, which

will be consecutively described.

The first alternative is associated with the full definition. The second alternative is based

on the already existing connection string reference.

1.2.1 Alternative 1 – full definition

To provide the ability to connect via full definition, Oracle wallet will be used. It consists

of several files inside the archive. We will need the file TNSNAMES.ORA containing

the connect string list and EWALLET with the encryption keys.

Structure of the TNSNAMES.ORA file takes the identifiers of the connection followed

by the inner definition (host, port, service name, and connection parameters and security

aspects).

Fig. 1.56: TNSNAMES.ORA content – connection specification details

Lab 1 – Oracle Cloud Infrastructure (OCI) 43

Database connections are made based on the execution workload, so choose appropriate

and copy the definition (for the following part, high service type will be used). To allow

you to connect, it is necessary to extend it with the encryption keys. Without them, it would

be impossible to communicate – the whole communication is always strictly encrypted,

ensuring complex security. Thus, after the definition, add one new clause pointing

to the location of the keys (encryption keys are in the EWALLET file). So, take the wallet

archive, unzip it, and copy it to a separate folder. Extend the definition by locating encryption

keys:

 (description=(retry_count=20)(retry_delay=3)

 (address=(protocol=tcps)(port=1522)

 (host=adb.eu-frankfurt-1.oraclecloud.com))

 (connect_data=(service_name=

 fwuydcbkqbsqo83_studentdb_high.adb.oraclecloud.com))

 (security=(ssl_server_cert_dn=

 "CN=adwc.eucom-central-1.oraclecloud.com,

 OU=Oracle BMCS FRANKFURT,

 O=Oracle Corporation,

 L=Redwood City,

 ST=California,

 C=US")))

Let the location of the e-wallet be: C:\oracle_wallet (use any address you want, do not

use diacritics or spaces in the path). Then, interconnect these elements by adding the

MY_WALLET_DIRECTORY clause with the pointer to the e-wallet directory. In my case,

it would look like the following:

(MY_WALLET_DIRECTORY="C:\oracle_wallet")

Finally, create the whole connect string by joining those elements:

 (description=(retry_count=20)(retry_delay=3)

 (address=(protocol=tcps)(port=1522)

 (host=adb.eu-frankfurt-1.oraclecloud.com))

 (connect_data=(service_name=

 fwuydcbkqbsqo83_studentdb_high.adb.oraclecloud.com))

 (security=(ssl_server_cert_dn=

 "CN=adwc.eucom-central-1.oraclecloud.com,

 OU=Oracle BMCS FRANKFURT,

 O=Oracle Corporation,

 L=Redwood City,

 ST=California,

 C=US")

 (MY_WALLET_DIRECTORY="C:\oracle_wallet")))

Take emphasis on the brackets, please. The above definition is a full connection

specification – connect string. To connect via command line, use your login followed

by the at (@) and connect string:

login@connect_string

44 Lab 1 – Oracle Cloud Infrastructure (OCI)

admin@(description=(retry_count=20)(retry_delay=3)(address=

(protocol=tcps)(port=1522)(host=adb.eu-frankfurt-1.oraclecloud.com))

(connect_data=(service_name=fwuydcbkqbsqo83_studentdb_high.adb.oraclecloud.c

om))(security=(ssl_server_cert_dn="CN=adwc.eucom-central-

1.oraclecloud.com,OU=Oracle BMCS FRANKFURT,O=Oracle Corporation, L=Redwood

City,ST=California,C=US")(MY_WALLET_DIRECTORY= "C:\oracle_wallet")))

Fig. 1.57: Full connection

Similar to the SQL Developer, a script can be defined in such an environment. SQL

Developer is, however, significantly better in terms of user experience and user-friendly

environment.

Fig. 1.58: Command-line client environment

1.2.2 Alternative 2 – connect identifiers

As evident, the above principles are too complicated for daily activity. The definition

is complicated, so the user data must be stored somewhere to be copied. The second

alternative is based on the stored connect identifiers, which are then referenced. To do so,

download the wallet if you have not done it already. Then, extract the archive and copy

the content to the directory. In my case, I will use the folder path “C:\oracle_wallet”. Then,

you must create a system variable named TNS_ADMIN pointing to such a repository. System

variables can be specified. For Windows operating system, navigate to the Control Panel =>

System => Advanced system settings (in the left panel). Alternatively, you can type “path”

in the Start menu and then choose “Edit the system environment variables”. Another way to

open the System Properties window is to type “SystemPropertiesAdvanced.exe” in the Start

menu or in the Run window (opened by WinKey+R shortcut).

Lab 1 – Oracle Cloud Infrastructure (OCI) 45

Fig. 1.59: Environment variable definition (1)

Click on the Environment Variables button:

Fig. 1.60: Environment variable definition (2)

A new window will be launched consisting of a list of system variables. Click on the New

button to add a new environment variable.

Fig. 1.61: Environment variable definition (3)

46 Lab 1 – Oracle Cloud Infrastructure (OCI)

The variable's name is “TNS_ADMIN” – the name is strict, be aware while specifying it.

Variable value is a path to the Oracle Wallet extracted folder (in my case:

C:\oracle_wallet).

Fig. 1.62: Environment variable definition (4)

The list of connect strings is located in the TNSNAMES.ORA file (such file name cannot

be changed!). Open such file, the name before the equality sign reflects the connect identifier,

you can change its name. The name should not contain spaces and special symbols and should

be unique.

The last step is the encryption key association. Open the file SQLNET.ORA inside

the extracted folder and modify the element WALLET_LOCATION, part DIRECTORY. Use

the folder with the extracted wallet (in my case: C:\oracle_wallet).

Fig. 1.63: Oracle wallet location definition

Save the changes and try to connect.

In the Instant client, you have two options – specify the full connection details

(alternative 1) or use connect identifier. I have not changed the name of the identifier so that

I will use the original one – studentdb_high. In your case, use the name located in the

TNSNAMES.ORA file. The username of the Instant client will then be like the following:

login@connect_identifier

admin@studentdb_high

Fig. 1.64: SQL Instant client connection definition

Lab 1 – Oracle Cloud Infrastructure (OCI) 47

Note that during the password definition, the cursor does not move. Do not be stressed.

It will work correctly.

For now, open the enclosed file STUDENT_DATA.SQL and execute the whole script.

It consists of the object table definitions, and data are consecutively loaded. I recommend

you study the code at least briefly. You can see that tables are created using Create table

command followed by the relationship definition used for the table interconnection –

references, joining. Then, individual rows are created invoking the Insert statement.

Such principles, syntax, and usage will be complexly described in the following sections.

However, in this phase, it is inevitable to load data to the table as quickly as possible to deal

with the example data.

The following Select statement can be used to get the list of tables created in your schema

(user account definition). Value of the table_name attribute will be selected from the object

tabs (tabs reflects the synonym to the data dictionary view (system table) user_tables

consisting of the table definition. More about data dictionary views can be found in chapter

Lab 14 – Data dictionary views):

select table_name from tabs;

Note that all data in the data dictionary views are uppercase:

Fig. 1.65: Select statement result set

Schema of the table can be provided using the description command (desc). Table schema

defines the structure of the table – name of the attributes with their definitions (data types,

NULL / NOT NULLs, ...). More about the table structure can be found in chapter

Lab 4 – Data modeling and Lab 5 – Create, Alter and Drop commands.

desc table_name;

Fig. 1.66: Table description

In this part, it is also necessary to understand the differences between various data types.

48 Lab 1 – Oracle Cloud Infrastructure (OCI)

Tab. 1.1: Data types

Data type Special characteristics

Date
Date and time spectrum in the HH:MI:SS

format (not the date only!)

Timestamp
Contains date and time (HH:MI:SS:FFFF)

up to 9 precision level

Char(x)
String format with fixed size definition

– x characters exactly

Varchar2(x)
String format with variable size

– maximum x characters

Integer, Long, Float, Double precision,

Number

Self-explanatory data types, integer

is a subgroup of number data type with

no fractional part

LOB

Large objects (BLOB, CLOB, NCLOB,

BFILE) for storing binary files (music,

photos, etc.) or complex textual data

To get the results of the simple Select statement, write the following code.

The aim is to get data values of the following attributes – personal_id, name, and surname.

It can be obtained from the table personal_data, which schema has been described

in the previous code example.

select personal_id, name, surname from personal_data;

 The provided result set is following:

Fig. 1.67: Select statement result set

Notice that each SQL command must end with a semicolon (;). It is often repeated

the mistake of students – no data will be returned, whereas a command is not finalized

and thus impossible to be executed.

To get the results of the last command (usually stored in afiedt.buf file), slash (/) can be

used. Moreover, the last executed SQL command can be edited using the editor launched

using the ed command. Management inside the editor is based on previously described editor

principles. Notice that SQL statements are not case sensitive except data in dictionary views.

Mentioned editor data can hold only one command.

Fig. 1.68: Modifying buffered statement

Lab 1 – Oracle Cloud Infrastructure (OCI) 49

Be aware, here, in the last command editor, the end of the statement is not delimited by

the semicolon but by a slash (/) located in the last row (as the only one character).

Moreover, this command can be used only if at least one SQL command has been executed

in the session. If not, you will get the following error information:

SP2-0107: Nothing to save.

Launching the last statement from the buffer can be performed using the slash (/).

The default editor type can be changed using the following command in sqlplus (notice

the space before the underscore symbol).

define _editor=editor_name

The following command shows the example of assigning joe as the default editor

in sqlplus.

define _editor=joe

Besides editor management and login using SQL*Plus command, all activities can also

be performed in the SQL developer tool.

1.2.3 Capturing activities in SQL

All performed activities can be stored using recording (capturing) technology. In that

case, the console output is also routed to the file using stream. First, starting recording is

provided using spool command followed by the file name (in SQL developer, usually full

path is used).

spool file_name

From that moment, all statements and results shown in the console are automatically

stored in the defined file until the process is stopped using the spool off command.

spool off

So, let´s have the example of the recording. Start the process and write some SQL

commands (use the previously defined statement). Afterward, stop the process and show

the file data.

spool data_output.txt

select personal_id, name, surname from personal_data;

spool off

The file can be edited using the ed command followed by the file name with extension:

ed data_output.txt

50 Lab 1 – Oracle Cloud Infrastructure (OCI)

Fig. 1.69: Spooling

Notice that if you omit the file extension, default extension *.lst will be used when

the recording process is started.

You can redirect the execution to the operating system commands (OS Linux) using the

host command. Otherwise, it would be necessary to exit SQL*Plus and execute such a

command in a Linux environment (determined by the $ symbol).

host ls file_name

1.2.4 Working with Help

Connection to the database system allows you to use an embedded helper. To view

the basic Help menu, the command help should be used followed by the topic (category),

you are looking for some hints.

help topic

In the following example, the help for the start command is shown.

help start

Fig. 1.70: Help

Lab 1 – Oracle Cloud Infrastructure (OCI) 51

Despite that, it is strongly recommended to use official documentation for DBS Oracle

covering the latest patches (https://docs.oracle.com/).

1.2.5 Working with multiple commands

We strongly recommend writing commands to the files when dealing with multiple

commands as well as for dealing with the following labs.

The file can be created and edited either in the OS environment but also in the SQL*Plus.

The usage is the same. The first following solution describes the command in the OS.

The second one reflects the direct use in SQL*Plus. Notice that if you try open editor with

the file name (and extension as well) and such file does not exist, it is automatically created.

Vice versa, if it exists, it is opened in edit mode. We use joe editor in the OS environment

for explanation purposes, but feel free to use that one you prefer.

joe file_name.sql (in OS Linux)

ed file_name.sql (in SQL*Plus)

host joe file_name.sql (in SQL*Plus, accessing Linux)

In the file, any SQL commands can be written and consequently started on the database

system server. Notice that individual commands must be ended with the semicolon (;). Editor

management is described in chapter 4.9.7 Working with directories and files (saving changes

can be done in joe using CTRL+K+X shortcuts).

Notice that the SQL developer tool uses a more user-friendly environment, so file

management is far more manageable.

1.2.6 Comments

It is inevitable to comment on your code. One row comment is characterized by two

dashes (-) followed by at least one space. Multiple row comment starts with a slash (/)

followed by an asterisk (*) and at least one space or new line. The reverse order is used

to end multiline comment – at least one space (or newline) followed by asterisk and slash.

-- one-row comment

/* multiple

 line

 comment

*/

The created file can be started in SQL*Plus to execute the commands written inside using

the start command followed by the file name and extension (it can be omitted if the extension

is *.sql,). The first following command shows the syntax. The rest are examples. The last two

commands are equivalent. Notice that SQL statements are commonly written into the file

with the *.sql extension.

start file_name.sql

start lab1.sql

start lab1

Currently, a connected username can be obtained using the following commands (dual

reflects special table and is described in chapter 2.2.2 Dual table).

https://docs.oracle.com/

52 Lab 1 – Oracle Cloud Infrastructure (OCI)

show user

Notice that the show user command is not an SQL command. Therefore, it is unnecessary

to end it with a semicolon (using it does not cause any error).

select user from dual;

1.2.7 Working with procedures and functions

The code of the methods (procedure, function) is stored in the files and consecutively

loaded into the system preceded by the compilation process. The compilation process

is a significant part of the loading, ensuring correctness. The code of the method is parsed

and stored in the database data dictionary. Thus, if the method is compiled successfully,

original code from the file is no longer necessary (it is possible to reconstruct code from

the data dictionary).

If you attempt to create a stored method, which cannot be compiled successfully, although

it will be loaded, the status of such method will be invalid and cannot be executed at all.

Transforming invalid object to valid is always performed by the compilation process. Vice

versa, the invalid object can originate from unsuccessful loading or by changing dependent

objects.

So, let´s have the simple procedure example stored in the file (first_procedure.sql).

The name of the procedure is proc_get_row_number.

create or replace procedure proc_get_row_number

 v_count integer;

begin

 select count(*) into v_count

 from personal_data;

 dbms_output.put_line('The number of the rows' ||

 'in personal_data table is: ' || v_count);

end;

/

Be aware that each procedure, function, trigger, or package must end with a slash (/) as

a separate character in the last line. It delimits the final separator, whereas multiple blocks

can be nested.

 If you omit it, it will not be compiled, and the system will wait to add it. Inside

this procedure, the local variable v_count is defined for storing a number of rows

of the personal_data table. Such value is obtained using Select statement – result set (one

value) is stored in a defined local variable (select count(*) into v_count). Afterward, the value

of that local variable is printed on the console screen by calling the put_line method

of the dbms_output package.

Launching the code from the file is performed in SQL*Plus using the start command.

Thus, in our case, the process will look like this, resulting in compilation error identification:

start first_procedure.sql

Warning: Procedure created with compilation errors.

If errors are identified during the loading, the show err can obtain a list of the problems.

show err

Lab 1 – Oracle Cloud Infrastructure (OCI) 53

The output of the method looks like this. The numeric value in the first part of the line

expresses the line number, where the error is located. In our case, it is value “2”.

2/3 PLS-00103: Encountered the symbol "V_COUNT" when expecting one

of the following: (; is with authid as cluster compress order using

compiled wrapped external deterministic parallel_enable pipelined

result_cache

The symbol "is" was substituted for "V_COUNT" to continue.

Be aware that the line number in the file does not need to correspond to the line (in the

file) during the compilation!

It can be caused by other things by PL/SQL optimize level. So, the real code in such line

can be obtained using the list <line_number> command (it can be abbreviated to l) command

– in our case, list 2 (l2).

list <line_number>

l2

The output of the method based on the previously defined procedure

proc_get_row_number will be following:

v_count integer;

Thus, the error is located on line 2 – the code v_count integer;. The problem is based

on missing keyword before the second line command. Please add the word “IS”, save the file,

and compile it once again.

create or replace procedure proc_get_row_number

is

 v_count integer;

begin

 select count(*) into v_count

 from personal_data;

 dbms_output.put_line('The number of the rows' ||

 'in the personal_data table is: ' || v_count);

end;

/

Now the procedure will be successfully compiled. Notice that if multiple errors have been

identified, always remove the problems up to down, whereas some problem corrections can

remove numerous consecutive errors.

If the procedure is created without compilation errors, the status will be valid and such

method will be possible to be executed (using execute command):

execute procedure_name

execute proc_get_row_number

The result is following:

The number of the rows in the personal_data table is: 35

Executing function is similar, but the result must be assigned (e.g., to a local variable).

Notice that the output display must be enabled to see the results. The SERVEROUTPUT

setting controls whether SQL prints the output generated by the dbms_output package

54 Lab 1 – Oracle Cloud Infrastructure (OCI)

from PL/SQL procedures to the environment. It must be enabled for the session

(or for the whole server) before the first execution of the dbms_output package (see chapter

9.5 Executing stored method). Otherwise, no output will be printed to the user.

set serveroutput on

1.2.8 Connection and session termination

Individual changes to the data must be confirmed using the commit command (transaction

is ended successfully). It ensures that data is durable and cannot be lost in any case. Thus,

it is better to do it relatively often. In the following section, each first part defines the syntax.

Then the server answer is listed.

commit;

commit complete.

The opposite of the commit command is a rollback, which removes all values changed

in the current transaction. It is related to the beginning point of the transaction.

The transaction starts automatically when connecting to the database or directly after ending

the previous one.

rollback;

rollback complete.

More about transaction management can be found in chapter 3.8 Transactions.

Disconnecting from the database is provided using the disconnect command.

disconnect;

Disconnected from Oracle Database 19c Enterprise Edition Release

19.0.0.0.0 – Production Version 19.3.0.0.0

Reconnecting or changing the user signed in the session can be ensured using the connect

command followed by the login and connect string defining database instance. Notice that

the connect string can be defined in the TNSNAMES.ora file located

in $ORACLE_HOME/network/admin.

connect login@orcl;

connect login@xe;

In Cloud environment, the connection identifier is delimited name of the database

followed by the extension (low, medium, high, tp, tp_urgent):

connect login@library_low;

connect login@student_tp;

After work completion, command exit can be used to exit the SQL*Plus environment.

The same functionality is also provided by pressing CTRL+D keys. Notice that physical

implementation of the exit command automatically invokes commit.

exit;

Lab 1 – Oracle Cloud Infrastructure (OCI) 55

Never turn off SQL*Plus (SQL Client, console) using the Close button of the window

(the cross of the right corner). This is not the correct completion of work. Changes are not

committed. Thus, after new login, executed not-committed statements will not be found in the

database. Moreover, if some table or row is locked, such state remains for a defined period,

even after re-login.

Consequently, you will not be able to access all data and work fully. It is evident that

Process Monitor (PMON) does not proactively control connected user processes to minimize

network and communication system load workload. However, if the user process does not

communicate during the defined time (does not send any request), the corresponding server

process is killed by the PMON, and used server resources are freed. It means that all work

is rollbacked, and locks are released.

1.3 Syntax symbols

The following chapters cover all main SQL commands extended by multiple examples

and characteristics. We will use the standardized syntax definition:

[] … optional part

{ } … multiple choices (one should be chosen)

| … divisor of the choices in { }

< object_name > … the name of the object, which is replaced by the real reference,

like STUDENT for table name, etc.

These symbols should not be written explicitly in the statements. Instead, they only

describe the syntax possibilities.

 On the other hand, standard parentheses () are part of the syntax. Therefore, they

must be part of the command.

As you noted above, any code or SQL command will appear in a red box in this book:

This is a line of code

The outputs from the code are displayed in either a gray box or a gray table:

This is a line of code output

 COLUMN_1 COLUMN_2 COLUMN_N

1 Value 1 Value 2 Value N

If you see a code in the text marked in a red dashed box with red font, we want to warn

you that the code is incorrect or otherwise erroneous:

This is a line of wrong code

Chapter content summary is listed in the following format:

Summary of the section

Please note that individual figures are not strictly referenced in the book. Instead, we use

the approach of the description strictly directly preceding the figures throughout the whole

book.

Lab 2 – Basics of data retrieval 57

Lab 2 – Basics of data retrieval

This lab introduces the main clauses of the Select statement definition. Projection can be

made by defining the list of attributes, expressions, or values in the Select clause. Selection

limits the number of rows part in the result set by applying conditions in the Where clause.

This chapter summarizes the person identification principles used in Slovak and Czech

region – personal_id, composed of the date of birth, gender and distinguishing part.

Individual queries can deal with the attributes, but also expressions and function calls can

be used. Section 2.3 proposes the summary of the most important methods, categorized into

the string, math, date and time and conversion function types.

Among the Select and Where clause, the focus is done on the table reference using the

relationships, operated by the Join, located in the From clause of the Select statement. If the

Join operation is not done properly across multiple tables, a Cartesian product combining all

data is present.

The value comparison across the membership in a set can be made by using IN or EXISTS

or their negative variants (NOT IN, NOT EXISTS). By using Join operations, duplicate values

can be present for particular rows, which can be limited by using the Distinct keyword in the

Select clause. It can also be generally used to remove duplicates from the set.

Finally, the importance of the aliases for the tables and attributes is discussed.

2.1 Introduction

Data manipulation is the central part of the user activities accessing the database. The user

connects to the database, gets and processes required data from the database. Therefore,

the main challenge is to select rows to be changed, deleted, or just retrieved. Usually,

the database consists of hundreds, thousands, or even more data rows, and the manual

accessing, and evaluation process would be complicated and time-consuming. Therefore,

the Select statement definition has been proposed allowing you to specify which data

you want as well as a form of the result set. Database system optimizer automatically

evaluates the defined query and provides the searching for you. The easiest way is to get

all data stored in the table, but commonly you want to get all the rows that satisfy a condition

or multiple conditions, even based on multiple tables. In this lab, a Select statement definition

with individual clauses is introduced supported by multiple examples qualifying result sets.

The Select statement is used to query the database and retrieve selected data that match

the criteria you specify. It has six main clauses for the command definition. Each clause has

many options, selections, parameters, etc. Individual clauses will be listed below, but each

will be covered in more detail later in this book.

Syntax of the Select statement is following:

SELECT [{ALL | DISTINCT}] column1 [, column2, ...]

 FROM table1 [JOIN table2 {ON condition | USING condition} ...]

 [WHERE conditions]

 [GROUP BY column_list]

 [HAVING conditions]

 [ORDER BY column_list [{ASC | DESC}]];

58 Lab 2 – Basics of data retrieval

Please, separate each used clause to the new line and align the code. When using more

complex statements, such practice will be appreciated.

For consecutive data management, it is inevitable to describe principles of data

identification. It is done by using the primary key, which uniquely identifies each record

in a database table. The primary key (PK) must contain UNIQUE values and cannot hold

NULL. A table can have only one primary key, consisting of single or multiple fields

(composite primary key). In the model, the primary key element is signed as “PK”.

More about the primary key definition, management, and importance will be described later

in chapter 11.3.2 Primary key.

2.2 Projection, selection, column alias
The easiest Select statement does not contain any condition, and all attribute values

are obtained. In principle, it is possible to list all attribute names detached by colons (,),

but also asterisk (*) wildcard can be used, which lists all attributes based on the table schema

automatically (the order of attributes is delimited by the schema and can be gotten using

the description of the table – e.g., desc personal_data). Thus, the following two commands

are providing the same results. Naturally, if the attribute order is significant, a named notation

must be used.

select personal_id, name, surname, street,

 town, zip, nationality

 from personal_data;

select * from personal_data;

The result set will look like this (export of SQL Developer tool):

 PERSONAL_ID NAME SURNAME STREET TOWN ZIP NATIONALITY

1 841106/3456 Michael Pearce Kamenna 27 Banska Bystrica 97401 SK

2 840312/7845 Jack Smith Zelena 9
Nove Mesto nad

Vahom
91501 SK

3 860907/1259 John Young Slnecne namestie Komarno 94501 SK

4 850130/3695 Carol Pearce Stred 49/7 Povazska Bystrica 01701 SK

5 841201/1248 Carol Pearce Juh 2100/456 Trencin 91101 SK

6 830514/5341 Wiliam Whittel Tahanovce 38/12 Kosice 04001 SK

As you can see, some attribute values are denoted with the (null) values. Notice that such

value is not physically stored in the database, but it expresses undefined value – thus, there

is no address information for Simone Smith. In the command line (SQL Client), a NULL value

is modeled by an empty string representing the same fact.

 PERSONAL_ID NAME SURNAME STREET TOWN ZIP NATIONALITY

1 845210/6525 Simone Smith (null) (null) (null) (null)

In the previous case, all data table rows have been selected. Where clause of the Select

statement can limit the result set based on defined conditions. In the following example,

we will list only persons whose first name is Michael. As we can see, four rows are selected.

Data are compared based on equality. Thus, also the font style should be highlighted (lower

/ upper case).

Lab 2 – Basics of data retrieval 59

select *

 from personal_data

 where name = 'Michael';

 PERSONAL_ID NAME SURNAME STREET TOWN ZIP NATIONALITY

1 841106/3456 Michael Pearce Kamenna 27 Banska Bystrica 97401 SK

2 830301/7789 Michael Simson Lesna 7/12 Ruzomberok 03401 SK

3 740210/6536 Michael Flower (null) (null) (null) (null)

4 880329/1233 Michael Smith (null) (null) (null) (null)

Also, multiple conditions can be used cooperating based on OR or AND evaluation

techniques. When multiple conditions are used, parentheses usage is preferred. Thus,

in the following example, we will list only persons living in Zilina town. Moreover, the name

of the person must be “Jack”. The condition connector is AND (conditions must apply

at the same time). The second condition limits the number of data rows in the result set to 1.

select *

 from personal_data

 where town = 'Zilina' and name = 'Jack';

 PERSONAL_ID NAME SURNAME STREET TOWN ZIP NATIONALITY

1 791229/5431 Jack Robinson A. Bernolaka 14/20 Zilina 01001 SK

The order of the conditions to be evaluated is not essential, whereas a database query

optimizer can rearrange the order to speed up the evaluation by limiting the data amount

to be processed in the next step. Naturally, using parentheses forces the system to use user-

predefined order.

In the previous examples, condition Where removed data tuples, that do not meet

the conditions – relational algebra Selection operation has been used:

Fig. 2.1: Selection

The second relational algebra operation is just Projection, which removes some

attributes from the result set. The list of attributes, which values should be obtained, is defined

in the Select clause of the statement delimited by commas (,).

Fig. 2.2: Projection

Pure Projection operation does not contain Selection inside.

60 Lab 2 – Basics of data retrieval

select name, surname

 from personal_data;

However, in real application usage, individual statements are usually created

by the combination of Selection and Projection.

select name, surname

 from personal_data

 where town='Zilina';

As we can see, attribute names in the result set are the same as the attribute name

in the table definition. It is possible to rename them in the result set using aliases. The syntax

is highlighted.

select name as first_name, surname as family_name

 from personal_data;

 FIRST_NAME FAMILY_NAME

1 Michael Pearce

2 Jack Smith

3 John Young

4 Carol Pearce

In the standard environment, the attribute name must contain only one word,

but this restriction can be replaced by encapsulating the alias into the quotes (" ")

select name as "first name", surname as "family name"

 from personal_data;

Keyword “AS” is optional and does not need to be used.

select name "first name", surname "family name"

 from personal_data;

However, some limitations must be described and followed. Otherwise, an exception will

be raised. For example, in principle, if the attribute name is changed (column alias is defined),

such alias cannot be used in the Where clause of the same Select statement, but the original

name must be used. The reason is, that the Where clause is evaluated during the first stage

of the processing. Vice versa, these aliases must be used for superior Select statements.

Thus, the first example is incorrect. The right solution is shown in the second example.

select name as first_name, surname as family_name

 from personal_data

 where first_name='Michael';

It is not possible to use defined alias in the Where clause of the same

 statement:

ORA-00904: "FIRST_NAME": invalid identifier

select name as first_name, surname as family_name

 from personal_data

 where name='Michael';

As you can see in the result set, the original attribute name is renamed to first_name.

The same principle is applied for surname as well.

Lab 2 – Basics of data retrieval 61

 FIRST_NAME FAMILY_NAME

1 Michael Pearce

2 Michael Simson

We will explain the structure, meaning, and importance of the personal_id attribute

before the consecutive processing and the rest clauses explanation.

2.2.1 Personal_id structure

Personal_id refers to the birth number as the numerical identifier assigned to Slovakia

and Czech Republic people. Personal identification number belongs to the personal data.

It is formed from the person's date of birth, gender, and the terminal digit, which is a

distinctive sign of people born on the same calendar day.

The first two digits of the birth number are the last two digits of the person's birth year.

The second two digits express the numeric designation of the month of birth of the person

(value is increased by 50 for women), the third two digits express the numerical designation

of the date of birth of the person in that calendar month. This is the example of the man

and woman:

90 06 23 / 1234 90 56 23 /1239

MAN WOMAN

Year = 90 Year = 90

Month = 6 Month = 6

Day = 23 Day = 23

The whole personal identifier should be divided by 11 without remainder (this rule is not

strict, sometimes, it can happen that the division rule does not pass):

9056231239 / 11 = 823293749

2.2.2 Dual table

The Dual table is a special type of table consisting of one row and one attribute.

It is always present in the DBS, and such a table cannot be changed based on the structure

nor the data inside. In DBS Oracle, it is defined by a single VARCHAR2(1) attribute called

DUMMY, which carries the value “X”. Such a table is useful for obtaining pseudo column

values or results of the functions independent of the table data.

Let´s consider some examples. The first one returns the actual date and time. The second

one returns the value 20 based on the defined mathematical operator “+”. The last one returns

the length of the string, value 12. Notice that string value should be encapsulated

in apostrophes.

select sysdate from dual;

select 10+10 from dual;

select length('some text...') from dual;

2.3 Using functions

It is not necessary to work only with defined attributes themselves, but the conditions,

as well as the Select clause itself, can also consist of function results to be evaluated. This lab

62 Lab 2 – Basics of data retrieval

will only deal with system-defined functions; the most important ones will be described based

on parameters and usage. User-defined functions can also be part of the statements if some

prerequisites and conditions are met (user-defined function management is described in

Lab 9 – Procedures, functions and packages).

DBS Oracle provides a wide range of functions in the standard package for dealing with

values by obtaining their part, convert the value to another data type, or transforming output.

Such functions can be generally categorized into the following groups (Oracle

documentation categorization is used):

• String/Char functions,

• Numeric/Math functions,

• Date/Time functions,

• Conversion functions,

• Analytic functions,

• Advanced functions,

• Miscellaneous functions.

2.3.1 Character string functions

This category carries the functions dealing with strings. We will list the most important

ones with their characteristics and usage.

ASCII function

ASCII function returns the numeric representation of the character in the ASCII table.

The parameter of the function should be a single character. However, if multiple characters

are pushed, only the first one is evaluated.

select ASCII(single_character) from dual;

select ASCII('A') from dual;

CONCAT function

The Concat function allows you to connect (concatenate) two strings together.

select CONCAT(first_string, second_string) from dual;

select CONCAT(name, surname) from personal_data;

The disadvantage of the mentioned function is that it can accept only two parameters,

thus if multiple strings need to be concatenated together, such function must be executed

multiple times, and the code is hardly readable or even adjustable. The previous example puts

two strings together without any space.

 CONCAT(NAME, SURNAME)

1 MichaelPearce

2 JackSmith

3 JohnYoung

Thus, the correct solution (with space) can look like the following:

select CONCAT(name, CONCAT(' ', surname)) from personal_data;

Lab 2 – Basics of data retrieval 63

 CONCAT(NAME,CONCAT(",SURNAME))

1 Michael Pearce

2 Jack Smith

3 John Young

To concatenate four string values, Concat function must be used at least three times:

select CONCAT(CONCAT(CONCAT('A', 'B'), 'C'), 'D') from dual;

For definition and management simplification, function management definition provides

pipe (||) operator to concatenate any string count.

select string1 || string2 [|| ... string_n] from dual;

select 'A' || 'B' || ' C' || 'D' from dual;

As you can see, constant strings must be delimited by the apostrophes ('). In the English

language, however, such a symbol can also have a special denotation. Therefore, the system

must be able to distinguish whether the apostrophe character is part of the standard string

or should be treated as a delimiter. For these purposes, if the apostrophe is part of the string

text, it must be doubled. Both following examples provide the same results.

select 'Let''s' || ' study Informatics' from dual;

select 'Let' || '''' || 's' || ' study Informatics'

 from dual;

 LET'||''''||'S'||'STUDYINFORMATICS'

1 Let's study Informatics

String character case management (LOWER, UPPER, INITCAP functions)

The size of the string can be transformed using three functions, which provide sufficient

power to ensure the correct string format to be stored in the database. Lower function converts

all characters in the specified string to lowercase. Vice versa, the Upper function converts

all characters to uppercase. Notice that characters, which are not letters (like numbers),

are not changed at all. Special functionality provides the InitCap function, which sets the first

character of each word to uppercase. The rest ones are lowercase. The principles are shown

in the following example:

select lower('DATABASE SYSTEMS'),

 upper('database systems'),

 initcap('DAtabaSE SySTems')

 from dual;

LOWER('DATABASESYSTEMS') UPPER('DATABASESYSTEMS') INITCAP('DATABASESYSTEMS')

database systems DATABASE SYSTEMS Database Systems

If there is a necessity to set only the first letter of the first word to uppercase,

a combination of the previously described functions can be used:

select upper(substr('DAtabaSE SySTems', 1, 1)) ||

 lower(substr('DAtabaSE SySTems', 2))

 from dual;

64 Lab 2 – Basics of data retrieval

LENGTH function

Length function returns the number of characters of the specified string.

select length(string_value) from dual;

select length('some text...') from dual;

The value 12 will be returned in the previous example:

12

SUBSTR function

Substr function extracts a substring from the provided input string.

select substr(string, start_position [, length]) from dual;

The first parameter (string) defines the source string to be processed. The second

parameter delimits the starting position (start_position). Notice that the numbering in DBS

starts with 1. The last parameter (length) is optional and defines the number of characters

to be extracted. If the value of the third parameter is not defined, the rest part of the string

up to the end will be returned.

select substr(personal_id, 5, 2) from personal_data;

select substr(personal_id, 5) from personal_data;

Let´s consider the results of the previous Select statements in comparison with the whole

personal_id value. The first Select statement returns the day sequence number of the birth.

The second one will start with day, followed by the slash and the rest part of the personal_id

value up to the end of the string.

PERSONAL_ID SUBSTR(PERSONAL_ID,5,2) SUBSTR(PERSONAL_ID,5)

781015/4431 15 15/4431

791229/5431 29 29/5431

800407/3522 7 07/3522

810101/8079 1 01/8079

TRIM function

The Trim function removes all specified characters either from the beginning or from

the end of the provided string. The default option is BOTH. Using the LEADING keyword

sets the system to start with the beginning, whereas TRAILING starts from the end.

Parameter trim_character defines which symbol should be removed.

select TRIM([[LEADING | TRAILING | BOTH] trim_character FROM] string)

 from dual;

Generalization is the function Trim with only one string parameter, which ensures that all

whitespace characters are removed either from the beginning or from the end.

select trim(string) from dual;

Lab 2 – Basics of data retrieval 65

Let's consider the following example. The input string contains three spaces

from the beginning and four spaces at the end. The original string length is 18. The Trim

function removes those spaces, so the post-processed length is 11.

select length(' test string ') from dual;

18

select trim(' test string ') from dual;

test string

select length(trim(' test string ')) from dual;

11

Be aware, such a function removes spaces only as the first or last letters. Thus, the result

of the following statement is the same as a solution without using the Trim function.

The reason is based on the first and last character – asterisk (*).

select trim('* test string *') from dual;

TRIM('*TESTSTRING*')

* test string *

2.3.2 Numeric and Math functions

ABS function

This function returns the absolute value of the provided numerical input value

(num_input).

select abs(num_input) from dual;

select abs(125) from dual;

125

select abs(-125) from dual;

125

CEIL function

Ceil function returns the smallest integer value that is greater or equal to a defined number

(num_input).

select ceil(num_input) from dual;

select ceil(2.5) from dual;

3

select ceil(3) from dual;

3

select ceil(-2.5) from dual;

-2

66 Lab 2 – Basics of data retrieval

ROUND function

Round function returns a numerical input value (num_input) rounded based

on the defined number of decimal places (decimal_places). If the second parameter

is omitted, the value is rounded completely. However, also the negative value of the second

parameter can be provided. In that case, it defines the position in the main part.

select round(num_input, [decimal_places]) from dual;

select round(67812.345) from dual;

67812

select round(67812.345, 2) from dual;

67812.35

If the precision parameter (decimal_places) value is negative, it defines the principle

of rounding the main part of the number. Thus, if value “-2” is defined, the value is rounded

based on the second value of the main part from the right part – see the example:

select round(67812.345, -2) from dual;

67800

The value “8” is rounded by the followed value 9:

select round(67892.345, -2) from dual;

67900

FLOOR function

Floor function returns the largest integer value equal or less than the defined number

(num_input).

select floor(num_input, [decimal_places]) from dual;

select floor(2.7) from dual;

2

select floor(3) from dual;

3

select floor(-2.5) from dual;

-3

TRUNC function

The Trunc function has many variants. It returns truncated value to the defined number

of decimal places for numerical inputs. In comparison with the Round function,

this definition puts away decimal value.

select trunc(num_input, [decimal_places]) from dual;

Lab 2 – Basics of data retrieval 67

select trunc(67812.345) from dual;

67812

select trunc(67812.345, 2) from dual;

67812.34

select trunc(67812.345, -2) from dual;

67800

The value "8" is truncated regardless of the following values:

select trunc(67892.345, -2) from dual;

67800

MOD function

Mod function returns the remainder of m divided by n.

select mod(m, n) from dual;

select mod(7, 3) from dual;

1

select mod(-7, 3) from dual;

-1

To get a real month of birth from the personal_id attribute value, mod functionality

provides sufficient power. Consider the following definition. First of all, the month segment

is extracted and subsequently processed to remove the woman impact.

select mod(substr(personal_id, 3, 2), 50)

 from personal_data;

2.3.3 Date and Time functions

Date attribute value management is a complicated process, which must highlight multiple

conditions to get desirable and correct results. First of all, the Date attribute value in DBS

Oracle always stores the date and the time sphere. So please, never forget it, it is essential.

Adding or subtracting numerical value from the Date expresses the number of days

(or its part).

select to_date('15.02.2021', 'DD.MM.YYYY') + 1 from dual;

TO_DATE('15.02.2021','DD.MM.YYYY')+1

16.02.2021 00:00:00

Notice that the conversion function To_date in the example deals only with the day,

month, and year elements. In that case, conversion causes, undefined components

(hours, minutes, seconds) are replaced with zero values.

The result of subtracting two Date values is the number of days between them

(also with the decimal part). So, the result value will be “2”.

68 Lab 2 – Basics of data retrieval

select to_date('15.02.2021', 'DD.MM.YYYY') -

 to_date('13.02.2021', 'DD.MM.YYYY')

 from dual;

2

Direct transformation of the result to a number of months or years would be incorrect

because inexact values would be provided (some months have 30 days; some have 31 days.

Moreover, February is special). Therefore, for dealing with time, provided functionality does

not provide exact results (e.g., for flights or VISA, the exact age of the person must be

provided).

SYSDATE function

The Sysdate function has already been used in the previous example. It returns the current

system date and time on the local database. It does not have any parameters and reflects

the Date type as output format. The precision of the Date format is up to seconds

– DD.MM.YYYY HH24:MI:SS. Remember, that Date type value always stores the date

as well as time.

select sysdate from dual;

SYSDATE

27.02.2021 09:57:24

The format of the output of the Date functions and Date value management depends

on the actual system or session settings. To get the current format set for your session, query

NLS_SESSION_PARAMETERS view. To get the format of the server property, required

information can be obtained by querying the NLS_DATABASE_PARAMETERS view.

For both views, the parameter name is NLS_DATE_FORMAT. Notice that it reflects the data

dictionary view, where all values are uppercase (see Lab 14 – Data dictionary views).

select value

 from nls_session_parameters

 where parameter = 'NLS_DATE_FORMAT';

select value

 from nls_database_parameters

 where parameter = 'NLS_DATE_FORMAT';

Changing actual settings can be done by altering the session or system. Alter command

is used (principles of Alter command can be found in chapter 5.4.2 Alter).

alter session set nls_date_format='format';

alter session set nls_date_format='DD.MM.YYYY HH24:MI:SS';

For the whole system property changing, use the previous command, but reflect “system”

instead of “session”.

SYSTIMESTAMP function

The Systimestamp function also returns the current system date and time, but also second

fractions and time zone can be provided. The output data type is Timestamp(n), where n

Lab 2 – Basics of data retrieval 69

defines the number of fractions of the seconds from the integer range <0 ; 9>. The default

value is 6, if the precision is not specified explicitly.

select systimestamp from dual;

SYSTIMESTAMP

02.03.17 11:15:52, 413000

ADD_MONTHS function

The Add_months function has two parameters – date value (date_val) and a number

of months to be added (number_months) or subtracted. The result is the input date

with processed months. Such functionality can also be done explicitly by parsing the Date

attribute. However, the transition between years and months must be handled explicitly.

select add_months(date_val, number_months) from dual;

select add_months(to_date('15.02.2021', 'DD.MM.YYYY'), 7) from dual;

ADD_MONTHS(TO_DATE('15.02.2021','DD.MM.YYYY'),7)

15.09.2021 00:00:00

select add_months(to_date('15.02.2021', 'DD.MM.YYYY'), -7) from dual;

ADD_MONTHS(TO_DATE('15.02.2021','DD.MM.YYYY'),-7)

15.07.2020 00:00:00

Notice that the function automatically correctly manages transitions through years

leap years…

select add_months(to_date('15.02.2021', 'DD.MM.YYYY'), 17) from dual;

ADD_MONTHS(TO_DATE('15.02.2021','DD.MM.YYYY'),17)

15.07.2022 00:00:00

The following example shows the principle of adding a month to the Date value regarding

the last day of the month. What will be the result if you want to add one month to 31.1.2017?

One month is added, so February is reflected, namely the last day of that month.

select add_months(to_date('31.01.2017', 'DD.MM.YYYY'), 1) from dual;

ADD_MONTHS(TO_DATE('31.01.2017','DD.MM.YYYY'),1)

28.02.2017 00:00:00

EXTRACT function

Extract function returns the defined subpart of the Date/Timestamp attribute value – day,

month, year, minute, hour, and second can be provided. However, using one function

execution, only one element can be provided. Notice the difference between Date

and Timestamp values. Using this function, the time spectrum can be obtained only

for Timestamp values. Extract from Date value can provide only day, month, and year.

select extract({YEAR | MONTH | DAY} from date_val) from dual;

70 Lab 2 – Basics of data retrieval

select extract({YEAR | MONTH | DAY | HOUR | MINUTE | SECOND}

 from timestamp_val)

 from dual;

select extract(month from to_date('15.02.2017', 'DD.MM.YYYY'))

 from dual;

2

select extract(year from to_date('15.02.2017', 'DD.MM.YYYY'))

 from dual;

2017

select extract(minute from to_date('15.02.2017' 'DD.MM.YYYY'))

 from dual;

ORA-30076: invalid extract field for extract source

select extract(minute from to_timestamp('15.02.2017', 'DD.MM.YYYY'))

 from dual;

0

LAST_DAY function

The Last_day function returns the last day of the month based on the input Date value

(date_val).

select last_day(date_val) from dual;

select last_day(to_date('15.12.2017', 'DD.MM.YYYY'))

 from dual;

31.12.2017

Naturally, it manages also leap years.

select last_day(to_date('15.2.2017', 'DD.MM.YYYY'))

 from dual;

28.2.2017

select last_day(to_date('15.2.2016', 'DD.MM.YYYY'))

 from dual;

29.2.2016

MONTHS_BETWEEN function

As the function's name indicates, the Months_between function returns the number

of months between two defined dates. To get a positive value, the first parameter value

(date_val1) must be greater than the second parameter (date_val2). If not, a negative result

will be provided.

select months_between(date_val1, date_val2) from dual;

Lab 2 – Basics of data retrieval 71

select months_between(to_date('15.12.2017', 'DD.MM.YYYY'),

 to_date('15.2.2017', 'DD.MM.YYYY'))

 from dual;

10

select months_between(to_date('15.2.2017', 'DD.MM.YYYY'),

 to_date('15.12.2017', 'DD.MM.YYYY'))

 from dual;

-10

The result of such function can also be the real number:

select

 months_between(to_date('15.12.2017 6:22:12', 'DD.MM.YYYY HH:MI:SS'),

 to_date('13.2.2017 5:13:12', 'DD.MM.YYYY HH:MI:SS'))

 from dual;

10,066

Division the difference between two Date values by 30 does not provide relevant data

due to leap years and the number of days in an individual month. However, this function

is robust works correctly, so to get actual age, use this function result.

NEXT_DAY function

The output of the Next_day function is the first weekday greater than the defined input

date (date_val).

select next_day(date_val, weekday) from dual;

Tab. 2.1: Weekday

Weekday Description

SUNDAY First Sunday greater than input date (date_val).

MONDAY First Monday greater than input date (date_val).

TUESDAY First Tuesday greater than input date (date_val).

WEDNESDAY First Wednesday greater than input date (date_val).

THURSDAY First Thursday greater than input date (date_val).

FRIDAY First Friday greater than input date (date_val).

SATURDAY First Saturday greater than input date (date_val).

For the illustration purposes, we will also get the day of the processed date. The date

of the first example is Wednesday, the second example deals with Sunday date:

select actual_date,

 to_char(actual_date, 'DAY'),

 next_day(actual_date, 'SUNDAY'),

 to_char(next_day(actual_date, 'SUNDAY'), 'DAY')

 from (select to_date('15.2.2017', 'DD.MM.YYYY') as actual_date

 from dual);

ACTUAL_DATE TO_CHAR

(ACTUAL_DATE,'DAY')
NEXT_DAY

(ACTUAL_DATE,'SUNDAY')
TO_CHAR

(NEXT_DAY(ACTUAL_DATE,'SUNDAY'),'DAY')
15.02.2017

00:00:00
WEDNESDAY 19.02.2017 00:00:00 SUNDAY

72 Lab 2 – Basics of data retrieval

select actual_date,

 to_char(actual_date, 'DAY'),

 next_day(actual_date, 'SUNDAY'),

 to_char(next_day(actual_date, 'SUNDAY'), 'DAY')

 from (select to_date('12.2.2017', 'DD.MM.YYYY') as actual_date

 from dual);

ACTUAL_DATE
TO_CHAR

(ACTUAL_DATE,'DAY')

NEXT_DAY

(ACTUAL_DATE,'SUNDAY')

TO_CHAR

(NEXT_DAY(ACTUAL_DATE,'SUNDAY'),'DAY')

12.02.2017

00:00:00
SUNDAY 19.02.2017 00:00:00 SUNDAY

TRUNC function

Trunc function dealing with Date type values removes all parts with smaller granularity

than defined. It consists of one obligatory and one optional parameter. The first one

is the Date attribute value (date_val), the second one reflects the granularity (format).

If the second parameter is not defined, the default value for the day is used (time sphere is

removed in that case). Thus, smaller granularity values (day, hours, minutes, seconds) are

removed if the second parameter defines a month. The second parameter value can be DD,

MM, YY, HH, MI. Format unit (second parameter) can also be Q (quarter), W (week

of the month), WW (week in the year), etc.

select trunc(date_val, [format]) from dual;

Let´s assume actual time:

select sysdate from dual;

2017.03.02 12:04:36

The following code shows the examples:

select trunc(sysdate) from dual;

select trunc(sysdate, 'DD') from dual;

2017.03.02 12:04:36 YYYY.MM.DD HH:MI:SS

 RESULT: 2017.03.02 00:00:00

select trunc(sysdate, 'MM') from dual;

2017.03.02 12:04:36 YYYY.MM.DD HH:MI:SS

 RESULT: 2017.03.01 00:00:00

select trunc(sysdate, 'YY') from dual;

2017.03.02 12:04:36 YYYY.MM.DD HH:MI:SS

 RESULT: 2017.01.01 00:00:00

Y
e
a
r

M
o
n
t
h

D
a
y

H
o
u
r

M
i
n
u
t
e

S
e
c
o
n
d

Y
e
a
r

M
o
n
t
h

D
a
y

H
o
u
r

M
i
n
u
t
e

S
e
c
o
n
d

Y
e
a
r

M
o
n
t
h

D
a
y

H
o
u
r

M
i
n
u
t
e

S
e
c
o
n
d

Y
e
a
r

M
o
n
t
h

D
a
y

H
o
u
r

M
i
n
u
t
e

S
e
c
o
n
d

Lab 2 – Basics of data retrieval 73

What about the difference between the function result last_day and getting last day based

on trunc and add_month function? Does it provide the same results? Let´s consider

the following examples. The first one is based on invoking the last_day function. Compared

to the second solution, the time spectrum is not trimmed away.

select last_day(sysdate) from dual;

LAST_DAY(SYSDATE)

31.03.2017 19:53:05

select TRUNC(ADD_MONTHS(sysdate,1), 'MM')-1 from dual;

TRUNC(ADD_MONTHS(SYSDATE,1),'MM')-1

31.03.2017 00:00:00

2.3.4 Conversion functions

Conversion functions are used for transferring the input value to another data type.

Most of them are called automatically by DBS (implicit conversions). However,

some transformations are recommended to be done explicitly to avoid future problems

with incorrect data processing. Moreover, explicit conversion gives performance benefits.

TO_CHAR function

To_char function converts the input value (date or numeric) into the string format.

Whereas the principles are different, we will describe them separately.

Conversion of the numeric value (num_val) into string format can also be done

automatically by implicit conversions called automatically by the server. However,

such a function can also be called explicitly to ensure that the value will be processed

and evaluated as a string data type value.

select to_char(num_val, [format]) from dual;

To_char function dealing with numeric values can also accept the second parameter

– format, which is optional. In principle, it can influence the style of the returned string

format. It can take various format parameter values. We will mention the most important

of them. Value “0” returns leading zero values. Value “9” expresses specified format –

if the digit is not present, space will be used instead. Used Comma defines the position

of the comma in the output format. It is possible to define multiple commas constructing

the number format model.

select to_char(123, '999999'), to_char(123, '000000'),

 to_char(123456, '999,999')

 from dual;

TO_CHAR(123,'999999') TO_CHAR(123,'000000') TO_CHAR(123456,'999,999')

 123 000123 123,456

Parameter value “RN” transfers input value into Roman numerals.

select to_char(123, 'RN') from dual;

CXXIII

74 Lab 2 – Basics of data retrieval

To_char method can also be used for Date format models. For Date value conversions,

two parameters should be highlighted. The first value is the value of the Date or Timestamp

data type (date_val). The second parameter defines the format_mask. Some standard format

models are shown in the following table.

select to_char(date_val [, format_mask]) from dual;

Tab. 2.2: Format_mask

Abbreviation Meaning

Date:

DD Day of the month (01 up to 31)

Day Day in the week – the first letter is uppercase (e.g., Saturday)

MM Month (01 up to 12)

Month Name of the month, the first letter is uppercase

MON The first three letters from the month name (uppercase)

YY Year (00 up to 99)

YYYY Year (including century, e.g., 1999 or 1901)

RR Year (00 up to 99)

RRRR Year (including century, e.g., 2001 or 2002)

Time:

HH Hour (01 up to 12)

HH24 Hour (00 up to 23)

MI Minute (00 up to 60)

SS Second (00 up to 59)

The third parameter also characterizes the language used during the conversion (primarily

used, if text format should be provided).

select to_char(date_val [, format_mask] [, nls_language]) from dual;

This is an example of its usage:

select to_char(sysdate, 'DD.MM.(Month).YYYY HH24:MI:SS',

 'nls_date_language=English')

 from dual;

TO_CHAR(SYSDATE,’DD.MM.(MONTH).YYYYHH24:MI:SS’,’NLS_DATE_LANGUAGE=ENGLISH’)

14.10.(October).2021 14:21:27

select to_char(sysdate, 'DD.MM.(Month).YYYY HH24:MI:SS',

 'nls_date_language=Slovak')

 from dual;

TO_CHAR(SYSDATE,’DD.MM.(MONTH).YYYYHH24:MI:SS’,’NLS_DATE_LANGUAGE=SLOVAK’)

14.10.(Október).2021 14:21:40

Additional spaces can be removed by trimming the output. It can be done by extending

the format using “FM”:

select to_char(sysdate, 'FM DD.MM.(Month).YYYY HH24:MI:SS',

 'nls_date_language=Slovak')

 from dual;

Lab 2 – Basics of data retrieval 75

Never use substring functionalities (substr) to get elements from the date. It is incorrect

and hazardous. If the substr function is used, the input value must be a string.

Thus, an implicit conversion function from Date data type to Varchar2 data type is used,

and server/session date format is used. From that string, the defined substring is obtained.

Therefore, if the Date format was changed, an incorrect substring would be obtained because

of the element's position in the string. It significantly limits the applicability and deployment

options of the solution. Never do it. You simply cannot guarantee that the format will never

be changed.

Let´s consider the following example.

select substr(sysdate, 1, 2), sysdate from dual;

SUBSTR(SYSDATE,1,2) SYSDATE

15 15.08.2021 01:51:21

alter session set nls_date_format='YYYY.MM.DD';

select substr(sysdate, 1, 2), sysdate from dual;

SUBSTR(SYSDATE,1,2) SYSDATE

20 2021.08.15

TO_DATE function

To_date function is similar to the To_char function but in the opposite direction. Value

is transformed from the string format into the Date type value. It consists of two parameters,

which should be mentioned – string value and the format, which carries the same principles

as the format in the To_char method. The optional nls_language parameter will be described

later.

select to_date(string_val [, format_mask] [, nls_language]) from dual;

Never let the system use Date implicit conversions. It can lead to incorrect data if the

predefined system time format is changed.

TO_NUMBER function

To_number function is used to transfer string value into the numerical value. It is usually

called automatically, if necessary.

select to_number(string_val) from dual;

TO_TIMESTAMP function

To_timestamp function is used to convert a string (string_val) into the timestamp data

type. This is also the second function, which is highly preferable not to allow to be executed

implicitly. The second parameter (format_mask) of the function defines the format

of the string to be transferred. If omitted, the system-defined format is used. However,

it can cause problems – functions will not provide correct results if the format is changed

on the server. It also significantly limits the possibility to extend the application and put

it into another server. If the server time format is not the same, incorrect results will

be provided. See the following results. We use two system Date formats. Without using the

conversion function, wrong data binding will occur. In the first case, the first values delimit

76 Lab 2 – Basics of data retrieval

day followed by the month. In the second example, the order is reversed. DD defines the day,

MM reflects months, the year is expressed by YYYY, time reflects HH24 (24-hour format),

HH (12-hour format), MI (minutes), and SS (seconds). FF delimits fractions of the seconds.

select to_timestamp(string_val [, format_mask] [, nls_language])

 from dual;

select to_timestamp('2.9.2016 15:24:13.1', 'DD.MM.YYYY HH24:MI:SS.FF')

 from dual;

select to_timestamp('9.2.2016 15:24:13.1', 'MM.DD.YYYY HH24:MI:SS.FF')

 from dual;

Multilanguage solution can look like this:

select to_timestamp('2.March.2016 15:24:13.1',

 'DD.Month.YYYY HH24:MI:SS.FF',

 'nls_date_language=American')

 from dual;

select to_timestamp('2.marec.2016 15:24:13.1',

 'DD.Month.YYYY HH24:MI:SS.FF',

 'nls_date_language=Slovak')

 from dual;

2.3.5 Advanced functions

CASE conversion function

Case function is a conditional type with the If-Then-Else functionality. DBS searches

for the first When … Then branch, for which input expression (in_expr) is equal

to comparison expression (cond_expr, respectively val_expr) and returns the return_expr

for the particular branch. If none of the conditions meets, and the Else clause exists, then such

branch value (else_expr) is returned. Otherwise, a NULL value is returned. Notice

that the Case function ends with the keyword “End”.

In principle, we can distinguish two types. The first one puts the condition inside each

When branch. The second one separates the expression to be evaluated, which is located

directly after the keyword Case.

CASE in_expr

 WHEN val_expr_1 THEN return_expr_1

 WHEN val_expr_2 THEN return_expr_2

 ...

 WHEN val_expr_n THEN return_expr_n

 ELSE else_expr

END

CASE

 WHEN cond_expr_1 THEN return_expr_1

 WHEN cond_expr_2 THEN return_expr_2

 ...

 WHEN cond_expr_n THEN return_expr_n

 ELSE else_expr

END

Lab 2 – Basics of data retrieval 77

Let´s have a simple example to describe functionality. The aim is to get the status

of the student in text form based on the attribute status of the student table:

• student.status:

o S = student (actual),

o E = ended successfully,

o A = aborted,

o X = fired due to disciplinary commission decision.

select student_id,

 case status

 when 'S' then 'student'

 when 'E' then 'ended successfully'

 when 'A' then 'aborted'

 when 'X' then 'fired – disciplinary'

 end as student_result

 from student;

select student_id,

 case

 when status='S' then 'student'

 when status='E' then 'ended successfully'

 when status='A' then 'aborted'

 when status='X' then 'fired – disciplinary'

 end as student_result

 from student;

The results are the same:

STUDENT_ID STUDENT_RESULT

550545 aborted

550020 student

501567 ended successfully

501319 student

COALESCE function

Coalesce function has an unlimited number of parameters, which usually can hold NULL

values. It returns the first NOT NULL value from the list. If none of them is NOT NULL, there

is no other chance, a NULL value is returned.

COALESCE(in_expr_1, in_expr_2, ... in_expr_n)

select COALESCE(married_surname, birth_surname) from person;

select COALESCE(employee_to, sysdate) from employee;

DECODE function

The Decode function has similar functionality as the If-Then-Else conditional

processing. This function is used for data transformation. Principles are identical

to the previously mentioned Case function. This is the syntax of the Decode functionality

and an example of the gender and month transformation to the text format.

DECODE(in_expr, search_1, result_1 [, ...]

 [, search_n, result_n]

 [, else_result])

78 Lab 2 – Basics of data retrieval

select decode(substr(personal_id, 3, 2), '5', 'female',

 '6', 'female',

 'male')

 from personal_data;

select name, surname,

 'Born in ' || decode(mod(substr(personal_id, 3, 2), 50),

 1, 'January', 2, 'February', 3, 'March',

 4, 'April', 5, 'May', 6, 'June',

 7, 'July', 8, 'August', 9, 'September',

 10, 'October', 11, 'November', 12, 'December',

 'unknown')

 from personal_data;

NULLIF function

Nullif function compares two provided parameter values (expr1, expr2). If the values are

the same, the NULL value is returned. Otherwise, it returns the first parameter value (expr1).

In principle, data types should be the same.

Due to the return value definition, the expr1 expression cannot be NULL literal

(but the expression can hold NULL value).

select NULLIF(expr1, expr2) from dual;

select NULLIF(null, null) from dual;

ORA-00932: inconsistent datatypes: expected - got CHAR

Select NULLIF(1, 1) from dual;

NULL

Select NULLIF(1, null) from dual;

1

NVL function

NVL function allows you to substitute the input value (in_val) with (ret_val) value,

if NULL value is encountered. If the in_val value is NOT NULL, the original value is returned.

select NVL(in_val, replace_val) from dual;

select NVL(1, 2) from dual;

1

select NVL(null, 2) from dual;

2

NVL2 function

NVL2 extends the possibilities of the previously described NVL function by another

attribute. The return value depends on the first parameter value (in_val). If it is NULL,

the third parameter value is returned (replace_val_NULL). Otherwise, the second parameter

value is used (replace_val_NOT_NULL).

Lab 2 – Basics of data retrieval 79

select NVL2(in_val, replace_val_NOT_NULL, replace_val_NULL) from dual;

select NVL2(1, 2, 3) from dual;

2

select NVL2(null, 2, 3) from dual;

3

USER function

The User function returns the login of the connected user to the actual session.

The function has no parameters.

select user from dual;

SYS_CONTEXT function

Sys_context is a useful function that can provide you with information about the current

environment. It has been introduced in Oracle 8i version to replace the existing USERENV

function. It can accept several parameters and provide you with a range of information

like current user information, session information, services, or nls_parameters set

in the actual session. Individual parameter list evolves over the versions. Therefore, to be

sure, use the actual DBS Oracle documentation release.

There are syntax and some examples:

select SYS_CONTEXT(namespace, parameter) from dual;

Tab. 2.3: Sys_context parameters

Parameter Explanation

CURRENT_SCHEMA Returns the default schema used in the current schema

CURRENT_USER Name of the current user

CURRENT_USERID USERID of the current user

DB_DOMAIN
Domain of the database, from the DB_DOMAIN

initialization parameter

DB_NAME
Name of the database, from the DB_NAME initialization

parameter

DB_UNIQUE_NAME
Name of the database, from the DB_UNIQUE_NAME

initialization parameter

EXTERNAL_NAME External name of the database user

HOST
Name of the host machine from which the client has

connected

INSTANCE The identification number of the current instance

INSTANCE_NAME The name of the current instance

IP_ADDRESS
IP address of the machine from which the client has

connected

ISDBA
Returns TRUE if the user has DBA privileges. Otherwise,

it will return FALSE

LANG The ISO abbreviate for the language

LANGUAGE

The language, territory, and character of the session.

In the following format:

language_territory.characterset

80 Lab 2 – Basics of data retrieval

Parameter Explanation

NETWORK_PROTOCOL Network protocol used

NLS_CALENDAR The calendar of the current session

NLS_CURRENCY The currency of the current session

NLS_DATE_FORMAT The date format for the current session

NLS_DATE_LANGUAGE The language used for dates

NLS_TERRITORY The territory of the current session

SERVER_HOST
The hostname of the machine where the instance is

running

SESSION_USER The database username of the user logged in

SID Session number
Source: https://www.techonthenet.com/oracle/functions/sys_context.php

select SYS_CONTEXT('USERENV', 'IP_ADDRESS') from dual;

select SYS_CONTEXT('USERENV', 'CURRENT_SCHEMA') from dual;

2.4 Managing NULL values
If the attribute has no value, it can be said that it is NULL or contains NULL.

Such undefined value can be associated with any data type for any column,

which is not restricted to be NOT NULL (e.g., primary key) by definition. It denotes

that actual value is either not known or not meaningful. Several functions have been

introduced to deal with NULL values, to replace undefined values with another real value

in the reports, like NVL, DECODE, CASE, COALESCE, … Comparison to the nullity

in the conditions must be done using the IS NULL or IS NOT NULL keywords.

select 1 from dual

 where null is null;

select 1 from dual

 where 1 is not null;

Be aware, it can never be compared to the equality using the mathematical operator =,

!=, <> and so on, because conditions would always be evaluated as NULL and routed

to the ELSE clause of the evaluation processing.

select 1 from dual

 where 1 = null;

select 1 from dual

 where 1 <> null;

select 1 from dual

 where null = null;

select 1 from dual

 where null <> null;

All of these four commands return no data:

no rows selected

Lab 2 – Basics of data retrieval 81

Consider the following table consisting of multiple examples characterizing

the evaluation condition when NULL values are provided.

Tab. 2.4: NULL value evaluation

Input value (in_val) Condition Evaluation result

5 in_val IS NULL False

5 in_val IS NOT NULL True

NULL in_val IS NULL True

NULL in_val IS NOT NULL False

5 in_val = NULL NULL

5 in_val <> NULL NULL

NULL in_val = NULL NULL

NULL in_val <> NULL NULL

NULL in_val = 5 NULL

NULL in_val <> 5 NULL

As you can see, equality or non-equality evaluation always results in a NULL value.

Therefore, remember that any arithmetic expression containing a NULL value is always

evaluated as NULL. Thus, all operators (except concatenation) return NULL values when

using the NULL value operand.

select 1 + null from dual;

NULL

The concatenation of the strings works a bit differently. In that case, the NULL value

represents the empty string. Thus, the original string is returned if two string values

are concatenated, one of which is NULL. If both of them are NULL, the returned value is

NULL. So, to conclude, if the string consists of at least one character, concatenation will

replace NULL values with the empty string. However, if all operands are NULL, then a NULL

value is returned.

select 'string text' || null from dual;

string text

select null || null from dual;

NULL

2.5 Comparing strings (equality, operator Like)
Condition management based on string values can be done either as equality of the whole

value or just its part passing specific delimitation. To provide such functionality, simple

conditional evaluation can be done using equality or non-equality definition. Generally,

either two string variables (column values) can be evaluated and compared together, or also

constant string can be used, which is bordered by the apostrophes. The following example

shows how to list only persons whose name is “Michael”.

select name, surname

 from personal_data

 where name = 'Michael'; -- 4 rows selected.

82 Lab 2 – Basics of data retrieval

Then, a similar Select statement is used, but the non-equality is tested. What about

the number of rows selected and the cardinality of the table? Is there any problem?

If so, why?

select name, surname

 from personal_data

 where name <> 'Michael'; -- 38 rows selected.

The first Select statement gets 4 rows. The second Select statement returns 38 rows.

However, the total number of rows in the personal_data table is 43. Thus one row is missing.

Where is the problem? Look at the model and schema of the table. Sure, the problem resides

in the attribute definition, whereas it can hold NULL values. In that case, if the row tuple

consists of a NULL value for the attribute name, it does not pass the condition to be part

of the first result set, neither the second one. To see the problem explicitly, extend the first

Select statement by NULL value evaluation condition. As you can see, the result set will

be extended by one row. And that´s the solution.

select name, surname

 from personal_data

 where name = 'Michael' or name is null; -- 5 rows selected.

Comparison of the string format data values can also be made using the Like operator.

In that case, individual characters can be modeled, respectively replaced during

the evaluation by the wildcards. Two types can be distinguished:

• Percentage (%), which characterizes any string length (also empty string is

covered).

• Underscore (_), which delimits precisely one character.

Let's consider the following example. The first Select statement will return all names

and surnames of the people whose first name starts with “Carol”. So, if “Caroline” is present

in the database, such rows will be listed, too.

select name, surname

 from personal_data

 where name like 'Carol%';

If you want to get the name list (name, surname) of the persons whose first character

of the name is “J”, multiple solutions can be used (Like operator vs. substr function).

select name, surname

 from personal_data

 where name like 'J%';

select name, surname

 from personal_data

 where substr(name, 1, 1) = 'J';

However, if you want to limit the result set to only name list of the persons, whose first

character of the name is “J”, but the length of the name is 4 (John and Jack are present,

but Jacob not), if you use substr function, it must be then extended by the second condition

managing string length.

select name, surname

 from personal_data

 where substr(name, 1, 1) = 'J' and length(name) = 4;

Lab 2 – Basics of data retrieval 83

Like operator can provide such requirements using only one condition based on defined

wildcard underscore (_).

select name, surname

 from personal_data

 where name like 'J___';

These wildcards can be used anywhere in the string, so if you want to get the list

of persons (name, surname) whose name contains the character “o”, the solution can look

like the following:

select name, surname

 from personal_data

 where name like '%o%';

In the previous case, the character “o” is inside the name, but the name cannot start

with that character (whereas the value for the name starts with an uppercase character). To get

the right solution, process the string value regardless of the size of the character

(by using the lower function):

select name, surname

 from personal_data

 where lower(name) like '%o%';

The problem of the Like operator is just management of the underscore and percentage

sign inside the string (as a standard character) to the evaluated. In that case, it is necessary

to differentiate between attribute value and part of the Like operator itself by using the Escape

clause of the operator. Let´s have the table Tab_like with one attribute (str) holding these

three values:

• abcd_f

• abcdef

• abcd_fgh

The aim is to evaluate the fifth character of the string. Following Select statement will list

the first and the last value, whereas it requires the fifth character to be underscore irrespective

of the string length. Thus, the percentage symbol is considered as part of the Like operator,

while the underscore is considered as standard string character (it is preceded by escape

separator). The solution looks like the following:

select * from tab_like

 where str like 'abcd_%' escape '\';

The last possibility for dealing and comparing string values is based on regular

expressions.

2.6 Using Order By clause
The result set of the defined Select statement is not automatically sorted. Data are returned

based on their location in the memory or physical storage. Using Order By clause allows

you to sort the data either ascending (by using ASC keyword (default option)) or descending

(by using DESC keyword). Naturally, multiple elements can be listed delimited

by the comma. The element name in Order By clause can be either original name, or column

alias can be used, if defined, too.

84 Lab 2 – Basics of data retrieval

... order by column_list [{ASC | DESC}] [, ...]

select name, surname as familyname

 from personal_data

 order by familyname, name;

select name, surname as familyname

 from personal_data

 order by surname, name;

Moreover, also sequential numbers (order) of the element in the Select clause can be used.

So, it is sorted based on the surname (second attribute of the Select statement) followed

by the attribute name.

select name, surname

 from personal_data

 order by 2, 1;

In DBS Oracle, the result set can also be sorted by using attributes not listed in the Select

clause. However, it is not a general rule for the whole database system spectrum.

select name, surname

 from personal_data

 order by personal_id;

As described sooner, undefined values – NULL – cannot be compared, which also affects

the Order By clause. By default, when comparing, NULL values are considered the highest

values, so they are listed first for descending sort and last for ascending sort. However, such

an approach can be changed by using NULLS FIRST or NULLS LAST keywords.

Thus, in the first and second examples, NULL values will be listed at the end, the third

and fourth examples, NULL values are listed first.

select field_id, specialization_id, field_name, spec_name

 from st_field

 order by spec_name, field_name;

select field_id, specialization_id, field_name, spec_name

 from st_field

 order by spec_name DESC NULLS LAST, field_name;

FIELD_ID SPECIALIZATION_ID FIELD_NAME SPEC_NAME

200 3 Information systems Information and communication systems

200 1 Information systems Decision support systems

200 2 Information systems Applied informatics

202 0 Computer engineering (null)

200 0 Information systems (null)

102 0 Management (null)

201 0 Information management (null)

select field_id, specialization_id, field_name, spec_name

 from st_field

 order by spec_name NULLS FIRST, field_name;

select field_id, specialization_id, field_name, spec_name

 from st_field

 order by spec_name DESC, field_name;

Lab 2 – Basics of data retrieval 85

FIELD_ID SPECIALIZATION_ID FIELD_NAME SPEC_NAME

101 0 Computer engineering (null)

202 0 Computer engineering (null)

100 0 Informatics (null)

201 0 Information management (null)

200 0 Information systems Applied informatics

102 0 Management (null)

200 3 Information systems Information and communication systems

200 1 Information systems Decision support systems

2.7 Table joining

In the previous definitions, we have dealt only with attributes based on one table.

Generally, listed attributes can be from any table. For these purposes, it is necessary

to highlight the relationships between the tables to connect tables together. Joining is based

on a primary key (described in chapter 2.1 Introduction and chapter 4.4 Entity-relational

conceptual model) of the referenced table and foreign key.

A foreign key is a key used to link two tables together. It is a field (or collection of fields)

in one table that refers to the primary key of another table (or can hold a NULL value,

if not constrained). The table containing the foreign key is called the child table, and the table

containing the primary key is called the referenced or parent table. More about primary

and foreign keys can be found in Lab 4 – Data modeling.

Several opportunities and switches are influencing the Join type. In this section, we will

deal only with INNER Join. Other options will be provided in chapter 8.6 Extended versions

of table joining.

This is the syntax of the Join operation.

select ...

 from table_name1 [{ INNER | {LEFT | RIGHT | FULL} [OUTER] }] JOIN

 table_name2 { ON(joining_conditions) | USING(column_list) }

 [{ INNER | {LEFT | RIGHT | FULL} [OUTER] }] JOIN

 table_namen { ON(joining_conditions) | USING(column_list) }

The following figure shows the graphical representation of the relational algebra

operation Join.

Fig. 2.3: Relational algebra operation Join

Inner Join selects all rows from both tables if they match the joining criterion (foreign

key references the primary key of another table). Thus, if you inner join the table

personal_data and student, no information about the persons who are not students (or have

never been) will be listed. Notice the cardinality of the following Select statements.

86 Lab 2 – Basics of data retrieval

The cardinality of the second Select statement (distinct keyword remove duplicates)

is smaller than the cardinality of the third statement, whereas each person can be listed

multiple times in the student table. Moreover, a person does not need to be listed as a student

(the difference between statement 1 and statement 2). On the other hand, the third and fourth

statement cardinality is always the same. A student cannot exist without personal_data

information (obligatory membership of the relationship – as a consequence, attribute

personal_id in table student is NOT NULL).

Fig. 2.4: Inner Join

select personal_id from personal_data; -- 35 rows selected.

select distinct personal_id from student; -- 33 rows selected.

select personal_id, student_id

 from personal_data join student using(personal_id);

 -- 37 rows selected.

select personal_id from student; -- 37 rows selected.

When tables are joined together, ON or USING keywords must be used to define joining

criteria. ON keyword can be used anytime. USING keyword can be used only if the names

of the primary and foreign key attributes are the same. Also, notice the difference in the result

sets. When ON is used, individual attributes to be joined are present from both tables.

The difference between them is based on the table origin. Therefore, table names or table

aliases must be used to differentiate them. Both values expressing personal_id

(from personal_data as well as student table) are always the same.

select name, surname, student.personal_id, personal_data.personal_id

 from personal_data

 join student on(personal_data.personal_id = student.personal_id);

NAME SURNAME PERSONAL_ID PERSONAL_ID_1

Michael Pearce 841106/3456 841106/3456

Jack Smith 840312/7845 840312/7845

John Young 860907/1259 860907/1259

Carol Pearce 850130/3695 850130/3695

Peter Roger 781015/4431 781015/4431

Vice versa, by using USING keyword, the output set consists of such attributes only once,

so table names nor aliases for such attributes can be used. Highlight the following example

and compare it to the previous one.

select name, surname, personal_id

 from personal_data join student using(personal_id);

Lab 2 – Basics of data retrieval 87

NAME SURNAME PERSONAL_ID

Michael Pearce 841106/3456

Jack Smith 840312/7845

John Young 860907/1259

Carol Pearce 850130/3695

Peter Roger 781015/4431

If the Using clause for table joining is used, a particular attribute CANNOT be prefixed

by table name or table alias.

select name, surname, personal_id

 from personal_data join student using(personal_id);

select name, surname, student.personal_id

 from personal_data join student using(personal_id);

Generally, any number of tables can be joined together. The order of the joining

is commonly not important and database optimizer selects the most suitable plan

for the execution.

Be aware of the primary key definition, specifically when dealing with composite primary

keys. The whole primary key must be joined, otherwise, a Cartesian product (system

combines each element of the first table with each element of the second table, see chapter

2.8 Cartesian product) will be created. Thus, if you want to list each student's field name and

specialization name, table st_field and student must be joined together based on the composite

primary key.

When USING keyword is used, individual attributes are delimited by the comma (,).

select student_id, field_name, spec_name

 from student join st_field using(field_id, specialization_id);

When the ON keyword is used, joining conditions are delimited by the AND.

select student_id, field_name, spec_name

 from student join st_field on (st_field.field_id = student.field_id

 AND

 st_field.specialization_id = student.specialization_id);

Be effective when joining tables. The fundamental principle is straightforward – avoid

not necessary JOINs. It can significantly impact the performance, mainly if the amount

of data is relatively high.

Let's consider the following example. We want to list students and their registered

subjects, where the number of credits (ects) is not the same as studying plans. Therefore,

student identifier, subject identifier, and values of credits (expected and real) are selected.

In the following example (fig. 2.5), three tables are joined together – student, subject,

and subject_year.

88 Lab 2 – Basics of data retrieval

Fig. 2.5: Data model – Study_subjects, Subject, Subject_year

select student_id, subject_id,

 study_subjects.ects as real_ects,

 subject_year.ects as expected_ects

 from study_subjects join subject using(subject_id)

 join subject_year using (subject_id)

 where subject_year.school_year = study_subjects.school_year

 and study_subjects.ects != subject_year.ects;

The results are correct; however, do you need any data from the subject table? The answer

is NO. Therefore, do not join it:

select student_id, subject_id,

 study_subjects.ects as real_ects,

 subject_year.ects as expected_ects

 from study_subjects join subject_year using(subject_id)

 where subject_year.school_year = study_subjects.school_year

 and study_subjects.ects != subject_year.ects;

Referenced values are composite, therefore put school_year management to the JOIN

operation.

select student_id, subject_id,

 study_subjects.ects as real_ects,

 subject_year.ects as expected_ects

 from study_subjects join subject_year using(subject_id, school_year)

 where study_subjects.ects != subject_year.ects;

2.8 Cartesian product

A Cartesian Join or Cartesian Product is a join of every row of one table to every row

of another table (fig. 2.6). This happens typically when no matching join columns are

specified, or you refer to an incomplete key. For example, if table A with 100 rows is joined

with table B with 1000 rows, a Cartesian Join will return 100,000 rows.

Lab 2 – Basics of data retrieval 89

Fig. 2.6: Cartesian product

A Cartesian product may indicate a missing join condition. A query must have at least

(N-1) join conditions to prevent a Cartesian product, where N is the number of tables

in the query. The visual denotation of the Cartesian product is following:

Fig. 2.7: Relational algebra operation – Cartesian product

The composite primary key is significant for joining. The whole primary key definition

must be used. Otherwise, a Cartesian product is generated. What will happen if you want

to get the full name of the field and specialization of this study? The correct solution looks

like this (USING / ON) – 37 rows are selected.

select * from student join st_field using(field_id, specialization_id);

 STUDENT_ID FIELD_NAME SPEC_NAME

27 500425 Information systems Information and communication systems

28 500426 Information systems Information and communication systems

29 500427 Information systems Information and communication systems

30 500428 Information systems Information and communication systems

31 500429 Information systems Information and communication systems

32 500430 Information systems Information and communication systems

33 500431 Computer engineering (null)

34 500432 Information systems Information and communication systems

35 500433 Information systems Information and communication systems

36 500438 Information systems Applied informatics

37 500439 Information systems Applied informatics

If you omit one attribute, the following data are produced, which are incorrect (such

students do not study all specializations in the defined field at all). Therefore, be strictly

aware, when joining composite primary key tables. 88 rows were selected, although table

student contains only 37 rows!

Cartesian product

1512 P111 1512 P111

1319 P103 1512 P103

P102 1512 P102

1319 P111

1319 P103

1319 P102

90 Lab 2 – Basics of data retrieval

select * from student join st_field using(field_id);

 STUDENT_ID FIELD_NAME SPEC_NAME

78 500433 Information systems Applied informatics

79 500433 Information systems Decision support systems

80 500433 Information systems (null)

81 500438 Information systems Information and communication systems

82 500438 Information systems Applied informatics

83 500438 Information systems Decision support systems

84 500438 Information systems (null)

85 500439 Information systems Information and communication systems

86 500439 Information systems Applied informatics

87 500439 Information systems Decision support systems

88 500439 Information systems (null)

However, sometimes, the Cartesian product can be useful. The following example shows

all subjects, which can be registered for any student. It is necessary to distinguish between

attributes “name” from the table subject and personal_data. Therefore, the table name must

prefix the attribute name.

select personal_data.name, surname, personal_id, subject_id,

 subject.name

 from personal_data, subject;

2.9 SETs operations (IN, EXISTS)

Controlling the existence or non-existence of the particular data in another table

or the named set can be done using set definition, which is consequently compared

to the defined attribute expression. When the named list is used, individual values are listed,

enclosed by the parentheses, and delimited by commas.

select name, surname

 from personal_data join student using(personal_id)

 where class in (1, 2, 3);

Set can be, however, also formed by the nested Select statement. Such a solution is mainly

used to evaluate the data existence in another table based on referential integrity (primary

and foreign keys). Notice that existence determination and evaluation can also be processed

using table JOINing. However, it is not so effective due to a more significant amount of data.

Vice versa, evaluating non-existence cannot be managed by table Inner JOINing at all,

whereas we would lose the data we are searching for. Therefore, set operations using IN

and EXISTS have been proposed with also their negative meaning – NOT IN / NOT EXISTS.

Let´s have a simple example to get a named list of the persons who have never studied

anything – data about the person are not referenced in the student table. To write such a query,

several operations are performed. Therefore, we will describe principles step by step.

First of all, realize that the tables personal_data and student cannot be joined together using

the personal_id attribute (we are looking for rows, which cannot be joined ☺).

Thus, get the list of the personal_id values, which are part of the student table. The proposed

design would look like this:

select personal_id from student;

Lab 2 – Basics of data retrieval 91

Then, get the name list of the persons from the personal_data table.

select name, surname from personal_data;

Now, link two proposed Select statements together. What does it mean that person has

not studied yet? His personal_id value is not present in the student table. Thus, the solution

can look like this:

select name, surname

 from personal_data

 where personal_id NOT IN (select personal_id

 from student);

That’s the first working solution. Individual personal_id attribute values are compared

together. It can be, however, rewritten by using the NOT EXISTS set operator. In that case,

the solution can look like the following. Whereas no direct comparison is made

from the inner Select clause, constant string “x” is used.

select name, surname

 from personal_data

 where NOT EXISTS

 (select 'x'

 from student

 where personal_data.personal_id = student.personal_id);

Be aware, never forget to add the Where clause, which compares the values from the main

and nested Select statement using IN set operator. It is inevitable, and many coders forget

to code it. However, it leads to incorrect data. If the connection between both Select

statements is not present, all table data will be listed or none. In principle, if the table student

is empty, data about all persons will be listed. Vice versa, if table student consists of at least

one row, none will be listed. Let´s consider, therefore, the following example. There is

no connection between individual Select statements. Thus, no rows will be selected, whereas

we have some data portions in the student table. Be aware. It is an example of incorrect usage,

do not use it like this.

select name, surname

 from personal_data

 where NOT EXISTS (select 'x'

 from student);

Generally, operator IN can always be rewritten to EXISTS operator, but it is not valid

from the opposite side. If multiple attributes need to be evaluated (e.g., composite primary

key), EXISTS set type should be used. The following example is correct.

select field_name, spec_name

 from st_field

 where NOT EXISTS (select 'x'

 from student

 where st_field.field_id = student.field_id

 AND

 st_field.specialization_id = student.specialization_id);

Notice that new releases of the DBS Oracle allow you to compare multiple attributes

by using IN set. However, it is not standard functionality, and many other database systems

do not support it.

92 Lab 2 – Basics of data retrieval

-- ONLY IN NEW ORACLE DBS RELEASES:

select field_name, spec_name

 from st_field

 where (field_id, specialization_id) NOT IN

 (select field_id, specialization_id from student);

Controlling the existence and management of composite primary key must be done

as the whole set. It cannot be handled by multiple single element sets. The characteristics

and differences are shown in the following example. Let´s have two tables consisting of these

data (fig. 2.8). Both tables have two attributes, and the aim is to find the combination of

values from table T2, which are not present in table T1.

Fig. 2.8: Set comparison

As you will see in the following part, such a solution is not correct at all.

select *

 from T2

 where val1 NOT IN (select id from T1)

 and val2 NOT IN (select id2 from T1);

First, let´s evaluate the first condition: val1 NOT IN (select id from T1). In this case,

the third (val1=3 ; val2 = 3) and forth (val1=4 ; val2 = 2) rows of the table T2 meet

the condition. Then, evaluate the second condition based on attribute val2: val2 NOT IN

(select id2 from T1). All values of the attribute val2 are present in table T1 – attribute id2.

Therefore, no rows would be selected. Mapping is shown in fig. 2.9.

Fig. 2.9: Set comparison

A different situation arises if the pair is compared using one condition NOT EXISTS.

In this case, values (1,1) and (2,2) are present. However, the combination of values (3,3)

and (4,2) are not present. Thus, the result of the following query is (3,3) and (4,2).

Such values are compared as a pair, not separately.

 ID ID2

1 1 1

2 1 2

3 1 3

4 2 1

5 2 2

6 2 3

 VAL1 VAL2

1 1 1

2 2 2

3 3 3

4 4 2

 ID ID2

1 1 1

2 1 2

3 1 3

4 2 1

5 2 2

6 2 3

 VAL1 VAL2

1 1 1

2 2 2

3 3 3

4 4 2

T1 T2

T1 T2

Lab 2 – Basics of data retrieval 93

select *

 from T2

 where NOT EXISTS (select 'x'

 from T1

 where val1 = id

 and val2 = id2);

 VAL1 VAL2

1 1

2 2

Please note that working with the set IN does not work correctly by comparison of NULL

values.

As mentioned earlier, NULL values cannot be compared directly using mathematical

operators. Let´s have the table contact consisting of the contacts of the persons

in the personal_data table. The structure of the contact table row is following:

Name Null Type

----------- ---- ------------

CONTACT_ID NUMBER

PERSONAL_ID CHAR(11)

TYPE CHAR(1)

VALUE VARCHAR2(50)

If the foreign key value (attribute personal_id of the contact table) can contain NULL

values, incorrect results will be provided using set type IN. Consider that three people

do not have contacts. Some of them have multiple. Moreover, two contacts are stored without

personal_id reference. Therefore, the following Select statement will provide no data.

select *

 from personal_data

 where personal_id NOT IN (select personal_id

 from contact);

To get correct results, NULL values must be removed, either by the Where clause

or by the transformation to another existing value (NLV, CASE, DECODE, …).

select *

 from personal_data

 where personal_id NOT IN (select personal_id

 from contact

 where personal_id IS NOT NULL);

 PERSONAL_ID NAME SURNAME STREET TOWN ZIP NATIONALITY

1 921225/7452 Sim Eas Kolarovce 12 Kolarovce 01401 SK

2 830324/7887 Daniel Gomes Razusa 40/10 Prievidza 4 97101 SK

3 860103/2238 John Young Bratislavska cesta 2 Zilina 01001 SK

When the EXISTS set type is used, NULL values are not problems because of the Where

clause definition, which automatically removes such non-joinable NULL data.

94 Lab 2 – Basics of data retrieval

select *

 from personal_data

 where NOT EXISTS

 (select 'x'

 from contact

 where contact.personal_id = personal_data.personal_id);

 PERSONAL_ID NAME SURNAME STREET TOWN ZIP NATIONALITY

1 921225/7452 Sim Eas Kolarovce 12 Kolarovce 01401 SK

2 830324/7887 Daniel Gomes Razusa 40/10 Prievidza 4 97101 SK

3 860103/2238 John Young Bratislavska cesta 2 Zilina 01001 SK

2.10 Managing duplicate values
Duplicate value management is a significant part of data management. A person can study

multiple times (can be present in the table student numerous times), each subject can be

studied more than once by the same person (if the previous attempt to pass the exam failed).

Distinct keyword removes the duplicate tuples from the output.

The following example shows the principles of using the Distinct keyword applied

to the result set before returning to the user.

Let´s consider the following example, person Jack Robinson is listed multiple times:

select name, surname, personal_id

 from personal_data join student using(personal_id);

NAME SURNAME PERSONAL_ID

Peter Roger 781015/4431

Jack Robinson 791229/5431

Jack Robinson 791229/5431

Jack Robinson 791229/5431

To remove the duplicate data tuples from the result set, the distinct keyword can be used.

In that case, Jack Robinson will be listed only once, whereas it reflects the same person

(the same personal_id value). If the values of personal_id were not the same (they would be

only namesakes – same name and surname), these data would both be in the result set.

select distinct name, surname, personal_id

 from personal_data join student using(personal_id);

NAME SURNAME PERSONAL_ID

Peter Roger 781015/4431

Jack Robinson 791229/5431

Mark Bailey 800407/3522

The previous result set will consist of the name, surname, and personal_id of the persons

who started studying at least once. The person will be listed only once, regardless

of the number of his data in the student table. Thus, such Select statement can be rewritten

using set operators providing the same results. Solution:

select name, surname, personal_id

 from personal_data

 where personal_id IN (select personal_id

 from student);

Lab 2 – Basics of data retrieval 95

select name, surname, personal_id

 from personal_data

 where EXISTS (select 'x'

 from student

 where

 student.personal_id = personal_data.personal_id);

However, if you remove the personal_id attribute and apply the rule for duplicate tuples

removing, incorrect data will be provided due to namesakes – in the result set, e.g. person

Milan Clarke is listed only once, although it references two persons with the same name

and surname – they have different personal_id attribute values.

select distinct name, surname

 from personal_data join student using(personal_id);

Fig. 2.10: Select statement result set

So to conclude, the distinct keyword is vital for the processing, but be aware of using

the unique identifier to remove possibilities to get non-reliable data. If you want to use

the Distinct operation without providing personal_id to the result set, two phases must be

done. Firstly, remove duplicates dealing with the trinity (name, surname, personal_id),

then list just the first two attributes by nesting the query.

2.11 Table alias
Besides the attribute (column) alias, also table name can be aliased to simplify the naming

and improve code readability. In the previous chapter, if the attribute must be enhanced

by the table name (to distinguish which attribute is involved), the fully qualified name has

been used – the name of the attribute has been preceded by the table name.

select name, surname, personal_id

 from personal_data

 where EXISTS

 (select 'x'

 from student

 where student.personal_id = personal_data.personal_id);

The alias name can be placed directly after the name of the table. It replaces the original

table name in the defined query. Therefore, alias must be used instead of the original table

name itself. Let´s consider the following examples:

select name, surname, s.personal_id

 from personal_data p join student s on (p.personal_id = s.personal_id);

select name, surname

 from teacher t join study_subjects ss on (t.teacher_id = ss.lecturer)

 where ss.school_year = 2008;

select p.name || ' '|| p.surname as student,

 t.name || ' '|| t.surname as teacher

 from personal_data p join student s using(personal_id)

 join study_subjects ss using(student_id)

 join teacher t on (ss.lecturer = t.teacher_id);

Milan Clark 840409/7900

Milan Clark 840410/6777

Milan Clarke

96 Lab 2 – Basics of data retrieval

Be aware if table alias is defined, original table name cannot be used at all.

So, the following example will raise an exception:

select name, surname, student.personal_id

 from personal_data p

 join student s on (personal_data.personal_id = student.personal_id);

2.12 Practice
1. List all the data about the students.

2. Select the name list of the second-class students.

3. Select the name list of the students born in 1985 – 1989 (year).

4. Select the name list of the students who study in the detached office in the Slovak

town Prievidza (the second character of the studying group is “P”).

5. Order the previous results based on surname.

6. Select the name list of the students studying the subject “BI06” and sort them.

7. List all combinations of the lecturer / subject_id. Remove duplicates.

8. Extend the previous Select statement by the name of the teacher and the name

of the subject.

9. Select the name list of the lecturers for subjects taught during the second class

of the bachelor study (the number of field_id belongs to <100; 199>).

10. Select the subject names that are studied by the student “Smith”.

11. Get the number of the rows in the table “study_subjects”.

12. Select the name list of the people studying the subject “Database systems”.

Distinguish the different school years.

13. Select the name list with the date of birth.

14. Select the number of the student's credits with student_id = 500439 based

on the successfully passed exams.

15. Select the name list of the students in the second class together with their actual age.

Dealing with the Cartesian product

(Solution code is described at the end of this lab):

1. Get the list of all subjects, which each person can register during the study.

2. For each student (actual or ended successfully), list all the subjects which can be

registered to him – only those can be selected, which have not been passed

successfully yet. For simplicity, evaluate the subject passing based on exam results.

• student.status:

o S = student (actual),

o E = ended successfully,

o A = aborted,

o X = fired due to disciplinary commission decision.

3. Extend the previous solution by covering the ending type of the subject:

• attribute ending_type of the subject_year table:

o B = exam + accreditation to exam,

o E = exam,

o S = semester only (no exam).

Lab 2 – Basics of data retrieval 97

Cartesian product – solutions

1. Get the list of all subjects, which each person can register during the study.

The solution is based on using two tables – personal_data and subject without any

JOINs. Do not forget to use column alias and attribute qualified name.

select pd.name as name, surname, subject_id,

 subj.name as "NAME OF THE SUBJECT"

 from personal_data pd, subject subj;

2. For each student, list all the subjects, which can be registered for him – only

those can be selected, which have not been passed successfully yet. For

simplicity, evaluate the subject passing based on exam results.

Also, table personal_data and subject is used without any JOINs. Then,

two conditions are evaluated. The first one is characterized by the set type IN

to ensure that the person is an actual student (status='S').

personal_id IN (select personal_id

 from student

 where status = 'S')

The second condition limits the list of the subjects possible to be registered

by a particular person. The linking is based on the personal_id attribute, whereas

the subject can be passed only once by one specific person regardless of the number

of his studies (actual or correctly ended). Thus, if some subject has been passed

successfully, it cannot be registered later by the same person (if the referenced study

has been either completed (status='E') or stated as an actual student (status='S')).

The passed exam, in this case, is delimited by the exam result – A, B, C, D, and E.

NOT EXISTS (select 'x'

 from student stud join study_subjects ss using(student_id)

 where pd.personal_id = stud.personal_id

 and subj.subject_id = ss.subject_id

 and ss.result in ('A', 'B', 'C', 'D', 'E')

 and status in ('S', 'E'));

 Thus, the complete Select statement can look like this:

select pd.name as name, surname, pd.personal_id,

 subject_id, subj.name "NAME OF THE SUBJECT"

 from personal_data pd, subject subj

 where personal_id IN (select personal_id

 from student

 where status = 'S')

 and NOT EXISTS

 (select 'x'

 from student stud join study_subjects ss using(student_id)

 where pd.personal_id = stud.personal_id

 and subj.subject_id = ss.subject_id

 and ss.result in ('A', 'B', 'C', 'D', 'E')

 and stud.status in ('S', 'E'));

3. Extend the previous solution by covering the ending type of the subject:

• attribute ending_type of the subject_year table:

o B = exam + accreditation to exam,

o E = exam,

o S = semester only (no exam).

98 Lab 2 – Basics of data retrieval

In this case, the condition to evaluate the subjects is more complex. In principle,

three situations based on ending type can occur, which must be handled:

1) Subject ends with semester only (ending_type = 'S'). In this case, if the student

has a value of sign_date, the particular subject is passed successfully.

ending_type = 'S' and sign_date IS NOT NULL

2) Subject ends with exam only (ending_type = 'E'). In this case, two spheres

must be managed – exam result and exam date must be filled. For exam results,

only values A, B, C, D, and E are suitable.

ending_type = 'E'

 and sign_date IS NOT NULL

 and result in ('A', 'B', 'C', 'D', 'E')

3) Subject ends with the exam as well as accreditation to the exam. In that case,

exam_date and sign_date must be filled. Moreover, correct exam results must

be provided – only values A, B, C, D, and E are suitable.

ending_type = 'B'

 and sign_date IS NOT NULL

 and exam_date IS NOT NULL

 and result in ('A', 'B', 'C', 'D', 'E')

 All other cases are considered as an unsuccessful subject ending.

So, the complete solution can look like this. Notice that the tables study_subjects and

subject_year can be directly joined without dealing with the subject table. However, be aware

of two attributes to be joined together (subject_id and school_year). Reference to the outer

Select statement is done using the subject_id attribute. Therefore, the ON option must be used

for JOIN.

select pd.name as name, surname, pd.personal_id,

 subject_id, subj.name "NAME OF THE SUBJECT"

 from personal_data pd, subject subj

 where personal_id IN (select personal_id

 from student

 where status = 'S')

 and NOT EXISTS

 (select 'x'

 from student stud

 join study_subjects ss using(student_id)

 join subject_year sy on(ss.subject_id = sy.subject_id

 and ss.school_year = sy.school_year)

 where pd.personal_id = stud.personal_id

 and subj.subject_id = ss.subject_id

 and status in ('S', 'E')

 and ((ending_type = 'S' and sign_date IS NOT NULL)

 or (ending_type = 'E'

 and sign_date IS NOT NULL

 and result in ('A', 'B', 'C', 'D', 'E'))

 or (ending_type = 'B'

 and sign_date IS NOT NULL

 and exam_date IS NOT NULL

 and result in ('A', 'B', 'C', 'D', 'E')))

);

Lab 3 – Insert, Update, Delete statements and transactions 99

Lab 3 – Insert, Update, Delete statements

and transactions

This lab deals with the data manipulating operations modifying the database. Namely,

adding new tuples is operated by the Insert statement, which can be specified explicitly by

listing values (loading one row per command) or composed by the Select statement.

The Update statement modifies the existing rows. The Delete statement removes the rows from

the tables. The key fact is that each command can reference only one table, thus, no Joins are

available there!

The second part of the chapter deals with the referential integrity operated by the primary

and foreign keys. These are the core elements dealing with the integrity and availability to

interconnect multiple tables.

Whereas each statement is part of the transaction, after the processing, it must be ended

either by approving it (making the data changes durable and available across multiple

sessions and transactions) or by refusing it (getting original data states).

3.1 Introduction
Data manipulation language (DML) is a family of syntax command elements covering

Insert, Update, Delete and Select statements. In this lab, we will deal with destructive

operations, which modify data stored in the database. However, also Select statement will

be used as part of the conditions. It is necessary to emphasize that Insert, Update, and Delete

can always manage ONLY ONE TABLE. If the condition is based on another table,

the nested Select statement must be used (operated by the IN or EXISTS operation

set reference). Once again, no join operators can be used inside destructive DML. Insert

statement is used for adding new row tuples to the database. The Update reflects changing

existing values and Delete removes rows from the database (always the whole row!).

The next part describes the syntax, possibilities, and principles of usage.

3.2 Insert statement

insert into table_name[(list_of_attributes)]

 {

 values(list_of_values)

 |

 select ...

 };

Above, Insert statement syntax is defined, where list_of_attributes represents the list

of attributes, the order is essential and reflects the appropriate values inside the list_of_values

set. The clause list_of_attributes is optional. If not written explicitly, the order is defined

by the table definition (desc table_name), and all attribute values must be added

(with the assumption that they are not set using a trigger). By using the Insert statement,

at least NOT NULL values without default values must be defined directly. Moreover,

constraints must be met (primary key; the foreign key must reflect the primary key (or unique

index, respectively)). Otherwise, the data will not be inserted.

100 Lab 3 – Insert, Update, Delete statements and transactions

Primary key is a specific set of attributes associated with the table, which uniquely

identifies each record in a database table. The primary key (PK) must contain UNIQUE

values and cannot hold NULL. A table can have only one primary key, consisting of single

or multiple fields (composite primary key). It must be also minimal (by removing any

attribute from the primary key set, aspect of uniqueness would be lost). More about the

primary key definition, management, and importance will be described later in chapter 11.3.2

Primary key.

When dealing with the Insert statement, it is necessary to distinguish the usage

and limitations of the Values clause in comparison with the Select statement inside it. Values

clause is used for adding specific values explicitly – constant strings. One statement with

a Values clause can add only one row. Using the Select clause allows you to Insert the result

set of the Select statement into the table. One statement with used Select statement can add

multiple rows to the table. Be aware, do not combine the Values clause with Select inside one

statement, although it is possible to define it like that in some cases.

3.2.1 Insert – values type

Let´s get the structure of the personal_data table using the desc command.

desc personal_data

Name NULL? Type

----------- -------- ------------

PERSONAL_ID NOT NULL CHAR(11)

NAME VARCHAR2(15)

SURNAME VARCHAR2(15)

STREET VARCHAR2(20)

TOWN VARCHAR2(50)

ZIP CHAR(5)

NATIONALITY CHAR(2)

In the first type of statement – the order of inserted attributes is not managed explicitly.

In that case, the order, number, and data types are delimited by the table structure

definition. Therefore, values, which should not be inserted, must be set as NULL explicitly.

Naturally, it is possible to define NULL value only if no specific (NOT NULL) constraints

are defined.

insert into personal_data

 values('905612/8576', 'Michael', 'Flower', null, null, null);

If the list of attributes is noted, the order of values (list_of_values) must be the same

as the order of attribute definition in the list_of_attributes. Thus, the attribute values of street,

town, zip, and nationality are not specified in the following example. Therefore, they will

be set to NULL automatically (generally, default value can be specified to replace undefined

value).

insert into personal_data(name, surname, personal_id)

 values ('Michael', 'Flower', '905612/8576');

Be aware. One Insert-values statement can insert ONLY ONE ROW to ONE TABLE.

There are no JOINs allowed.

Lab 3 – Insert, Update, Delete statements and transactions 101

3.2.2 Insert – Select type

The disadvantage of the Insert-values statement type is that it can insert only one row

to the table. Thus, if we have an auxiliary table with data to be inserted into the main table,

it would be necessary to create one new statement for each row. Although it can be done

relatively simply by statement generation, it is unnecessary to do it as explained. In addition,

it would be complicated, time-consuming, and resource-demanding. Instead, we can use

the Insert-Select statement type to solve the problem, which allows adding multiple rows

to the table by one statement, based on another table data. In this case, again, it is possible

to put data only to one table. Thus, no JOINs are allowed (only in the embedded Select

statement).

Insert statement using auxiliary table can look like this:

insert into personal_data(name, surname, personal_id)

 select name, surname, pid

 from student_results

 where result in ('p', 'P'); -- passed

Notice that there is no Values clause.

It is also possible to combine Select statement results and constants:

insert into student(student_id, personal_id, field_id, specialization_id,

 status, class, first_date)

 select st_id, pid, field, specialization, 'S', 1, sysdate

 from student_results

 where result in ('p', 'P');

Let's have the following example. We will describe what to do and how to get the desired

results step by step. The aim is to add to all Informatics students in the first class all obligatory

subjects for them in the academic year 2016/2017.

So, get the first class student set (field_id is 100, specialization_id is 0):

select student_id

 from student

 where class = 1

 and field_id = 100

 and specialization_id = 0;

Get the list of subjects, which should be added to students:

select sy.subject_id, sy.school_year, guarantee, ects

 from st_program stp JOIN subject_year sy ON

 (stp.subject_id = sy.subject_id

 and

 stp.school_year = sy.school_year)

 where class = 1 and school_year = 2016

 and field_id = 100 and specialization_id = 0

 and mandatory_type = 'M';

Creating a list of all students and subjects, which should be assigned to them. Notice that

the Cartesian product is used. Legitimate usage is, naturally, allowed. Thus, two Select

statements are merged. Student data are shown in bold.

102 Lab 3 – Insert, Update, Delete statements and transactions

select sy.subject_id, sy.school_year, guarantee, ects, student_id

 from student s, st_program stp JOIN subject_year sy ON

 (stp.subject_id = sy.subject_id

 and

 stp.school_year = sy.school_year)

 where stp.class = 1 and stp.school_year = 2016

 and stp.field_id = 100

 and stp.specialization_id = 0

 and mandatory_type = 'M'

 and s.class = 1

 and s.field_id = 100 and s.specialization_id = 0;

Now, such data can be inserted into the study_subjects table.

The complete solution can look like this – the previously defined Select statement

is encapsulated into the Insert statement.

insert into study_subjects(subject_id, school_year, lecturer, ects,

 student_id)

 select sy.subject_id, sy.school_year, guarantee, ects, student_id

 from student s, st_program stp JOIN subject_year sy ON

 (stp.subject_id = sy.subject_id

 and

 stp.school_year = sy.school_year)

 where stp.class = 1 and stp.school_year = 2016

 and stp.field_id = 100

 and stp.specialization_id = 0

 and mandatory_type = 'M'

 and s.class = 1

 and s.field_id = 100 and s.specialization_id = 0;

3.3 Update statement

update table_name

 set attribute = value

 [, attribute2 = values2 ...]

 [where conditions];

Using the Update statement, we can modify multiple rows and multiple attributes

in one statement. Like other DML statements, only one table can be modified by one

statement. Thus, if two tables are to be updated, at least two statements must be defined.

No JOINs are allowed there. Thus, if the condition must be evaluated based on other table

data, the subquery must be defined.

If new values are in the auxiliary table, the subquery can be used in the SET clause.

Be aware, do not forget to add conditions to avoid data loss. Moreover, all new values

should be present in the auxiliary table. Otherwise, they will be replaced by NULL values.

Let's have the following example. We will change the attribute value for the directly

defined row by the primary key. The solution can look like the following. Two attribute

values will be changed (status, final_date). How many rows will be changed? No more than

one, because of the condition in the Where clause – student_id is a unique identifier. If such

a student does not exist, no rows will be affected. When multiple attributes are updated, these

values are delimited by a comma (,), the keyword Set is used only once.

Lab 3 – Insert, Update, Delete statements and transactions 103

update student

 set status = 'a',

 final_date = sysdate

 where student_id = 12345;

Changes can be based on conditions outside the table. In that case, a nested Select

statement based on IN or EXISTS must be used. In the following case, status and final_date

attribute values will be changed for students who graduated last year. The condition is based

on the graduate_students table. Therefore, a nested Select statement must be used.

update student

 set status = 'E',

 final_date = sysdate

 where student_id IN (select id

 from graduate_students

 where year = to_char(sysdate, 'YYYY') - 1);

Also, the new value can be obtained from the Select statement. However, do not forget

to link data together (by the Where clause, s.student_id references the table row

to be updated). It will ensure that no data will be lost, whereas auxiliary table new_student

does not need to store the same for the students.

update student s

 set st_group = (select new_group

 from new_student new

 where new.student_id = s.student_id)

 where exists (select 'x'

 from new_student new

 where new.student_id = s.student_id);

However, how to update data based on the composite primary key? The evaluation based

on another table should cover several conditions, which MUST be evaluated as one

composite condition (never try to evaluate composite conditions separately, incorrect results

will be provided). Thus, consider the following example. We want to set the value

of the first_date attribute to actual time for students studying Informatics:

update student

 set first_date = sysdate

 where first_date is NULL

 and (field_id, specialization_id)

 IN (select field_id, specialization_id

 from st_field

 where field_name = 'Informatics'

 and spec_name is null);

-- ONLY IN NEW RELEASES OF THE DBS ORACLE!!!

Notice that mentioned syntax is not part of the SQL norm. Therefore, it cannot be used

in almost all database system types. However, new versions of the Oracle database systems

offer that functionality.

104 Lab 3 – Insert, Update, Delete statements and transactions

The universal solution uses subquery based on EXISTS keyword:

update student s

 set first_date = sysdate

 where first_date is NULL

 and exists (select 'x'

 from st_field stf

 where field_name = 'Informatics'

 and spec_name is null

 and stf.field_id = s.field_id

 and stf.specialization_id = s.specialization_id);

Be aware, never separate composite primary key into separate conditions!

It is a significant fault and produces incorrect data (for further information, see chapter

2.9 SETs operations (IN, EXISTS)).

update student

 set first_date = sysdate

 where first_date is NULL

 and (field_id) IN (select field_id

 from st_field

 where field_name = 'Informatics'

 and spec_name is null)

 and (specialization_id) IN (select specialization_id

 from st_field

 where field_name = 'Informatics'

 and spec_name is null);

3.4 Delete statement

delete from table_name

 [where conditions];

One statement can delete data only from only one table. If the Where clause is omitted,

all table data are deleted. Be aware of respecting referential integrity (by default, you cannot

delete the row with a primary key if other data rows reference it – e.g., you cannot delete

person, if he is referenced in the Student table. Similarly, student cannot be deleted if any

particular student_id is referenced by the Study_subjects table).

If the condition to be evaluated is based on data from another table, a subquery should

be used.

Consider the following examples. All data will be deleted:

delete from study_subjects;

Rows are deleted based on the same table condition:

delete from study_subjects

 where student_id in (12345, 13627);

Rows to be deleted are based on another table conditions:

delete from subject_year

 where student_id in (select student_id

 from student

 where status = 'A');

Lab 3 – Insert, Update, Delete statements and transactions 105

If the condition is based on multiple columns, the order and correct treatment

are inevitable. The previous example is based on only one column – student_id. The same

result will be reached by using EXISTS principle:

delete from subject_year

 where exists (select 'x'

 from student s

 where status = 'A'

 and subject_year.student_id = s.student_id);

However, suppose the condition based on referencing another table composite primary

key. In that case, it must be handled as one condition and managed using EXISTS set operator:

delete from student s

 where EXISTS (select 'x'

 from st_field stf

 where field_name = 'Informatics'

 and spec_name is null

 and s.field_id = stf.field_id

 and s.specialization_id=stf.specialization_id)

 and student_id not in (select student_id

 from study_subjects);

3.5 The order of operations
Changes performed on data should meet the correct order of operations to reflect

consistency. References (foreign keys) should always cover the existing primary key!

3.6 Foreign key definition
The foreign key's value should point to the associated primary key value or NULL value.

However, it is not inevitable to reflect the primary key in general. Also, unique index

reflection is satisfactory. These rules managing order of operations must be met:

• Insert statement (+ load) – associated primary key must be inserted sooner than

the reference to it by a foreign key.

• Delete statement – Foreign key values must be deleted sooner than the row

with the referenced primary key.

Fig. 3.1: Data model

Tab. 3.1 consists of the provided operation order evaluated by the possibility to do that.

Reference model is shown in fig. 3.1.

106 Lab 3 – Insert, Update, Delete statements and transactions

Tab. 3.1: Operation order possibilities

Order Insert Delete

Tab_A, Tab_B, Tab_C, Tab_D, Tab_E NO NO

Tab_A, Tab_D, Tab_B, Tab_C, Tab_E YES NO

Tab_E, Tab_C, Tab_B, Tab_D, Tab_A NO YES

Tab_D, Tab_A, Tab_B, Tab_C, Tab_E YES NO

3.7 Changing the primary key value
Primary key values are usually set based on sequence using triggers. In that case,

the primary key does not have special denotation, and it is not necessary to update it.

A typical example can be student_id – a simple numeric value. However, it can also have

a special meaning. A typical example can be found in the personal_data table. The primary

key consists of a personal_id attribute, which includes birth date information. If there is any

mistake in the Insert statement execution (clerical error), it is necessary to update it later.

However, it must be done to emphasize references – foreign key (in table student). It is not

possible to write a direct update statement, whereas the personal_id attribute in the student

would point to a non-existing row in the personal_data table, which is not permitted

and would cause raising an error.

update personal_data

 set personal_id = '810701/8079'

 where personal_id = '810101/8079';

SQL Error: ORA-02292: integrity constraint (STUDENT_ENG.SYS_C0010300)

 violated - child record found

02292. 00000 - "integrity constraint (%s.%s) violated - child record

 found"

*Cause: attempted to delete a parent key value that had a foreign

 dependency.

*Action: delete dependencies first then parent or disable constraint.

Therefore, the natural question is based on the correct order of operations to reflect

the necessary change. For the illustration, take the following example.

The aim is to correct the personal_id value.

Preliminaries:

1. To change the primary key in the personal_data table, the foreign key in the table

student must be changed sooner.

2. Foreign key – personal_id attribute can be changed only to the existing value,

not NULL mark.

The method for changing the personal_id attribute value is, therefore, as follows:

1) Create a copy of the personal data with the updated primary key version. Thus,

the concerned person will be temporarily stored twice. No problem, it is done

inside the transaction (see section 3.8), so it is not visible to any other users /

sessions / transactions.

insert into personal_data

 select '810701/8079', name, surname, street, town, zip, nationality

 from personal_data

 where personal_id = '810101/8079';

Lab 3 – Insert, Update, Delete statements and transactions 107

Change the reference in the student table to the corrected version of the personal_id

value.

update student

 set personal_id = '810701/8079'

 where personal_id = '810101/8079';

Remove the original person from the personal_data table.

delete from personal_data

 where personal_id = '810101/8079';

3.8 Transactions

Each performed database request (query) is encapsulated by the transaction, although you

have not perceived it yet. The transaction ensures atomicity, consistency, isolation,

and durability (ACID). Thanks to that, it is still an easy way to get the original values before

approving any change. On the other hand, when any change is approved, it cannot be

reversed. Such activity is controlled by the Transaction Control Language (TCL), consisting

of these commands:

• Commit – approving (confirmation) transaction. All changes are durable without

the possibility of getting rid of changes. It is provided by reflecting all changes

to the physical redo log file by the Log Writer background process. If the system's

crash occurs, it is possible to reconstruct data using stored log files.

• Rollback – getting the changes back.

• Savepoint – Savepoint command does not end the current transaction, but it creates

a point to which the transaction can be reversed. At the end of the transaction,

all Savepoints are removed automatically.

Notice that the Exit command of the SQL*Plus (SQL Client) automatically executes

Commit. Therefore, never shut down the environment tool (console) by clicking on the cross

in the right part of the window.

Be aware each DDL (and also DCL) statement automatically generates the Commit

command. It cannot be changed. Principles will be described later.

Let´s have the following example describing the management of the transaction

and consecutive value stored.

create table Tab1 (id integer);

insert into Tab1 values(1);

insert into Tab1 values(3);

insert into Tab1 select id+1 from Tab1;

commit;

 -- Commit complete.

select * from Tab1 order by 1;

What about the values stored? Attribute id will hold these values: 1,2,3,4. If you rollback

the transaction, the same results will be obtained. Why? Because no change has been made

since ending the previous transaction. However, let´s insert one new row (ID value = 10).

What will happen if you select all data from the table?

108 Lab 3 – Insert, Update, Delete statements and transactions

insert into Tab1 values(10);

select * from Tab1;

Naturally, the inserted value will be present. Thus, the output will consist of 1,2,3,4

and 10.

ID

1

2

3

4

10

What will happen if you rollback the transaction? Value 10 will be removed.

rollback;

select * from Tab1;

ID

1

2

3

4

However, notice that there is also isolation characteristic of the transaction. Thus,

no other transaction will see the values before the successful end of the transaction.

Moreover, the transaction manager ensures that no data can be lost after transaction Commit.

Such a principle is described in the following example. Let´s us assume two sessions

of the same user, who has created a previous table (Tab1) with defined values (1,2,3,4).

From session 1, the user adds a new row using the Insert statement with value 100.

As you can see. Such row is not visible in session 2 until the transaction approving (commit).

Similarly, if session 1 deletes some rows from the database, they will still be visible

and available in session 2 until the successful end of the transaction (commit).

The order of operations of the following example is essential and reflects the sequence

from top to bottom.

Tab. 3.2: Transaction management

Session 1 Session 2

Insert into Tab1 values (100);

Select id from tab1;

 -- 1,2,3,4

Select id from tab1;

 -- 1,2.3.4, 100

Commit;

Select id from tab1;

 -- 1,2,3,4, 100

Delete from Tab1 where id=100;

Select id from tab1;

 -- 1,2.3.4

 Select id from tab1;

Lab 3 – Insert, Update, Delete statements and transactions 109

Session 1 Session 2

 -- 1,2,3,4, 100

Commit;

Select id from tab1;

 -- 1,2,3,4

As already mentioned, always remember that each DDL and DCL commands generate

Commit automatically.

insert into Tab1 values(20);

create table Tab2 as select * from Tab1;

 -- commit is generated automatically

select * from tab1;

Thus, now, if you write the Rollback command, nothing will happen. Value 20 cannot be

removed at all (the transaction has ended successfully).

rollback;

select * from Tab1;

ID

1

2

3

4

20

3.9 Practice

3.9.1 Insert statements

1. Insert the following data into the particular tables (personal_data, student,

study_subjects). Set the values, which are not stated explicitly, to NULL, if possible,

or propose appropriate values based on integrity constraints.

Personal_id Name Surname Student_id Class St_group Field / specification
Scheduled

subjects

875622/2134 Martina Plush 123 1 5ZI012
Informatics, without

specification

BI11 (2013),

BI02 (2015),

BE01 (2014),

BE01 (2015)

890422/8454 Peter New 90 2 5ZSA21
Information systems,

Applied informatics

II08 (2012),

II07(2007)

906212/4797 Emily Smith 23 3 5ZP031
Computer engineering,

without specification

BH01(2009),

BF08(2009)

885121/3767 Bella Gloth 8 3 5ZI032
Informatics, without

specification

BI11(2006),

BH18(2009),

...

Fig. 3.2: Input data

Notes:

• Attribute values lecturer and ects should be set using subject_year table

(use the value for the highest school year, if not stored for a particular year).

110 Lab 3 – Insert, Update, Delete statements and transactions

• The first two rows of the table should be inserted using the Insert-values statement

type.

• For loading the third and fourth row, use the defined tables person (personal

and student data) and subject_pref (the list of subjects, which should be added

to the appropriate person). Download script for these two tables from the USB

medium or server (student_pref_script.sql), respectively. Execute the file (copy the

code to the SQL developer and execute it).

insert into personal_data(name, surname, personal_id)

 select name, surname, pid from person;

• If you are using local server, the particular source table can be present

in the different schema (owned by the different user). To reference another user

table, the fully qualified name should be used – the table name must be prefixed

by the name of the owner schema (in the following case, the username is kvet_eng).

Particular data are available on the USB medium or server storage, respectively.

insert into personal_data(name, surname, personal_id)

 select name, surname, pid from kvet_eng.person;

2. Insert the information about the new teacher – name: Michael, surname: Flower.

Set the personal identifier to the maximal assigned value increased by one.

3.9.2 Update statements

1. Change the surname of the person “Peter New” to “Peter Old”.

2. Change the name of the person with student_id = 8 to Susanne.

3. Change the assigned subject BI11 to BI01 only for the first-class students.

4. Change the department to DI to all teachers without assigned value.

5. Change the class to the value increased by one to students with status “S”, but only

those, that are not in the last class (bachelor – 3 classes, engineering study –

2 classes). Change also the st_group. Moreover, use only one statement to perform

the requirements.

Structure of the st_group:

 5 Z S A 2 2

 Faculty workplace field specialization class group_id

Notices:

Get substring: substr(value, from, [size])

String concatenation: 'Hello' || ' world.'

Bachelor study: st_field ∈ <100; 199> 3 classes

Engineering study: st_field ∈ <200; 299> 2 classes

3.9.3 Delete statements

1. Delete the subject BE01 for a student with student_id = 123.

2. Delete the subject BI01 for all students with the st_group 5ZI022.

3. Delete all data about students whose registration year was not later than 2008.

Notes:

• To get the date part units, both solutions are equivalent.

http://www.vyznam-baby-mena.com/n/Susanne

Lab 3 – Insert, Update, Delete statements and transactions 111

select to_char(sysdate, 'DD') as day,

 to_char(sysdate, 'MM') as month,

 to_char(sysdate, 'YYYY') as year

 from dual;

select extract(day from sysdate) as day,

 extract(month from sysdate) as month,

 extract(year from sysdate) as year

 from dual;

Lab 4 – Data modeling 113

Lab 4 – Data modeling

This lab deals with the data modeling principles. The first part describes system analysis,

design and technical design. Creating a proper data model is crucial for consecutive

processing, whereas any change requires rewriting code, optimization, etc. Thus, there should

be a strong focus on that.

The logical database layer consists of the tables and relationships between them. It can

be expressed by the linear notation, occurrence diagram, script, or data model. The set of

attributes forms each table, the tuple can be unique identified by the primary key. References

between the relationships are made by relationships. The foreign key is the reference value to

the particular primary key or unique constraint generally. A special type is made by the

recursive (self) relationship referencing the same table. For each relationship, it is necessary

to manage the following categorization: type (identifying or non-identifying), cardinality (1:1,

1:N, and M:N creating associative entity) and membership (mandatory or optional

characterized by the possibility to hold NULL value for the foreign key).

The data modeling theory is then supervised by the Toad modeler providing the tool for

creating and maintaining data model in a graphical format using wizards generating the

script for various database system types. Thus, it is not only focused on the DBS Oracle.

4.1 Introduction

If we want to design a complex information system, the process must be done

in the defined sequence of steps, which should also be technically supported to get the desired

benefit. Nowadays, there are multiple tools used for such a process and are called Computer

Assisted Software Engineering (CASE). They support the design process itself as well

as offer techniques for appropriate documentation maintenance. Individual CASE tools may

differ in detail, depending on the used methodology.

The design is usually done in these three steps – system analysis, system design,

and technical design.

Fig. 4.1: System analysis, System design, Technical design

4.1.1 System analysis

The analysis determines requirements for the system and, on its basis, also a model

of the information system is specified. After the specification of the system is implemented,

a technical design of the system is carried out, which includes software and hardware

requirements for the system.

114 Lab 4 – Data modeling

4.1.2 System design

The design process includes a database design as well as a design of application software

and software design to access data stored in the database. Principles are shown

in the following figure, which groups data and functional analysis.

Data model

transformation to

the database

Data modelling Process modelling

Editing the data

model according to

the process model

Fig. 4.2: System design

4.1.3 Technical design

The technical design defines data structures and ways to access data depending

on the particular application, operating system, etc.

In some methodologies, processes of creating a data model and creating a functional

model are separated into two parts, the development of which take place in parallel because

they influence each other. The design of the data model is based on user requirements, which

are mainly in the form of forms and output assemblies. Part of this process is also the analysis

of existing models and related data structures.

Functional modeling often introduces requests for additional data objects definition

and handling related to the processing of requests themselves.

The proposed data model is the result of data and functional modeling that interact

with each other over the system's entire life cycle.

4.2 Creating data model
As already described in the previous sections, designing a data model concerning

application requirements is necessary. From a general point of view, it is first required

to identify and solve a conceptual model represented by a conceptual scheme

that is subsequently transformed into a logical scheme. The logical diagram generally

illustrates a value-oriented data model, in which links between objects are already expressed

regarding ensuring data integrity, data model normalization, etc. The implementation

of the data model itself is created in the physical design process, which results in the physical

(internal) schema of the data model. This schema is deployable and contains a detailed

specification of data structures, a way of implementing data types, data organization, and data

access methods.

Lab 4 – Data modeling 115

Application
requirements

Conceptual schema

Logical schema

Physical schema

Structure of the database
and relevant documentation

Logical design

Physical design

Conceptual
design

Data
design

Fig. 4.3: Creating a data model

The following figure illustrates the process of creating a data model from the user

specification with emphasis on forms and output sets, through the creation of the conceptual

data model, the data model itself up to the internal data model. User requirements are defined

by forms and output assemblies representing a set of user views on the data. From those,

a conceptual data model is created in the conceptual design process, represented by the E-R

diagram, in our case. The conceptual data model is mainly transformed through higher-level

languages to describe data objects (SQL, C language, COBOL, ...). E.g., in a relational data

model, there will be a relational scheme relating a set of tables, references, and integrity

constraints between them. The data themselves are stored in database files with a defined

organization (index files, index-sequence files, B-trees, inverted files, ...) that are available

independently of used the data manipulation commands.

116 Lab 4 – Data modeling

Conceptual design

Logical design

Physical design

Fig. 4.4: Design

Lab 4 – Data modeling 117

4.3 Conceptual modeling
Transforming information into data and description of the data importance in the database

is one of the most comprehensible formalizable components of each DBS. The data

themselves, such as "15.5.2017", "1333", "A602", etc., provide no more information value

that it reflects the "date", "number", "subject identifier". However, in principle,

it is challenging, even impossible, to judge that it is the exam date of the student Jacob Waxel

from the Database systems subject.

Basic knowledge of how to interpret data in a database is stored in a database schema.

An example of such a scheme is the following, where study_subjects is the schema's name,

school_year, student_id, subject_id, etc., are attributes – the name of the data items to be

stored in the database.

study_subjects(school_year, student_id, subject_id,

 lecturer, result, exam_date, sign_date, ects)

Fig. 4.5: Study_subjects table

However, the database user will not know whether it reflects a registered subject

of the full-time or postgraduate course, whether a person with a given personal number

is a student of the first year or another, or whether that subject is compulsory for him or not.

Conceptual models are based on attempts to create a data description in the database –

conceptual schema, which is independent of the physical storage of the database.

This description should draw the conceptual user view on that part of the real world as closely

as possible.

Conceptual models mainly highlight concepts close to the conceptual point of view,

like entity, object, relationship, attribute, property, and so on.

Each conceptual model deals with the following issues:

• Data structure – From this point of view, it is necessary to identify all objects and

their properties, including a description of structures for expressing relationships

between objects.

• Data manipulation – It is appropriate for each data model and part to design a set

of permissible operations over a given data object.

• Integrity constraints – For each object, its properties, and relationships between

objects, it is necessary to define a set of integrity constraints that limit the basic

properties of data objects.

In most cases, the first and third issues are dealt with in detail, data manipulation

is resolved at the lower level.

118 Lab 4 – Data modeling

4.4 Entity-relational conceptual model
Definition of the Entity-relational (E-R) conceptual model – The E-R conceptual

model (abbreviated E-R model) is a set of concepts and terms that help describe the user's

application on the conceptual level of abstraction to specify the structure of the database

subsequently.

The E-R model is particularly suited to designing a database schema to access a top-down

solution, but it does not mean that it is not possible to create a bottom-up system model.

When designing a system, based on detailed knowledge of modeled reality:

• Entity types are identified as sets of objects of the same type.

• Relationship types are identified to which entities of the identified types can enter.

• Based on an appropriate level of abstraction, attributes to each type of entity

and relationship are added, which describe the properties of relationships and

entities:

o SURNAME (descriptive type) of the PERSON (entity type).

o PERSONAL_ID (descriptive type) of the PERSON (entity type).

o EXAM_DATE (descriptive type) when a particular STUDENT (entity)

passed the exam from the defined SUBJECT (entity) and the RESULT

(relationship description type) itself.

• Multiple integrity constraints are identified, expressing the conformation accuracy

of the model with reality.

Entities:

STUDENT, SUBJECT, PERSONAL_DATA, …

Relationships:

 STUDENT (entity) STUDIES (relationship) SUBJECT (entity), …

Attributes:

 NAME, SURNAME, PERSONAL_ID, …

Integrity constraints:

PERSONAL_ID value is the identifier of the PERSONAL_DATA table, …

Definition Entity – Entity (entity) is a real-world object capable of independent existence

and can be uniquely differentiated from other objects.

Definition Relationship – A relationship is a connection between two (or more) entities

(can be of the same type).

Definition Descriptive type value – Is the value of the descriptive type – we will

understand a simple data type – a pair (set of values and set of operations) under

the descriptive type.

Definition Attribute – Attribute is a function result associated with the entity

or relationship, which expresses the essential property of an entity type, relationship type.

Definitions for the entity, relationship, and attribute are not so strict. There

is no unambiguous rule to classify data as an entity or relationship. Often it depends

on the analyst's point of view. The indicator may be that in terms of entities, a user often uses

nouns while verbs are characteristic to describe relationships.

Lab 4 – Data modeling 119

4.4.1 Identifying key

As already mentioned, each entity should be uniquely identified in the system. A student

can be identified by parents, personal_id, student_id, etc.

Primary key is a specific set of attributes associated with the table, which uniquely

identifies each record in a database table. The primary key (PK) must contain UNIQUE

values and cannot hold NULL. A table can have only one primary key, consisting of single

or multiple fields (composite primary key). It must be also minimal. More about the primary

key definition, management, and importance will be described later in chapter 11.3.2 Primary

key.

4.5 Conceptual schema notation in E-R model
Three types of notations can be distinguished:

• Linear text notation,

• E-R diagram,

• Combination of previously proposed types.

4.5.1 Linear notation

The syntax of the linear notation is expressed in the following schema (fig. 4.6).

(

,

,)

)

(

Relationship type

Entity type
type name

type name

attribute

key

entity name

type 2

entity name

type 1

Fig. 4.6: Linear notation

Entity: STUDENT(#STUDENT_ID, CLASS, ST_GROUP, …)

 SUBJECT(#SUBJECT_ID, …)

Relationship: SUBJECT_REGISTRATION(STUDENT, SUBJECT)

4.6 Type diagram / Occurrence E-R diagram

Type diagram is a more valuable and often used diagram in comparison with Occurrence

E-R diagram, which shows individual entity and relationship possibilities.

120 Lab 4 – Data modeling

4.6.1 Type diagram

Fig. 4.7: Student – Subject – registration

4.6.2 Occurrence E-R diagram

Fig. 4.8: Occurrence diagram

4.7 Attributes
In the previous text, we introduced a basic definition of the attribute and key, which

can be considered as a special set of attributes, but the entity and relationship types

are described only if each part of descriptive attributes is assigned and described (entity

and relationship). Now, let's deal with only atomic (or simple) attributes that give each entity

(relationship) no more than one (nonseparable) value.

For each entity type, a separate attribute table should be created. It includes these parts:

• the name of the attribute,

• the attribute type, in the case of the atomic attribute. It reflects the value set

(domain) and the set of operations that can be used to the value set. Within this

definition, the size of the space (in characters) can be specified, which occupies the

outer representation of the attribute value,

• the flag specifying, whether the attribute is key (it is part of the identification

(primary) key),

• the flag characterizing, whether the particular attribute can hold empty value.

It is interpreted as "undefined", "unknown", etc., and modeled using NULL value.

• the flag characterizing whether a particular attribute must have a unique value

(UNIQUE, DISTINCT) or not.

STUDENT REGISTRATION SUBJECT

STUDENT SUBJECT

REGISTER

REGISTRATION

1512 Matiasko II08 Discrete simulation

BI01 Informatics 1

BI02 Informatics 2

1319 Flower II15 Data structures 2

IPA1 Internet of things 2

BH04 Digital systems

 SUBJECTSTUDENT

Lab 4 – Data modeling 121

All elements describing the entity type except the attribute name are the integrity

constraints defined for the attribute.

CASE modeling tools (such as Toad Modeler, SQL Developer Data Modeler, Erwin, etc.)

allow you to display attribute names, defined data types, and possibly some integrity

constraints in the graphical view of entities. Consequently, the graphic design might not be

complemented by a linear notation. However, for large models, the display of the attributes

is not noticeable by the model itself. Therefore, it is often more suitable to display entities

such as named rectangles and attribute definitions and their characteristics to delimit by the

linear notation or by using special tables provided by the CASE tools. Fig. 4.9 shows only

primary keys, Fig. 4.10 reflects just the entities.

Fig. 4.9: Study_subjects table

Fig. 4.10: Study_subjects table

Entity attribute view in spreadsheet form can be following (Toad Modeler, described

in detail later):

Fig. 4.11: Entity modeling in Toad Modeler

122 Lab 4 – Data modeling

4.7.1 Non-atomic attributes

The conceptual model may not be limited to using atomic attributes only. In some cases,

it is advisable to create structured attributes (e.g., address, subject identifier, study group

number ...). In some cases, it is even reasonable to record several values within one attribute

(e.g., authors of the publication). In these situations, it is important how the analyst

determines attribute properties, which will be respected throughout the application.

4.7.2 Group attributes

A typical candidate for group attribute is the ADDRESS. Generally, this attribute

can be split into these parts:

• street name,

• house number,

• the name of the town,

• the name of the country.

Attributes that have such a structure will be called group attributes. Their structure does

not need to be single-level; attributes can create a hierarchical structure similarly known

as a record in programming languages. The group attribute value is created by compounding

attribute values from several components. A linear description of a group attribute may look

like this:

ADDRESS (COUNTRY, TOWN, STREET, NUM)

Group attributes are helpful if we need to access individual components in some cases,

but also the whole attribute in other cases. If we always approach only individual elements,

it is not effective to associate them with the group.

4.7.3 Multiple value attributes

Another example of using a non-atomic attribute is just AUTHOR of the entity type

TITLE. One title can have several authors, and such limitations cannot be defined in advance.

Some conceptual models allow using multivalued attribute definition with variable volume.

#STUDENT_ID

SURNAME NAME

STUDENT

ST_GROUP

Fig. 4.12: Student model

Lab 4 – Data modeling 123

STUDENT_ID

RESULT EXAM_DATE

STUDY_SUBJECTS

SUBJECT_ID

SCHOOL_YEAR

Fig. 4.13: Study_subjects model

Fig. 4.14: Study_subjects table model

4.8 Relationships and integrity constraints

As stated in the previous section, connections between entities are modeled

by the relationships that express some kind of integrity constraints – namely –

the cardinality of relationships as well as the entities belonging to the relationships.

Important factor is also relationship type in terms of identification / non-identification.

4.8.1 Identifying and non-identifying relationship

Identifying relationship is a relationship where the key of the master entity is required

for the child entity identification. The primary key of such entity is partially (or entirely

(fully), if 1:1 cardinality is used) composed from the foreign key and is denoted by the PFK

symbol (primary foreign key). Thus, once again, a child entity cannot be uniquely identified

without a parent. e.g., the driver of the car cannot be identified only by the license plate,

whereas several drivers can use the common vehicle.

Identifying relationship is modeled using a solid line. The model in the following

diagram uses identifying relationship.

124 Lab 4 – Data modeling

Fig. 4.15: Rent_books, Book model

A non-identifying relationship covers the situations when the primary key attributes

of the parent must not become the primary key attributes of the child.

The non-identifying relationship is modeled using the dashed line. The model

in the following diagram uses a non-identifying relationship.

Fig. 4.16: Rent_books, Reader model

Non-identifying relationship can be, generally, enclosed by the integrity rule, specifying,

whether the foreign key value can hold undefined (NULL) value or not. For identifying

relationship, whereas the foreign key is part of the object identification (primary key),

optionality cannot be applied.

4.8.2 Relationship cardinality

The cardinality of a relationship is an integral limitation that expresses the permissible

number of entities in a relationship.

Cardinality 1:1

Cardinality 1:1 is an integrity restriction that expresses the relationship between

a maximum of one entity and a maximum of one entity of another, respectively of the same

type, e.g., teacher can supervise only one subject, the subject is supervised by only one

teacher.

Fig. 4.17: Cardinality 1:1

The relationship in the data model is represented by the value 1.

TEACHER SUBJECT

P. Martincová

K. Matiaško A602

H. Froncová P415

J. Slavík P301

V502

SUPERVISES

Lab 4 – Data modeling 125

Fig. 4.18: Cardinality 1:1

Cardinality 1:N

Relationship cardinality 1:N is an integrity restriction that expresses the relationship

between a maximum of one entity and N entities of another, respectively, of the same type.

Relationship 1: N corresponds to the following study rules:

• a teacher can teach more than one subject,

• the subject is taught by a maximum of one teacher.

Fig. 4.19: Cardinality 1:N

Notice that relationship type 1:N generally includes occurrences of 1:0, 0:1, and 1:1,

as well. Some of these relationships may be ruled out by stricter rules, e.g.:

• each teacher must learn more than one subject,

• each subject is taught by only one teacher.

The “broom” symbol represents the relationship in the data model.

Fig. 4.20: Cardinality 1:N

In relationship 1:N, the direction is significant. In our example, the direction is defined

by (one) teacher to (many) subjects. 1:N relationship cardinality opposite direction – (one)

subject to (many) teachers would express differently formulated study rules.

Cardinality M:N

Cardinality M:N of the relationship is an integrity constraint that expresses

the relationship between M entities of one type and N entities of another, respectively

of the same type.

The relationship cardinality M:N corresponds to the following study rules:

• a teacher can teach more than one subject,

• the subject can be taught by more than one teacher.

TEACHER SUBJECT

P. Martincová

K. Matiaško A602

H. Froncová P415

V502

P103

M. Kaukič P202

P303

TEACHES

126 Lab 4 – Data modeling

Fig. 4.21: Cardinality M:N

Notice that the relationship cardinality M:N also generally includes cases of 1:0, 0:1, 1:1,

and 1:N (or N:1) relationships. The following figures show how we record the cardinality

of the relationship to the E-R diagram. For a 1:N relationship, it is efficient to name

the relationship type. The name represents the direction from the master entity to the slave

entity, so in the proposed figures, the relationship name is TEACHES, not IS TAUGHT.

 SUBJECT

 SUBJECT

 1:N TEACHER

 N 1

 SUBJECT

M:N TEACHER

 N M

1:1 TEACHER

TEACHES
 1 1

TEACHES

TEACHES

Fig. 4.22: Cardinality M:N

Fig. 4.23: Cardinality M:N

The cardinality of the relationship is sometimes expressed by claiming that the entity

of one type uniquely (does not) determine(s) the entity of the second type, or that the entity

of one type is (is not) a determinant of an entity of the second type.

4.8.3 Decomposition of the M:N relationship cardinality

We can say that the design of the conceptual scheme is independent of the subsequently

used data model. Still, it should be remembered that most database systems cannot express

TEACHER SUBJECT

P. Martincová

J. Slavík P301

M. Vajsová P201

K. Matiaško A602

H. Froncová P415

P103

M. Kaukič P202

P303

Š. Kovalík P101

M. Faktor V502

TEACHES

1:1 TEACHER SUBJECT

1:N TEACHER SUBJECT

M:N TEACHER SUBJECT

TEACHES

TEACHES

TEACHES

Lab 4 – Data modeling 127

M:N relationships directly. Other reasons force us to know how to divide relationships M:N

into two type 1:N relationships.

A common mistake is to assume that decomposition can be done as in the following

figure!

SUBJECT

b)

SUBJECT

STUDENT

 N 1

 1 N

a) STUDENT HAS_REGISTERED

 N M

ST_SUB

SUB_ST

Fig. 4.24: Incorrect modeling

The relationship in the previous diagram (first part) is of the M:N relationship type

meaning that there is no functional dependence between the student types of STUDENT

and SUBJECT in either direction. However, the second part of the diagram denotes

that the relationships SUB_ST imply the functional dependence of STUDENT

from SUBJECT (the instance of the entity type SUBJECT is the determinant of the instance

of the entity type STUDENT), relationship ST_SUB implies functional dependence

in the opposite direction. Thus, both diagrams clearly show that they express different

situations.

To obtain and set correct cardinality, it is advisable to use the occurrence diagram.

Fig. 4.25: Cardinality M:N

It is easy to understand that the relationship STUDENT – REGISTRATION is of type

1:N and that the relationship SUBJECT – REGISTRATION is also type 1:N.

By transforming the E-R diagram into an occurrence diagram, we obtain the graph shown

in the following figure. The defined new entity type (REGISTRATION) can be denoted

as the intersection entity type.

Fig. 4.26: Cardinality M:N

SUBJECT STUDENT

A602 1381

1333

P402 1103

P211 1320

128 Lab 4 – Data modeling

4.8.4 Associative entity

During the process of data modeling, it is often necessary to decompose the relationship.

It causes the creation of a particular type of entity representing the relationship.

If the relationship has M:N cardinality and defined attributes, it is always necessary to create

such entity directly in the E-R model.

The following figure shows the relationship with M:N cardinality type.

Fig. 4.27: Study_subjects table as an associative entity

And the created model with associative entity looks like this:

STUDENT SUBJECT

YEAR

N M STUDY_SUBJECTS ST_SUB SUB_ST 1 1

RESULT EXAM_DATE

Fig. 4.28: Study_subjects table as an associative entity

Thus, entity study_subjects in the model is an associative entity between student

and subject entities:

Fig. 4.29: Study_subjects table as an associative entity

In some cases, even despite the cardinality 1:N, it is preferable to model this relationship

using an associative entity. This is especially true in situations where instances of entities

would be very extensive in memory space requirements.

A typical example can be in the library sphere – students may borrow books –

and the system deals with only currently rent books with no history.

Lab 4 – Data modeling 129

STUDENT BOOK BORROW 1 N

Fig. 4.30: Student, Book table, and associative entity Borrow

Fig. 4.31: Student, Book table, and associative entity Borrow

4.8.5 Membership types

Membership in a relationship is an integrity constraint that expresses the necessity

of existence, respectively possibility of the non-existence of an entity of one type

in relationship to the presence of an entity of another type.

We have shown two different ways in which entities can enter a relationship. Some

organizational rules of a modeled reality determine that each occurrence of an entity must be

involved in the relationship. Some other cases allow existing entity-type objects outside

the relationship. Entity types that are involved in the relationship are named as members of

the relationship. Regarding the above-defined concept, we are talking about obligatory and

optional membership.

Mandatory membership in a relationship is an integrity restriction that expresses the need

for an entity of one type concerning the existence of an entity of another type.

Optional membership in a relationship is an integrity constraint that states that an entity

of one type may not exist concerning the existence of an entity of another type.

Let's have a simple example based on two tables – teacher and department. The teacher

is determined by his teacher_id and is dedicated to the department delimited by its name.

In the first example, 1:N relationship cardinality is used with mandatory membership

types. It means that each teacher must be dedicated to the department. In other words,

the teacher cannot be inserted without reference to the department.

Fig. 4.32: Department, Teacher table

The rule is covered by using a defined relationship, in which the foreign key is stated

as NOT NULL.

130 Lab 4 – Data modeling

Fig. 4.33: Department, Teacher table

On the other hand, there may be situations where it is appropriate to define a teacher

without a link to the department. In that case, optional membership must be defined, which

allows putting the NULL value as the foreign key. Naturally, it can be done only

if the relationship is non-identifying. In the data model, it is expressed by the circle near

the department entity (notice that the position of the circle may vary based on the used

modeling tool).

Fig. 4.34: Department, Teacher table

4.8.6 Multiple relationships between same tables

A particular case of relationship management covers the situation that multiple

relationships are defined within the same tables. In this case, each relationship covers one

connection type. In the following example, the first relationship describes the student,

the second one leader (tutor) of the thesis, and the third defines a reference to the opponent.

For these purposes, multiple relationship term is used. Furthermore, these relationships

can have different cardinalities.

LEADER PERSON

STUDENT

DIPLOMA_THESIS

OPPONENT

1

1

1

1

N

N

Fig. 4.35: Multiple relationships

Person and diploma_thesis tables with regards to relationships can be modeled like this.

Fig. 4.36: Multiple relationships

Principles of data management and retrieval are described in chapters Lab 2 – Basics of

data retrieval and Lab 8 – Advanced techniques of data retrieval.

Lab 4 – Data modeling 131

4.8.7 Recursive (self) relationships

It is often necessary to model the relationships between entities of the same entity type.

In this case, we refer to the self-relationship. This type of modeling is used to provide

hierarchical relationships between entities, e.g., employee hierarchy, parent-child

relationships, etc.

 1

N

IS MOTHER

PERSON

Fig. 4.37: Recursive relationship

An example of the model representation is the following. Notice that the foreign key

attribute names must be renamed (mother_id, father_id).

Fig. 4.38: Recursive relationship

4.9 Data modeling in Toad Modeler tool
There are several tools for creating data models. For our purposes, we will use Toad

modeler, which offers various possibilities for making models and enables accurate changes

to data structures across multiple platforms (Oracle, MySQL, MS SQL, DB2, etc.).

Furthermore, it allows you to construct data models either explicitly or based on the existing

system using reverse engineering, compare and synchronize models, quickly generate

complex SQL / DDL, create and modify scripts, and reverse and forward engineer both

databases and data warehouse systems.

(source: https://www.toadworld.com/products/downloads?type=Freeware&download=toad-

data-modeler)

Fig. 4.39: QR code to the Toad modeler installation source

https://www.toadworld.com/products/downloads?type=Freeware&download=toad-data-modeler
https://www.toadworld.com/products/downloads?type=Freeware&download=toad-data-modeler

132 Lab 4 – Data modeling

4.9.1 Environment settings

The process of the installation is straightforward, and it is not necessary to described it

step-by-step. Then, after launching software and attempt to create a new model, the target

database must be chosen. In our case, we will use the Oracle database (version 19c), but

generally, it can generate a script for any database system.

Fig. 4.40: Selecting target database

Then, the drawing canvas is created and enabled, which allows you to create the data

model.

Lab 4 – Data modeling 133

Fig. 4.41: Drawing canvas

The central part of the modeling management is just the Model Objects panel:

Fig. 4.42: ERD Objects

(1) entity

(2) non-identifying relationship

(3) identifying relationship

(4) M:N cardinality relationship (associative entity is created)

(5) self-relationship

4.9.2 Entity management

After selecting entity option (1) and clicking on the canvas, the new entity is created.

Individual properties can be changed after double-clicking on it – attribute definitions

with their constraints. Each entity is directly mapped into the table definition and must have

a unique name. For the naming, the first character must be a letter (The Unicode definition

of letters includes Latin characters from a through z, from A through Z, and letter characters

from other languages). Also, underscore (_), at sign (@), and hash sign (#) are allowed.

Other characters can be a numeric value or dollar sign ($). No special characters,

supplementary characters, and spaces are allowed.

134 Lab 4 – Data modeling

Fig. 4.43: Entity modeling

Each entity consists of at least one attribute, but generally, it has multiple attributes,

also with a unique name (naming convention is the same as table name definition principle).

Attributes can be added by clicking on the “ADD” button. It is also possible to “EDIT”

the existing definition or to “DELETE” some attributes. Individual attribute definitions are

in data grid consisting of these characteristics:

• Key.

• Name / Caption.

• Datatype + size demands.

• NOT NULL flag.

• Unique flag.

• Description (comment).

Fig. 4.44: Attribute modeling

Lab 4 – Data modeling 135

For the table study_subjects, the data grid looks like following:

Fig. 4.45: Study_subjects table definition

When managing attributes, the following form will be available. Attribute definition

adding or editing can be done using the first tab of the form:

Fig. 4.46: Attribute definition

Each attribute must have its unique name (ATTRIBUTE NAME and CAPTION).

Both mostly hold the same value. However, in some cases, they can differ. The difference

of the values is mainly identified if the foreign key attribute is renamed or if several attributes

would have the same values.

For the script generation, the relevant attribute parameter is just its name.

Moreover, each attribute must have an associated data type (several data types available

with some differences between individual database system types depending on the dialect).

The primary data type categories are:

• string,

• numeric,

• date.

Characteristics are described in chapter 5.2 Data types.

136 Lab 4 – Data modeling

For each attribute, three checkboxes are available:

• Key (should be selected if the attribute is part of the primary key) – each table must

have no more than one primary key, which can also be composite (consists of

several attributes).

• NOT NULL (should be selected if a no-undefined value can be used).

• Unique (should be selected if the particular attribute values must be unique).

Fig. 4.47: Attribute definition

Notice that the primary key is always UNIQUE, but as the whole set, no individual

attributes forming it, thus for study_subjects table, trinity {school_year, subject_id,

student_id} is UNIQUE.

• If {school_year} was unique, it would cause that only one subject and only one

student can register in a particular school_year.

• If {subject_id} was unique, it would cause that only one student can register for it,

regardless of the school_year.

• If {student_id} would be unique, it would cause that he can register for only one

subject, regardless of the school_year.

• If the pair {school_year, subject_id} was unique, it would cause that each subject

in each school_year can be registered by only one student.

• If the pair {student_id, subject_id} was unique, it would cause that each subject

can be registered by one student only once (he cannot repeat the subject).

• If the pair {school_year, student_id} was unique, it would cause that each student

in each school_year can register for only one subject.

Thus, the correct solution is the unique trinity.

Attribute definition can also be enhanced by default value and check constraint (column,

user integrity, see Lab 11 – Relational integrity). The default value is used if no value for the

particular attribute is specified. Notice the difference between NULL values, it is not the same

in this case. Principles are demonstrated in the following example.

Let´s have a simple table T1 consisting of two attributes – ID, ID2. Let´s have attribute

ID2 enhanced by the default value.

create table T1(id integer, id2 integer default 1);

Then, insert two rows into the table and care about the real data stored in the database.

As you can see, generally (across multiple database systems), default value is used only

if no data is used. If a NULL value is explicitly defined, the default value is not used.

The reason is that it has been user-specified, although it holds an undefined value.

insert into T1 values(3, null);

insert into T1(id) values (2);

select * from T1;

ID ID2

3 (null)

2 1

In DBS Oracle, such an option was valid prior the version 12c. The default value would

not be applied for the NULL value specification. By introducing 12c version, a new clause

Lab 4 – Data modeling 137

has been introduced – default on null, extending the default section specification. In that case,

also explicitly defined NULL values can be replaced by the default option specification.

drop table T1;

create table T1(id integer, id2 integer default ON NULL 1);

insert into T1 values(3, null);

insert into T1(id) values (2);

select * from T1;

ID ID2

3 1

2 1

Check constraint reflects user-defined domain (data type sub-category) and is explained

in chapter 11.7 Domain integrity.

4.9.3 User-defined domain

User domain definition borders the value set based on the defined data type. Generally,

the integer value can also be negative. However, for salary, it is not suitable to use a negative

value. Therefore, it is possible to define own domain by limiting values, which can particular

attributes hold.

The domain itself is a set of scalar values of the same data type.

Toad modeler allows the user to define domain by selecting Model => Model Items =>

Domains from the main menu.

Fig. 4.48: User-defined type

Generally, the domain is similar to the core data type, but check constraint is defined

for the possible value limitation. For demonstration purposes, let´s create a new domain

characterizing price. It can hold any real value, which cannot be negative. Let´s name

it “price_domain”. Click on the add and specify the name and data type.

138 Lab 4 – Data modeling

Fig. 4.49: Domain definition

The suitable data type is “number”. Value set definition is defined in the Check

Constraints tab. Next, name the constraint (in the General tab) and navigate the SQL tab.

Lab 4 – Data modeling 139

Fig. 4.50: Check constraint – General tab

DDL check constraint for the attribute looks like following:

create table Check_tab(price number check (price > 1));

Therefore, Toad modeler allows you to use its internal macro – <%ColumnName%>,

which ensures that a particular value is replaced by the appropriate attribute name during

the SQL script generation. Therefore, the Check constraint definition for the price_domain

can look like the following. It is written to the SQL tab of the Check constraint definition.

<%ColumnName%> >= 0

140 Lab 4 – Data modeling

Fig. 4.51: Check constraint – SQL tab

Define the check constraint very carefully (no spaces can be used for macro)

because the Toad modeler does not check syntactical correctness during the SQL script

generating process. It can cause significant problems when using such a script in the database

server.

Other examples of check constraints are the following. In principle, it can use whatever

simple condition.

<%ColumnName%> in ('T', 't', 'F', 'f') --> boolean data type definition

<%ColumnName%> between 1 and 1000

substr(<%ColumnName%>,1,1) = upper(substr(<%ColumnName%>,1,1))

Then, the user-defined domain can be associated with the attribute by the Domains Select

list.

Lab 4 – Data modeling 141

Fig. 4.52: User-defined type

4.9.4 Relationship management

Relationship definition can be done using the (2), (3), (4), and (5) buttons.

Button (2) reflects non-identifying the relationship, button (3) delimits identifying

relationship type, button (4) defines M:N cardinality relationship. Button (5) deals with self-

relationships.

Fig. 4.53: Relationship management

Each relationship is directional oriented and routed from the parent table to the child.

The foreign key is part of the child table.

Fig. 4.54: Person, Reader table

Afterward, the relationship can be edited by double-clicking on it. The first (General) tab

of the form is the most important. Each relationship can have a name, which will be,

transformed into SQL script. A relationship type can be edited (from identifying to non-

identifying or vice versa), membership (mandatory/optional in either parent or child entity),

and also cardinality (1, N, or direct association count limitation). Many other properties can

be set, like referential integrity management, deferrable constraints, etc.

142 Lab 4 – Data modeling

Fig. 4.55: Relationship properties

4.9.5 Generating SQL script

When data modeling is finished, SQL script can be generated and consequently executed

on the server – database objects are created. Whereas the defined script is database system

dependent, it is inevitable to choose the correct one. Suppose the different database system

type is used compared to the selection at the beginning. In that case, the model can

be converted to the particular system by selecting “Convert Model => Run”

from the “Model” main menu tab.

SQL script itself can be generated by clicking on the “Generate DDL Script” button

in the “Model” panel:

Fig. 4.56: Model panel

In the main menu, it is located in the Model menu navigating to Generate DDL Script =>

Run or by using the F9 button shortcut.

Lab 4 – Data modeling 143

The form for the script property definition is shown in the following figure.

Fig. 4.57: Generating script

First, there are several options defined by checkboxes bordering objects for which script

should be generated. For our purposes, we will use:

• Entities (DDL script for table definitions, primary keys, etc.).

• Relationships (creating relationships between tables).

The proposed tool can also generate many more script types, like user-defined indexes,

procedures, functions, or views. Also, referential integrity constraints (cascade, nullified,

restrict) can be defined, and management ensured by the triggers, generated automatically

based on user selection (see Lab 10 – Triggers). The script can be generated for the whole

model or for its subpart, which can be defined in the “Select list” tab:

144 Lab 4 – Data modeling

Fig. 4.58: Generating script

The important script option is in the “Detail Settings” tab. Deselect the option

“Use Quotation Marks”.

Fig. 4.59: Use Quotation Marks problem

Lab 4 – Data modeling 145

Otherwise, the generated script would use quotation marks – each object and attribute

name would be enclosed by quotation marks (which are not visible by querying data

dictionary views, see Lab 14 – Data dictionary views), however, they should be used when

coding scripts. Moreover, particular names would be case-sensitive. Generated code would

look like the following:

Create table "Title"

(

 "title_id" Integer NOT NULL,

 "title_name" Varchar2 (50) NOT NULL,

 "genre" Varchar2 (8) NOT NULL,

 "publisher" Varchar2 (40),

 "year_of_issue" Integer,

 "isbn" Char (13),

 primary key ("title_id")

)

/

Alter table "Reader" add foreign key ("person_id")

 references Person ("person_id")

/

In the Detail Settings tab, several parameters can be set, like Cascade operation in case

of table dropping, Purging tables (after object dropping, it is not placed in the recycle bin),

etc.

Default Terminator is “/”. Therefore, after the table, index, or relationship definition,

slash is placed in a separate line like the terminator. In the preceding parts, we mainly used

semicolons. However, the principles are the same.

After the definition and options specification, an SQL script can be generated. Be strictly

aware and execute the proposed script on the server (cloud) only if it has been generated

without errors! If not, correct them and repeat the process.

Generated script for the table Reader looks like the following – table and primary key

are defined. Afterward, the relationship is added.

Create table Reader

(

 reader_id Integer NOT NULL,

 person_id Char (10) NOT NULL,

 valid_from Date NOT NULL,

 valid_until Date,

 primary key (reader_id)

)

/

Alter table Reader add foreign key (person_id)

 references Person (person_id)

/

4.9.6 Executing script on the server

The script can be executed on the server based on your preferred software tools.

146 Lab 4 – Data modeling

If the SQL Developer is used, the particular file is opened on the client site

and can be executed on the server (the same principle as running whatever code). Either

desktop or web version of the SQL Developer can be used.

Script stored in a file can be executed via the already described SQL Client, as well. In that

case, a particular file should be located by pointing to the server. Set and locate the directory

where the file resides (using the cd command). Finally, execute the script using SQL*Plus

environment by using the start command (assuming that the file name is script_library.sql):

start script_library.sql

Seven tables should be created – Author, Authors_of_book, Title, Book, Rent_books,

Reader, Person.

4.9.7 Working with directories and files

It is helpful to know some basic commands for dealing with directories and files in the file

system and traverse using the tree structure. Note that these commands are associated with

the operating system. Thus, if you want to call them from the SQL*Plus (SQL Client)

environment, then they must be prefixed by the host command:

SQL> host pwd

$ pwd

Tab. 4.1: Commands for working with directories and files

Command Explanation

$pwd
Getting actual working directory

/home/kvet1

$ls
Listing the directories and files inside

the actual directory

$ls -la

Listing the directories and files inside

the actual directory with more details

(like access privileges, owner, ...)

$ls directory
Listing the directories and files defined inside

the directory parameter

$cd
Moving to home directory

/home/kvet1

$cd .. Moving to parent (direct superior) directory

$cd directory Moving to the defined directory (relative path)

$cd /path/directory
Moving to the defined directory (absolute

path) – starts with a slash (/)

Lab 4 – Data modeling 147

Command Explanation

$chmod value name

 User (owner) Group Others

 RWX / RWX / RWX

 R – read, W – write, X – execute

 R = 22 W = 21 X = 20

rwx

7 rwx

6 rw-

5 r-x

4 r--

3 -wx

2 -w-

1 --x

0 ----

$chmod {u|g|o|a} {+|=|-} {r|w|x}

 u – user, g – group,

 o – others, a – all

Changing access privilege of the defined

directory/file (name) using parameter values

(value)

chmod 751 file.txt

 owner => rwx privileges

 group => r-x privileges

 others => --x privileges

Changing access privileges using access string

chmod g+w file.txt

 write privilege is added to the group

$mkdir directory_name Creating directory (make directory)

$rmdir directory_name
Deleting directory (remove directory)

– it must be empty

$cp from to

Creating file copy, parameters from, and to are

used to define the file's location.

Using this command, it is also possible

to rename the file.

$mv from to

Moving the file, parameters from and to define

the location of the file.

Using this command, it is also possible

to rename the file.

$rm file_name Removing files from the file system.

$rm –r directory_name

Removing the directory with all files and

directories inside (be aware of using such

a command).

New files can be created using any provided editor. During this lab, the “joe” editor will

be used. However, feel free to use any you like.

To create a new file, use the following command. Whereas SQL code will be obviously

written into the files, meet the concept of using “.sql” file extension.

$ joe file_name.sql

148 Lab 4 – Data modeling

There are also multiple joe editor shortcuts, which can effectively improve data

management. Some of them are in the following table:

Tab. 4.2: Joe editor shortcuts

Shortcut Meaning

CTRL + K + B The first (begin) point of the block definition

CTRL + K + K The last (end) point of the block definition

CTRL + K + C Copying defined block

CTRL + K + M Moving defined block

CTRL + Y Removing the whole row

CTRL + K + X Saving and exit

CTRL + C Exit without saving

CTRL + K + D Saving file only

CTRL + Z Previous word

CTRL + X Following word

CTRL + A The beginning of the line

CTRL + E End of the line

CTRL + U Previous screen, like PgUp

CTRL + V Following screen, like PgDn

CTRL + K + U Beginning of the file

CTRL + K + V End of the file

4.10 Practice
1. Download preprepared model of the library from the USB medium, respectively

server (flight_part.dm2).

2. Extend the model by adding Rent_books and Book table with appropriate

relationships. Mind the correct direction, relationship type, cardinality,

and membership.

Fig. 4.60: Library model

3. Set the suitable data types, NULL/NOT NULL flags, primary keys, etc.,

for all attributes.

4. Which data type have you selected for attribute price? Is it possible to put there

negative value?

Lab 4 – Data modeling 149

5. Define the domain price_domain, which limits the value set of the domain

(use macro <%ColumnName%>):

<%ColumnName%> >= 0

6. Associate defined domain with all price data attributes.

7. Ensure that each publication can have no more than 6 authors. Thus, the order is

delimited by the values 1, 2, 3, 4, 5, and 6. Define and associate user domain.

8. Ensure that the value of the publisher attribute will always hold uppercase values

(defined explicitly by the user). Define and associate user domain.

9. Extend the table person, so you will also record the parents for the child (the book

can be returned either by the person who borrowed that book or by the parent).

Do not forget to rename foreign key attributes (mother, father). Use optional

membership types.

Fig. 4.61: Person, mother, father modeling

10. Record also an identifier of the editor and illustrator for each title. If the title has

no images, a particular illustrator attribute value can hold an undefined value.

Assume that each title has no more than one editor and illustrator. Reference

the table Author.

Fig. 4.62: Illustrator, editor modeling

150 Lab 4 – Data modeling

11. Generate SQL script for tables, primary keys, and referential integrity. If no errors

occurred, execute the script on the server (otherwise, correct them and repeat

the process).

12. Drop defined tables in the correct order.

drop table table_name;

Lab 5 – Create, Alter and Drop commands 151

Lab 5 – Create, Alter and Drop commands

This lab deals with the Data Definition Language (DDL) formed by the Create, Alter and

Drop commands. Compared to the DML statements, DDL changes the database structure,

not the data themselves.

It offers the extended data type summary, user, and table management. Reader will learn

the basics of the data retrieval process performance and indexes. Section 5.5 deals with the

index types (B+tree, bitmap, hash), access methods, and addresses to the physical database

– ROWID pointers.

5.1 Introduction

This lab will introduce and describe principles of database object definition, management,

modifications, and remove operations on the object level definition. All commands

are covered by the Data Definition Language (DDL) statements – Create, Alter, Drop

and Truncate. Notice that by using these statements, object management is provided,

not the data stored in those structures (e.g., table definition, not the data management inside

the table). Create command is used for adding (creating) new database object (table, index,

sequence, view, procedure, function, package, trigger, user, …). The Alter command aims

to modify the database object, Drop command removes the database object from the system.

Truncate operation removes the pointers to the data blocks holding the data, resulting

in removing all data rows from the particular table object. Before going deeper to individual

operations, let’s introduce and summarize available data types.

Moreover, such commands are usually managed internally by developed software tools.

Database system Oracle consists of a small number of instances created by Create Database

command, but mainly by Database Assistant (DBCA) tool. Each instance is delimited by its

name – SID (do you remember it from the installation process as well as connecting to the

database, don´t you?). These instances are independent, and each of them consists of user

accounts. For DBS Oracle, each user has an assigned schema (1:1 assignment) for storing

particular objects, like tables, views, etc. These objects can also be accessible to other users

if privileges are granted (privilege management is described in Lab 7 – Managing privileges).

A complex description of the administration processes can be found in [1] [5] [13].

152 Lab 5 – Create, Alter and Drop commands

Fig. 5.1: Database instance model and user accounts

5.2 Data types
SQL supports multiple ranges of data types. The following table reflects the possibilities

implemented in DBS Oracle in comparison with SQL norm:

Tab. 5.1: Data types

 SQL norm Oracle

S
ca

la
r

d
a

ta
 t

yp
es

S
tr

in
g

s Fixed size
CHARACTER (n) CHAR(n)

NATIONAL CHARACTER (n) NCHAR(n)

 Variable size CHARACTER VARYING (n)
VARCHAR(n),

VARCHAR2(n)

N
u

m
er

ic
 v

a
lu

es

 Integer values

SMALLINT NUMBER(5)

INTEGER NUMBER(10)

 NUMBER(38)

 Fixed decimal size
DECIMAL(m, n) NUMBER(m, n)

NUMERIC(m, n) X

 Float decimal size

SMALLFLOAT FLOAT(63)

FLOAT FLOAT(126)

DOUBLE PRECISION NUMBER

 Data and Time

DATE DATE

TIME X

TIMESTAMP TIMESTAMP

INTERVAL INTERVAL

INTERVAL

 File

CLOB CLOB

NCLOB NCLOB

 LONG

BLOB(n) BLOB

 LONG RAW

Note, that there are two data types dealing with variable string definition – varchar and

varchar2. Such situation occurs for historical reasons, whereas the original definition

Lab 5 – Create, Alter and Drop commands 153

(varchar) was replaced by the optimized version (varchar2). Currently, any format, you use,

the optimized version is always used.

5.3 User management
User management covers the particular category of database objects as an interface

between the database and user activities. Users are commonly managed (created, altered,

dropped) by the database administrator. However, now, you are the supervisor of the whole

cloud database instance, so you are responsible for user management, as well. For defining

new users (schema), it is necessary to Create user. Therefore, we describe the principles

more precisely in this section.

Each user is delimited by the username (login) and password (which can be managed

locally or by external verification methods, like LDAP). Moreover, each of them must have

assigned space for storing defined objects (tables, views, procedures, etc.). This space

is called tablespace, and two types are distinguished – default tablespace (for storing

persistent data objects) and temporary tablespace (space, where temporary tables,

intermediate data, Select statements results, etc. resides. After processing, these objects

are purged and space freed). Moreover, each user can have an assigned profile and quota

for system resources. There are also another two keywords, which are suitable

to be described. Password expire keywords ensures that created user will be forced to change

his password immediately after his first successful login to the database. The Account lock

keyword is used if you want to create a new user, however, such user will not be possible

to login using it because such account is locked. It means that all defined objects still reside

in the system, but it is not possible to access the system using such a user (locked user can

also be caused by performing a suspicious activity, like too many incorrect login attempts

or too old passwords without change). Please notice that password of the user should start

with a letter, no numeric value. Moreover, always define a strong password consisting

of characters (lower and uppercase), numeric values, and special characters.

The syntax of the create user command looks like the following. Only the first two rows

of the script are necessary. The rest have their default values, which will be used,

if not explicitly defined.

CREATE USER user_name

 IDENTIFIED { BY password | EXTERNALLY | GLOBALLY AS 'CN=user' }

 [DEFAULT TABLESPACE tablespace]

 [TEMPORARY TABLESPACE tablespace]

 [QUOTA { number [K|M] | UNLIMITED } ON tablespace]

 [, QUOTA { number [K|M] | UNLIMITED } ON tablespace]

 [PROFILE profile_name]

 [PASSWORD EXPIRE]

 [{ ACCOUNT LOCK | ACCOUNT UNLOCK }]

Connect as the admin user and create a new user. The solution can look like this.

The created username will be mk_user and password my_passport.

create user mk_user identified by my_password;

In this case, the rest values will use their default values. The following query can be used

to get the default values for the tablespace definition (data dictionary view is used, principles

are defined in Lab 14 – Data dictionary views). For now, use it as it is.

154 Lab 5 – Create, Alter and Drop commands

select *

 from database_properties

 where property_name like 'DEFAULT%TABLESPACE';

 PROPERTY_NAME PROPERTY_VALUE DESCRIPTION

1 DEFAULT_TEMP_TABLESPACE TEMP Name of default temporary tablespace

2 DEFAULT_PERMANENT_TABLESPACE SYSTEM Name of default permanent tablespace

All these characteristics can be later changed (using Alter command).

The command itself consists of the Alter keyword followed by the object type

(in this case, “user” will be used) and object name (e.g., kvet_eng). Then, characteristics

to be changed are defined. So, if you would like to change associated permanent tablespace

(new value will be “system” tablespace), the script can look like this:

alter user kvet_eng default tablespace system;

If you want to freeze or unfreeze a user account, the following Alter command can be

used:

alter user kvet_eng account lock;

alter user kvet_eng account unlock;

The particular category covers the principle of changing the user password. Although

it can also be done using Alter command, it is not very suitable because the non-encrypted

form of the password is visible on the screen (now, the password will be “new_password”).

alter user kvet_eng identified by new_password;

The password of the user can be changed anytime in two ways, in principle. The first

solution covers the technique of changing user password when a particular user is logged on.

In this case, he uses the password command. First, an existing password will be required,

followed by a new password to be set. You will be prompted to write it twice for security

reasons (avoiding typos).

password

Fig. 5.2: Changing password

The second solution allows the administrator to change any user password. Naturally,

this operation can also be done without knowing the actual password of the particular user.

Mentioned command password is extended by the username definition (system user

is changing the password of the kvet_eng user):

password kvet_eng

Lab 5 – Create, Alter and Drop commands 155

To remove the particular user from the system, the Drop user command should be used.

If a particular user has some defined objects, the operation will fail. It is caused by security

reasons, where there is no reverse operation for such activity.

drop user kvet_eng;

SQL Error: ORA-01922: " CASCADE must be specified to drop 'KVET_ENG'"

*Cause: Cascade is required to remove this user from the system.

 The user own's object which will need to be dropped.

*Action: Specify cascade.

A Cascade keyword must be used to force the system to drop user regardless

of the defined objects. However, always think twice. Such an operation cannot be easily

reversed.

drop user kvet_eng cascade;

5.4 Table management
The user's main activity is the data management and the object definition, in which

the data will be stored. In the following chapters, we will describe the principles of data

management and data modeling techniques. Now, we will deal with the database object

definition itself. The following table shows the object types, which can be managed

in the DBS Oracle.

Tab. 5.2: Object types

 Oracle type

 System objects

DATABASE

USER

SCHEMA

ROLE

PROFILE

 Basic objects

TABLE

UNIQUE INDEX

INDEX

SYNONYM

SEQUENCE

 Derived objects

VIEW

MATERIALIZED VIEW

SNAPSHOT

 Automatic action management TRIGGER

 Stored methods

PROCEDURE

FUNCTION

PACKAGE

For now, we will describe the principles of table definition; other object management

will be described later (in a particular chapter defining such objects).

The syntax of the creating table consists of several parts and looks like this. It can be

considered complicated at first sight. However, we will describe each keyword principle

separately using multiple examples.

156 Lab 5 – Create, Alter and Drop commands

5.4.1 Create command

CREATE TABLE [schema_name.]table_name

[

 ({ column_name datatype [DEFAULT expr] { [column_constraint] } [...]

 |

 table_constraint

 } [...]

)

]

column_constraint ::=

 [CONSTRAINT constraint_name]

 {

[NOT] NULL

|

{ UNIQUE | PRIMARY KEY }

|

REFERENCES [schema_name.]table_name [(column_name)]

 [ON DELETE CASCADE]

|

CHECK (condition)

 }

table_constraint ::=

 [CONSTRAINT constraint_name]

 {

{ UNIQUE | PRIMARY KEY } ({ column_name } [, ...])

|

FOREIGN KEY ({ column_name } [, ...]) REFERENCES

 [schema_name.]table_name

 [

 ({ column_name } [, ...])

] [ON DELETE CASCADE]

|

CHECK (condition)

 }

As you can see, each table must be defined by its unique name. By default, the table is

created in the logged-in user's schema but can also be defined in another schema. Naturally,

particular privileges to access another schema and create a new object must be granted.

In that case, the name of the table would be extended by the schema (username)

or a particular user (owner of the object).

Create table kvet_eng.person ...

Then, individual attributes are listed with their names, data types, and constraints.

So, now, let´s create a simple table (person) consisting of three attributes (personal_id, name,

surname). Each table must have at least one attribute.

Create table person

 (personal_id char(11),

 name varchar2(15),

 surname varchar2(15)

);

Lab 5 – Create, Alter and Drop commands 157

Naturally, some attributes cannot be NULL, so if the table definition requires personal_id

value as NOT NULL, the solution will look like the following. Notice that table must

be dropped before changing its definition by the new Create command. Changing

the structure and constraints of an existing table can be provided using Alter command

described a bit later.

Create table person

 (personal_id char(11) NOT NULL,

 name varchar2(15),

 surname varchar2(15)

);

As we can see, by default, each attribute is listed as NULL. As evident, we can get

the table schema using already known command desc.

Name Null Type

----------- -------- ------------

PERSONAL_ID NOT NULL CHAR(11)

NAME VARCHAR2(15)

SURNAME VARCHAR2(15)

The primary key is a significant part of each table, allowing the user to access

the particular row of the table directly. If the primary key is simple (consists of only one

attribute), two possibilities are available for the definition. The first principle is based

on using primary key keyword after the particular attribute definition (column constraint):

Create table person

 (personal_id char(11) primary key,

 name varchar2(15),

 surname varchar2(15)

);

The second one uses the primary key definition after the attribute listing

(table constraint):

Create table person

 (personal_id char(11),

 name varchar2(15),

 surname varchar2(15),

 primary key(personal_id)

);

Notice that the primary key is automatically NOT NULL from the definition.

It is not necessary to define it explicitly.

Only the second solution is available in the case of composite primary key definition

(multiple attributes covering primary key).

To demonstrate the solutions and principles, let´s create another table Employee

consisting of information about the person's employment contract in the particular company.

158 Lab 5 – Create, Alter and Drop commands

How would you define the structure of the table? Which attributes are necessary? What about

the primary key definition? The natural solution defines composite primary key:

Create table employee

 (personal_id char(11),

 employer_id integer,

 date_from date,

 date_to date,

 primary key(personal_id, employer_id, date_from)

);

Notice that composite primary key definition directly in the Create table command can

be done only with the previously defined principles. It is not possible to write a primary key

keyword after multiple attributes forming column constraint primary key because it would

be evaluated as an attempt to create multiple primary keys for one table resulting in exception

raising.

Create table employee

 (personal_id char(11) primary key,

 employer_id integer primary key,

 date_from date primary key,

 date_to date

);

Error report -

ORA-02260: table can have only one primary key

02260. 00000 - "table can have only one primary key"

*Cause: Self-evident.

*Action: Remove the extra primary key.

Foreign key

These two tables (person, employee) can be linked together, forming a relationship.

Foreign key references the primary key of the second table (to be honest, it can also reference

any unique index). To form the relationship, it can be done by using the references keyword

either in Create or Alter command. Notice that the attribute names must be enclosed

in the parentheses. Moreover, this command only adds the reference. The particular attribute

must already be part of the table.

alter table employee add foreign key (personal_id)

 references person(personal_id);

Whereas the name of the attributes in the table employee and person to be referenced

are the same, the name of the referenced attribute in the person table can be omitted.

alter table employee add foreign key (personal_id)

 references person;

The relationship has been created. However, what about the relationship type (identifying

/ non-identifying)? Sure, if the foreign key is part of the primary key, the identifying

relationship must be created.

What about cardinality? (1:1, 1:N, M:N)? This is 1:N cardinality, whereas the foreign key

attribute is part of the composite primary key. Thus, one person can be listed in table

employee multiple times. Vice versa, each employee references exactly one person.

Lab 5 – Create, Alter and Drop commands 159

Finally, what about the membership type (obligatory/optional)? Why? From the person

to the employee table, it can be an optional relationship – a person does not need

to be employed at all. However, there must be an obligatory relationship from the employee

to person table because the foreign key value is part of the primary key. Thus, it cannot

contain a NULL value at all.

More about the foreign key definition, management, and described principles are in

Lab 4 – Data modeling.

Fig. 5.3: Foreign key definition – Person, Employee table

Domain definition (check constraint)

The attribute value is characterized by the data type it belongs to (like integer, varchar,

date, ...). Such data type can also be limited to particular values forming the user-defined

domain. It can be done using the check constraint of the attribute. To describe the solution,

add the attribute job_type to the employee table definition expressing the type of employment

(full time, part-time). From the definition, the value must be in string format. However,

another check constraint should be defined to ensure that only specified values can be inserted

(or updated). The following code shows the table definition, therefore, drop the existing table

and create a new one.

Create table employee

 (personal_id char(11),

 employer_id integer,

 date_from date,

 date_to date,

 job_type char(9) check (job_type in ('full time', 'part time')),

 primary key(personal_id, employer_id, date_from)

);

If the definition is completed, one question arises, whether such solution is correct.

The answer is easy – sure, it is. However, it is not practical. For each employee, it is necessary

to store at least 9 characters, but the word “time” is always present. Therefore, it can

be shortened to “full” and “part”. To get an effective solution, only one character is adequate.

Thus, the size of the attribute can be lowered nine times. Much better, isn´t it? Imagine

the complex system consisting of thousands of employees or even portal managing

all employment in the country. Size effectivity is considerable. Therefore, always deal

with the efficiency of the system.

Create table employee

 (personal_id char(11),

 employer_id integer,

 date_from date,

 date_to date,

 job_type char(1) check (job_type in ('f', 'p')),

 primary key(personal_id, employer_id, date_from)

);

160 Lab 5 – Create, Alter and Drop commands

Default value

The default value can be optionally extended attribute definition. Thus, if no value

is inserted, it will be automatically replaced by the defined default value. In the past, there

was a significant difference between no value (not listed in the Insert statement) and NULL

value listed explicitly. If any value were defined explicitly, no default value would be used.

Thus, NULL was not replaced by the default value at all. In Oracle 12c version, a new clause

– default on null – was introduced. Thus, if the value is undefined or not specified, it will be

replaced by the default value. Consequently, a NULL value is replaced, as well.

Principles are described using a job_type attribute of the employee table. Let´s assume

that in a standard environment, we deal with the full-time job. Thus, the default value can

look like the following. Notice that the default value must be syntactically defined before the

check constraint:

Create table employee

(personal_id char(11),

 employer_id integer,

 date_from date,

 date_to date,

 job_type char(1) default on null 'f' check (job_type in ('f', 'p')),

 primary key(personal_id, employer_id, date_from)

);

Constraint naming

Each constraint (primary key, foreign key, unique) can be optionally named using user-

defined naming notation. We strongly recommend using your name due to later management.

You will be clear about the meaning of the constraint, if necessary, to remove it. Otherwise,

a system-generated name will be used.

Create table employee

 (personal_id char(11),

 employer_id integer,

 date_from date,

 date_to date,

 job_type char(1) default 'f'

 check (job_type in ('f', 'p')),

 constraint emp_pk primary key (personal_id, employer_id, date_from),

 constraint emp_fk_per foreign key(personal_id)

 references person

);

Create table as Select

Special opportunity for table definition can be provided by the Create table as Select.

In that case, a new table is created based on the defined Select statement. One more time,

it is inevitable to use a column alias for each attribute formed using the function. The rest

attributes can be renamed using aliases optionally. Thus, the result of the function nvl

and subtracting operation will be named as duration.

Create table employee_deposit as

 select name, surname, personal_id, employer_id,

 nvl(date_to, sysdate) - date_from as duration

 from person join employee using(personal_id);

Lab 5 – Create, Alter and Drop commands 161

 Name Null Type

 ----------- ---- ------------

 NAME VARCHAR2(15)

 SURNAME VARCHAR2(15)

 PERSONAL_ID CHAR(11)

 EMPLOYER_ID NUMBER(38)

 DURATION NUMBER

If you add the condition to the Select statement, which will never be valid (e.g. primary

key consisting of NULL values, which can never occur), the only structure will be defined,

but the table will be empty.

Create table employee_deposit2 as

 select name, surname, personal_id, employer_id,

 nvl(date_to, sysdate) - date_from duration

 from person join employee using(personal_id)

 where personal_id is null;

Notice the constraints defined using such a command (Create table as Select).

No primary keys, not check constraints, no default values are copied. Thus, if you create

a deposit for the employee table, you can insert any character into the job_type attribute.

The following Insert statements are valid. Whereas there is no primary key definition,

the following insert statement can be executed several times without raising an error.

Create table employee_deposit3 as

 (select * from employee);

insert into employee_deposit3(personal_id, employer_id, date_from,

 date_to, job_type)

 values('000101/1234', 1, sysdate, null, 'x');

insert into employee_deposit3(personal_id, employer_id, date_from,

 date_to, job_type)

 values(null, 1, sysdate, null, 'x');

Thus, no primary key definition, no check constraint is copied. However, what about

the NULL definition? It is a bit tricky. Sometimes it is valid, sometimes invalid.

So, how it works? We will describe the principles using two simple tables (T1, T2) consisting

of only one attribute – ID defined as a primary key. In the first case, NOT NULL is specified

explicitly.

create table T1

 (id integer not null primary key);

create table T2

 (id integer primary key);

Now, create another two tables (TT1 and TT2) using Create table as Select command

based on tables T1 and T2.

create table TT1 as

 (select * from T1);

create table TT2 as

 (select * from T2);

Get the schema of the tables.

162 Lab 5 – Create, Alter and Drop commands

desc TT1

Name Null Type

---- -------- ----------

ID NOT NULL NUMBER(38)

desc TT2

Name Null Type

---- -------- ----------

ID NUMBER(38)

Try to insert NULL values into the newly defined tables. Is it possible?

insert into TT1 values(null);

Error report -

ORA-01400: cannot insert NULL into

 ("KVET_ENG"."TT1"."ID")

01400. 00000 - "cannot insert NULL into (%s)"

*Cause: An attempt was made to insert NULL into previously listed

 objects.

*Action: These objects cannot accept NULL values.

insert into TT2 values(null);

1 row inserted.

To conclude the NULL value management, it is necessary to highlight the definition

of the attribute itself. If the NOT NULL constraint of the attribute is defined explicitly, it will

be copied using Create table as Select command. Vice versa, if there is the only primary key

definition (but there is no NOT NULL explicit definition), even though the primary key must

always be NOT NULL, such constraint is not evaluated copied to the newly created table.

5.4.2 Alter command

As already partially described, each table definition can be later changed using the Alter

command. Naturally, removing the table and creating a new one would be unsuitable

(references, complex management, existing applications, etc.). Therefore, if there is

a necessity to change the structure, the following notation can be used.

Alter table command has three primary variants of usage:

• Add – extending the table definition by another attribute or constraint.

• Modify – changing the column specification.

• Drop – removing the column or constraint.

Supplementary settings – Rename.

Add option

alter table table_name {add | modify | drop} ...

Following notations show the example of the main Alter table commands.

Adding new attribute – passport number. Notice that the defined value is noted as unique:

alter table person add passport_num varchar2(20) unique;

Lab 5 – Create, Alter and Drop commands 163

Adding primary key definition. Assume that there is no primary key definition

of the table:

alter table person add primary key (personal_id);

Adding foreign key definition:

alter table employee add

 foreign key (personal_id) references person;

Modify option

The existing definition of the attribute can be changed using the Alter table ... modify

commands:

alter table table_name {add | modify | drop} ...

Changing data type: increasing the size of the attribute is no problem at all. However,

an attempt to decrease the size can raise an exception if the existing data have a bigger size

than the limit to be set (one Insert statement is executed to highlight the limitations).

alter table person modify name varchar2(50);

insert into person(personal_id, name, surname)

 values('851210/1234', 'Michael', 'Flower');

alter table person modify name varchar2(10);

Table altered.

alter table person modify name varchar2(3);

Error report -

ORA-01441: cannot decrease column length because some value is too big

01441. 00000 - "cannot decrease column length because some value

 is too big"

Changing NULL / NOT NULL definition. Also, notice the previously described limitation.

Thus, the NOT NULL definition can be added only if existing data do not contain NULL

values in the particular attribute.

alter table person modify name not null;

alter table person modify name null;

Naturally, multiple definitions based on one attribute can be grouped.

alter table person modify name varchar2(30) not null;

Removing default value. The default value is not named constraint. It is necessary

to remember that a NULL value will be set if no explicit default value for the attribute

is defined. Thus, removing defined default value actually means replacing user-defined

default value with NULL.

alter table employee modify job_type default NULL;

164 Lab 5 – Create, Alter and Drop commands

Drop option

alter table table_name {add | modify | drop} ...

Let's repeat the employee table definition with user-defined constraint names.

Using explicit constraint naming is suitable if there is a necessity to remove the defined

constraint. If a system-generated name is used, the particular value must be obtained

by querying data dictionary views (Lab 14 – Data dictionary views). Notice that the name of

the constraint must be unique.

create table employee

 (personal_id char(11),

 employer_id integer,

 date_from date,

 date_to date,

 job_type char(1) default 'f',

 constraint check_job_type check (job_type in ('f', 'p')),

 constraint emp_pk primary key(personal_id, employer_id, date_from),

 constraint emp_fk_per foreign key(personal_id)

 references person

);

Removing attribute:

alter table employee drop column date_to;

Removing primary key constraint:

alter table employee drop constraint emp_pk;

Removing foreign key constraint:

alter table employee drop constraint emp_fk_per;

Removing check constraint. Principles of removing default value have been proposed

sooner. A different situation arises if the check constraint needs to be dropped. The solution

is similar, based on using named constraint. Removing check constraint cannot be done using

Alter table ... modify command.

alter table employee drop constraint check_job_type;

Table renaming

The table can also be renamed using the Alter table command. In the following example,

the original table person is renamed to person_tab. The first part defines the syntax.

The second one is an example of usage.

alter table table_name rename to new_name;

alter table person rename to person_tab;

However, also particular attribute can be renamed by using rename column keyword.

In the following example, the attribute surname of the table person is renamed

to family_name. The first part defines the syntax. The second one is an example of usage.

alter table table_name rename column orig_name to new_name;

Lab 5 – Create, Alter and Drop commands 165

alter table person rename column surname to family_name;

5.4.3 Drop command

If the database object is not necessary to be handled later, it can be removed

from the system using the last DDL command type – Drop.

Can you drop the student table, now? If not, why? Look at the model. The answer resides

in the referential integrity definition.

drop table student;

Error report -

ORA-02449: unique/primary keys in table referenced by foreign keys

02449. 00000 - "unique/primary keys in table referenced by foreign keys"

*Cause: An attempt was made to drop a table with unique or

 primary keys referenced by foreign keys in another table.

*Action: Before performing the above operations the table, drop the

 foreign key constraints in other tables. You can see what

 constraints are referencing a table by issuing the following

 command:

 SELECT * FROM USER_CONSTRAINTS WHERE TABLE_NAME = "tabnam";

Can you drop the study_subjects table now? Yes, it is possible (but do not do it now, data

will be necessary for future work).

drop table study_subjects;

Table dropped.

Now, it is possible to drop table student (but do not do it now, data will be necessary

for future work).

drop table student;

Table dropped.

If you want to force the system to Drop table irrespective of the referential integrity,

the keyword Cascade constraints can be used. However, it is not recommended to use it

like this because it influences existing table definitions. (Do not do it now, data will be

necessary for future work).

drop table personal_data cascade constraints;

Drop table personal_data using Cascade constraints keyword would influence

the structure of student table, whereas it references personal_data table (using personal_id

attribute). Foreign key based on the personal_id attribute is removed. Thus it can hold

any value meeting other constraints.

Recycle bin

Let´s create the table person as a copy of the personal_data table. Drop newly created

table.

create table person as select * from personal_data;

drop table person;

166 Lab 5 – Create, Alter and Drop commands

Although the object (table person) has been removed from the system, it is still possible

to reverse the operation. Executing the Drop command in its pure form reflects only

the movement of the database object to another repository – recycle bin, from which it can

be resumed (if sufficient disc space is allocated for recycle bin). The original table Person

has been renamed to “BIN$SQUDkj2ohEngUMGeEopRYw==$0”.

The content of the recycle bin can be obtained using one of the following commands

(the second command will provide deeper characteristics):

show recyclebin

select * from recyclebin;

ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME

--

PERSON BIN$SQUDkj2ohEngUMGeEopRYw==$0 TABLE 2017-02-21:06:54:32

Notice that original queries can be used if the original table name is replaced by recycle

bin name. However, the table cannot be modified if it resides in recycle bin.

select name, surname, personal_id, employer_id,

 nvl(date_to, sysdate)-date_from duration

 from BIN$SQUDkj2ohEngUMGeEopRYw==$0 join employee using(personal_id)

 where employer_id = 1;

To restore the table from the recycle bin, a flashback command can be used.

flashback table person to before drop;

Optionally, such a table can be renamed using the flashback command.

flashback table person to before drop rename to person_renew;

However, notice, that not all constraints are resumed, but the data are. If you have

multiple tables in the recycle bin with the same original names, the LIFO approach is used –

the last object added to the recycle bin is taken back (renewed) as the first.

If you drop a database object using the purge keyword, it is not moved to the recycle bin

but removed totally – there is no possibility to reverse the action. Do it very carefully.

drop table employee purge;

select * from recyclebin;

no rows selected.

Recycle bin can be flushed entirely using purge recyclebin, or only a particular object can

be flushed.

purge recyclebin;

purge table table_name;

purge table person;

Notice that the cleaning process automatically removes database objects from the recycle

bin if another object must be placed there and no free space is located.

Lab 5 – Create, Alter and Drop commands 167

5.5 Index
Oracle defines an index as an optional structure associated with a table or table cluster

to speed data access. By creating an index on one or more columns of a table, you gain

the ability to retrieve a small set of randomly distributed rows from the table quickly.

During individual destructive DML statement execution, the index is built, respectively

reconstructed. It contains locators to the physical structure on the leaf layer – pointers

to the physical files – ROWIDs.

Fig. 5.4 shows the index structure.

Fig. 5.4: Index definition; source: docs.oracle.com

The purpose of the database index is similar to an index in the back of a book (it associates

a topic with a page number):

+ topic appears on a few pages

– usefulness decreases with an increase in the number of times a topic appears in a book.

An index creates an interlayer forming logical and physical independence of associated

data. By using it, I/O disk operations are reduced, consequencing in better performance.

The index can be created either implicitly (unique constraint of the attribute, primary key)

or explicitly by using the create index command. The main advantages of indexes

are following:

• improving SQL statement performance,

• enforcing uniqueness of the primary key and unique key constraints,

• reducing locking issues with parent and child tables associated via primary

and foreign keys.

Notice that for primary keys, indexes are created automatically. Vice versa, foreign keys

are not associated with the index. Instead, they only use the unique index in the referenced

table. Generally, it is useful to create explicit indexes for foreign keys due to table joining

and access reduction to the referenced table.

5.5.1 ROWID

The ROWID pseudo column is associated with each row in the database and returns

the physical address of the row. It contains all information necessary to locate a row stored

in 10 bytes):

• The data object number (1–32 bits)

• Data file in which the row resides (the first file is 1; file number is relative

to tablespace) (33–44 bits)

• Data block in the data file in which the row resides (45–64 bits)

• The position of the row in the data block (the first row is 0) (65–80 bits)

ROWID values have several important uses:

• they are the fastest way to access a single row,

• they can show you how the rows in a table are stored,

168 Lab 5 – Create, Alter and Drop commands

• they are unique identifiers for rows in a table.

Although it provides unique value within a table, do not use it as the primary key

for several reasons. First of all, it reflects the ROWID data type and requires 10 bytes.

Moreover, these values can be changed over time (e.g., by using import, export functionality,

flashback, shrinking space, moving data, etc.).

5.5.2 Index management

Access approach to the data during the retrieval is an automatic process controlled

by a database optimizer. The decision, whether the index will be used or not (and which one,

if several are defined), is based on statistics and an optional SQL profile. Therefore,

it is inevitable to have correct and actual statistics to reach (sub-)optimal performance. Notice

that by default, statistics are generated and calculated during maintenance windows

in the weak workload of the database (usually at night).

Several indexes can include a particular column. A critical component is just the index

type and order of the attributes (if the composite index is defined). These factors significantly

influence performance. Therefore, it is also necessary to take care of it during primary key

definition or when the composite index is created. Attribute order forming index is essential.

The most often used attribute in the Where clause of the query should be listed first, likewise

others. When looking at the primary key of the table study_subjects, the following importance

list is assumed (top is student_id followed by subject_id and school_year). Thus, most query

conditions should be based on student_id.

 primary key (student_id, subject_id, school_year)

Notice that incorrect order of the attributes forming index can cause significant

performance degradation.

5.5.3 Types of indexes

B+ tree index type

B+ tree index is a default type used in databases. Table row identifier (ROWID)

and associated column values are stored within index blocks in a balanced tree structure.

An essential property of such an index is the fact that it cannot manage NULL values at all.

It is formed by the root node, internal nodes, and leaf nodes consisting of ROWID pointers.

Data on the leaf layer are ordered and connected via the double-directional linked list.

Fig. 5.5 shows its architecture.

Lab 5 – Create, Alter and Drop commands 169

Fig. 5.5: B+ tree index

This is the syntax and example:

Create index ind_name on table_name (atr1 [, atr2, ...]);

Create index ind_ns on personal_data(surname, name);

The reverse B+ tree index approach is a specific type of B+ tree. It stores index entries

with their bytes reversed. The problem of standard B+ tree index is just consecutive values

– sequences and necessity to index block reconstruction – balancing (B+ tree structure

is balanced) when data are inserted or updated. Thus, the reverse B+ tree index requires

smaller server sources and provides performance benefits (for destructive DML).

But, on the other hand, data on the leaf layer are not ordered, which can degrade performance

if the condition is based on a range (non-equality).

The following figure shows the structure of the reverse B+ tree index.

170 Lab 5 – Create, Alter and Drop commands

Fig. 5.6: Reverse key B+ tree index

Tab. 5.3: Original and indexed value

Original value Indexed value

12345 54321

3489 9843

FRI IRF

This is the syntax and example:

Create index ind_name on table_name (atr1 [, atr2, ...]) reverse;

Create index ind_st on student(student_id, st_group) reverse;

Another B+ tree index type is based on functions. It does not cover direct column values,

but it is created based on SQL functions or expressions. Notice that if you use the user-

defined function, it must be deterministic.

This is the syntax and example:

Create index ind_name

 on table_name (func_name(param_list) [, ...]);

Create index ind_func_st

 on personal_data(func_gender(personal_id), name, surname);

Create or replace function Func_gender(p_id char)

 return char deterministic is

begin

 case

 when substr(p_id, 3,1) in (5,6) then return 'female';

 when substr(p_id,3,1) in (0,1) then return 'male';

 else return 'unknown';

 end case;

end func_gender;

/

Lab 5 – Create, Alter and Drop commands 171

Multiple functions can form a function-based index. There can be a combination of direct

attributes and functions, as well. For function definition, reference chapter Lab 9 –

Procedures, functions and packages.

Bitmap index

A bitmap index is primarily suited for data warehouses and decision support systems –

many rows, low-value variability. It is based on star schema – central fact table and number

of related dimension tables. The aim is to monitor values in multiple dimensions over time.

Fig. 5.7 is based on the billing process and invoicing. Billing_fact as a core table,

dimension tables are formed by Billing_Date_dimension, Time_dimension,

Geography_dimension, and Product_dimension.

Fig. 5.7: Bitmap index

Guidelines for using bitmap index:

• It should generally be used on low cardinality columns.

• It manages NULL values automatically.

• It is suitable for many queries that join or filter on indexed columns.

• It is suitable for no (or very low amount) destructive DML activity.

Drop the bitmap indexes before updating tables and recreate them after the DML

operations on tables are complete.

For OLTP, bitmap indexes are not appropriate (many DML operations and row locking)

=> significant performance degradation.

YYYYMMDD_DT
BILL_DT_ID

Billing_Date_dimension
BILL_DT_ID

BILL_YEAR
BILL_MONTH
BILL_DAY

Time_dimension Billing_fact Geography_dimension
YYYYMMDD_DT PROD_ID GEO_ID
YEAR GEO_ID COUNTRY
MONTH REGION
DAY STATE

QTR BILL_UNIT CITY
BILL_AMT

Product_dimension
PROD_ID

PROD_NM
PROD_DESC
UNIT_TYPE

PK PK

PK

PK

PK

PK
PK
PK

172 Lab 5 – Create, Alter and Drop commands

This is the syntax and example (assuming, that personal_data table contains also gender

attribute. If not so, a particular value can be obtained by using the function):

Create bitmap index ind_name

 on table_name (atr1 [, atr2, ...]);

Create bitmap index ind_b_pd on personal_data(gender);

Index organized table

Index organized table is physically stored like Oracle B+ tree index – all of the data

are stored within the index. Therefore, it does not cover physical ROWIDs at all.

There are physical differences in comparison with the standard heap organized table

supported by the B+ tree index. On the other hand, access is the same as any other Oracle

table.

It is typically defined for:

• thin tables (without too many columns),

• multiple column primary key.

Notice that an index-organized table is created based on the primary key, which must

be present. Otherwise, an error will be raised:

ORA-25175: no PRIMARY KEY constraint found

The syntax of the index-organized table is based on adding the organization index

keyword to the end of the table definition.

Create table personal_data

(

 personal_id Char(11) NOT NULL,

 name Varchar2(15),

 surname Varchar2(15),

 street Varchar2(20),

 town Varchar2(50),

 zip Char(5),

 nationality Char(2),

 primary key (personal_id)

) organization index;

5.5.4 Access methods

Access path selection is one of the essential parts of the optimizer decision. It significantly

influences the principles and performance of data retrieval.

Generally, two basic types of access paths are defined:

• Full Table Scans (Table access full) – all blocks (rows) of the table are scanned.

It is mainly used when:

o a large portion of the table´s data is required,

o the accessed table is small, consisting of few blocks,

o no suitable index is defined.

• Index Access Paths – index is used for accessing particular data.

Selecting the index access method is the task of the optimizer, and its decision is based

on the index definition itself and statistics, defined query, etc. The hints can partially

influence it.

Lab 5 – Create, Alter and Drop commands 173

Several categories can be distinguished – index unique scan, index range scan, index skip

scan, index full scan, fast full index scan, etc. Their characteristics, properties, and limitations

can be found in [48] [49].

5.6 Practice

1. Create table T1 with a primary key ID. Then, add another string attribute (varchar2

/ char data type) and at least one more attribute (Integer data type).

2. Create table T2 with a composite primary key containing attribute ID and valid_from

(data type Date). Be sure that the data type of the attribute ID is the same

as the attribute ID in the T1 table.

3. Create a relationship between tables T1 and T2 (based on ID). The cardinality

of the relationship should be 1:N. Will it be identifying or non-identifying? Why?

How can you influence it?

4. Add another attribute, “note” to the T2 table (choose the appropriate data type).

5. Create table T3. The primary key of the table should be ID with data type integer.

Ensure that only even values can be inserted.

alter table T3 modify id check(mod(id,2)=0);

6. Create M:N relationship between T1 and T3.

Fig. 5.8: Model for practice

7. Drop all created tables (T1, T2, T3, associated_entity) respecting the correct

operation order.

8. Create another table T1 with different attributes and drop it consequently.

9. Renew the tables from the recycle bin. Check the renewed constraints. What about

table T1? Is it possible to restore the older one?

10. Create an index based on the name and surname of the person (table personal_data).

11. Try to create an index based on the personal_id of the person (table personal_data).

Is it possible? Why not?

12. Try to create an index based on student_id, subject_id, school_year (in that order)

of the study_subjects table. Is it possible? Notice that the primary key

of the study_subjects table is following:

 primary key (student_id, subject_id, school_year)

13. Try to create an index based on subject_id, student_id, school_year (in that order)

of the study_subjects table. Is it possible? Be aware the order of attributes

is significant.

Lab 6 – Data loading 175

Lab 6 – Data loading

Data loading is essential during the data layer migration or by moving a huge data set to

the database. Three techniques are proposed and discussed. SQL Loader is a general solution

mostly referencing other systems by managing data in the textual form input (TXT, CSV files,

etc.). Oracle database import and export can be done on the client or server layer. The Oracle

directory mapping object operates server file system accessibility. Although server processes

are now more preferred due to the performance, we also mention the principles of client site

data management.

In this lab, we will drive the reader through the process of data loading to the cloud

environment. It requires access to the object storage and data containers (buckets).

6.1 Introduction

 Data loading is a complex process of copying and loading data sets from the external data

source – file or application to the database. Individual database systems provide various

technologies for data loading, from generating Insert statements up to binary copies

of the data tuples. For this subject, we will describe three techniques. The first one is based

on the SQL Loader tool. Using this approach, several data file structures like CSV

can be used, which is very useful when imported from third-party systems. The second and

third approaches are based on import functionality and data pump. Imp is an older approach,

which is subsequently replaced by newer technology. The Imp approach is based on the client

site, which generates data to be imported as conventional Insert statements. Oracle 10g

introduced a data pump facility, which significantly extends the possibilities and speed

of the processing, whereas such solution is server site oriented. Thus, these two solutions

(imp and data pump import) have entirely different architecture and cannot be combined.

For this lab, it is inevitable to follow all instructions. Correct data loading is necessary

for subsequent database activities and queries. In this lab, the theoretical introduction is

directly linked to the examples and activities you perform.

6.2 SQL Loader
 SQL Loader allows you to insert data into the database using multiple format types.

Associated control file delimits the structure. Thanks to that, it provides a sophisticated tool

to convert and insert data from other systems. It is a user process, which inserts data using

conventional way (insert statements are generated with regards to the UNDO and REDO data

logs) or direct path (in this case, the buffer cache is bypassed, and data are loaded directly

to the data files). No UNDO is generated. Moreover, it is possible to disable also REDO

logging for this operation). Thus, the Direct path is far faster than the conventional method,

but some negatives must be mentioned. Referential integrity control mechanisms must

be disabled or dropped. Whereas the operation is not standard Insert statement execution,

particular Insert triggers do not fire. Moreover, the processed table is locked against DML

statements executed by other sessions. Vice versa, primary key and also NULL value

constraints are managed consistently.

 We have prepared a library data model with data filled to perform data loading operations

using SQL Loader. So, follow the instructions:

176 Lab 6 – Data loading

1. Download the file archive from your USB media, respectively server

(SQL_load_library.zip). It consists of the data necessary to be loaded

into the database. It contains three file types, which can be differentiated

by the extensions:

*.sql SQL file - DDL statements for creating database schema

 (tables, relationships, ...),

*.unl data files with the values to be loaded into the database,

*.ctl control files containing instructions, how to load UNL data

 to the database (format, delimitation, etc.)

2. Create data model schema objects using the SQL file (copy the file to the server

and launch its execution – file library.sql). In SQL developer, such file can be

directly opened, and script launched.

start library.sql

3. Create missing control files for correct data loading (person.ctl, author.ctl). Be aware

of the schema of the table, but also appropriate attribute order in particular UNL file.

The easiest way to creating a missing control file is based on copying another existing

file. First, it is necessary to modify the name of the control file, the table name

to which we would like to load appropriate data, and a list of attributes (columns).

The order of columns in the control file must reflect data in the UNL file, not the order

in the schema definition. In our case, the order in the schema and the data UNL file

is the same, but it generally does not need to be like that.

For correct Date attribute loading, it is necessary to set a suitable input data format.

In our case, the order is month/day/year.

ACCEPTANCE_DATE DATE 'DD.MM.YYYY'

Thus, essential data files necessary for successful loading are the following. Notice

that the crossed file names are missing and must be created by you.

Tab. 6.1: SQL Loader files

Table_name Data file Control file

K_person Person.unl Person.ctl

K_reader Reader.unl Reader.ctl

K_book Book.unl Book.ctl

K_title Title.unl Title.ctl

K_rent_books Rent_books.unl Rent_books.ctl

K_authors_of_book Authors_of_book.unl Authors_of_book.ctl

K_author Author.unl Author.ctl

The Control file structure looks like the following example. The first part deals

with data location (INFILE ‘book.unl’) and table, to which data should be loaded

(INTO TABLE book). The individual attribute value must be delimited in some way.

In our case, the delimiter is a pipe (|) – FIELDS TERMINATED BY '|'. Afterward,

the data structure definition is proposed – order of the data represented in *.UNL file.

Do not forget to define a format for Date data type attributes.

Lab 6 – Data loading 177

LOAD DATA

INFILE 'book.unl'

INTO TABLE book

FIELDS TERMINATED BY '|'

(

 BOOK_ID,

 TITLE_ID,

 PRICE,

 REGISTRATION_DATE DATE 'MM/DD/YYYY',

 DISPOSAL_DATE DATE 'MM/DD/YYYY',

 LOST_DATE DATE 'MM/DD/YYYY'

)

DISPOSAL_DATE Data inside the UNL file looks like this (for table book):

279|17|9|09/23/2002|08/02/2014|12/29/2014

280|42|2|02/06/2012|08/17/2014|10/19/2014

281|81|3|12/13/2001|06/15/2014|12/17/2014

4. Load the data into tables using defined control files and data files. Do not forget

to use the correct order of operations (table reflecting another table primary key

must be loaded later, whereas foreign key value must refer to existing data) –

the operation order is the same as Insert statement order. The loading process

can be done using the following command (Linux).

$ sqlldr login@connect_string control='control_file_name.ctl'

 We will launch the SQL Loader tool from the Instant client, so the steps

are following:

• Start the SQL*Plus (SQL Client) application and connect to the libraryDB

cloud database.

• Provide the credentials (admin and connect identifier or connect string,

respectively).

• After successful login, the first letters of the row should be “SQL>”.

• As stated, SQL Loader is an external tool. Invoking it from the SQL*Plus

environment requires you to call operating system activity, so the “host”

command will enclose the original statement:

host sqlldr login@connect_string control='control_file_name.ctl'

178 Lab 6 – Data loading

Fig. 6.1: SQL Instant client – SQL Loader tool

5. Check the correctness immediately after the loading. Results shown on the screen

do not reflect the number of inserted data, but only the number of rows read from

the *.UNL data file. If there is any problem, solve it before continuing (errors are

mainly based on integrity constraints violation).

Appropriate information about the execution process can be found after starting control

file execution. The file has the same name as the control file but contains the extension

“*.log”, e.g.:

person.ctl --> person.log

 The log file will consist of error information about the refused rows to be loaded (refused

rows are directly stored in the file with BAD extension) and also information about a number

of successfully read (from the file) and loaded (into database) rows.

Example of the LOG file:

SQL*Loader: Release 21.0.0.0.0 - Production on Mon Mar 21 09:54:28 2022

Version 21.3.0.0.0

Copyright (c) 1982, 2021, Oracle and/or its affiliates. All rights reserved.

Control File: person.ctl

Data File: person.unl

Bad File: person.bad

Discard File: none specified

 (Allow all discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 50

Bind array: 64 rows, maximum of 256000 bytes

Continuation: none specified

Lab 6 – Data loading 179

Path used: Conventional

Table K_PERSON, loaded from every logical record.

Insert option in effect for this table: INSERT

Column Name Position Len Term Encl Datatype

NAME FIRST * | CHARACTER

SURNAME NEXT * | CHARACTER

PERSON_ID NEXT * | CHARACTER

STREET NEXT * | CHARACTER

ZIP NEXT * | CHARACTER

TOWN NEXT * | CHARACTER

DISTRICT NEXT * | CHARACTER

REGION NEXT * | CHARACTER

STATE NEXT * | CHARACTER

Table K_PERSON:

 100 Rows successfully loaded.

 0 Rows not loaded due to data errors.

 0 Rows not loaded because all WHEN clauses were failed.

 0 Rows not loaded because all fields were null.

Space allocated for bind array: 148608 bytes(64 rows)

Read buffer bytes: 1048576

Total logical records skipped: 0

Total logical records read: 100

Total logical records rejected: 0

Total logical records discarded: 0

Run began on Ne Sep 17 18:26:39 2017

Run ended on Ne Sep 17 18:26:42 2017

Elapsed time was: 00:00:02.50

CPU time was: 00:00:00.03

The principle of creating UNL file is expressed by the following example written in SQL.

Moreover, explicit line feed can be added using chr(10).

set echo off newpage 0 space 0 pagesize 0 feed off

spool author.unl

 select trim(name) || '|' ||

 trim(surname) || '|' ||

 trim(author_id) || '|' ||

 to_char(registration_date,'MM/DD/YYYY') || '|' ||

 trim(note) || '|' from author;

spool off

SQL Data Loader can be invoked from the SQL Developer client (desktop) environment,

as well. It is provided by the wizard, so the steps are a bit easier and maybe more user-

friendly.

Connect to the cloud instance of the library database. Expand the list of tables in the left

panel. By right-clicking on the particular table name, select the “Import Data...” option.

180 Lab 6 – Data loading

Fig. 6.2: SQL Developer – Import data (SQL Loader variant) (1)

Fig. 6.3: SQL Developer – Import data (SQL Loader variant) (2)

Navigation wizard will be launched consisting of five steps. The first step defines data

source and structure. Select the source file and file format. In our case, data are not enclosed

by the special characters. Individual values are delimited by the pipe (|), whereby the rule

is that one line in the source file corresponds to one inserted record.

Lab 6 – Data loading 181

Fig. 6.4: SQL Developer – Import data wizard (1)

The next part consists of the definition of the Insert type – either Insert, Insert script,

and SQL Loader. We will use the SQL Loader Utility option with no limit.

Fig. 6.5: SQL Developer – Import data wizard (2)

In the third phase, column mapping must be done. The original data source does not have

headers, so columns are named sequentially. Mapping is in the right part. Combine individual

source columns to the table attributes. The order must correspond to the order of columns

182 Lab 6 – Data loading

in the source file. In our case, it reflects name, surname, author_id, registration_date,

and note.

Fig. 6.6: Data source file

Always take emphasis on the Date or Timestamp data types. It is necessary to specify

the element format to ensure proper loading. In our case, the Date is delimited

by the MM/DD/YYYY format.

Fig. 6.7: Table column property definition

Optionally, you can specify default values, which will be used, if no data value is provided

(step 3).

Fig. 6.8: SQL Developer – Import data wizard (3)

Navigate the wizard to the fourth step by clicking on the Next button. There, output files

are specified. As already stated, the BAD file consists of the source file lines, which were

Lab 6 – Data loading 183

not loaded. Log file consists of the process monitoring and result description, list of raised

exceptions is there.

Fig. 6.9: SQL Developer – Import data wizard (4)

Finally, the summary is provided, and the whole process can be launched:

Fig. 6.10: SQL Developer – Import data wizard (5)

After launching the process, wait a bit for loading to be finished. In the repository,

a log file and a bad file are created if any issue occurs. In our case, no problem should

be identified.

184 Lab 6 – Data loading

Like the SQL Developer desktop version, SQL loader can be launched in the SQL

Developer Web using the Data loading tab. The process and wizard are analogous. We will,

therefore, skip the step-by-step definition.

Fig. 6.11: SQL Developer Web – Import data (1)

Fig. 6.12: SQL Developer Web – Import data (2)

6.3 EXP / IMP utility
1. If all previous operations ended successfully, backup the table structures and data

using the exp client. It should be executed in the OS environment. The command

consists of three parts – credentials to the database (password will be requested

by the system. If you want also to write password explicitly, use the second

command) followed by the list of tables to be exported (keyword tables) and file,

to which data should be exported. Notice that the table names are delimited

by the space or by commas.

$ exp login@connect_string tables='list_of_tables' file='file_name.exp'

$ exp login/password@connect_string

 tables='k_person k_reader' file='library.exp'

If invoked from the SQL Instant client environment, operating system tool is launched

by using host prefix.

Lab 6 – Data loading 185

host exp login@connect_string

 tables='k_person k_reader' file='library.exp'

2. If the export process is done successfully, then drop all the exported tables. Notice

that the correct order must be used (based on referential integrity) – in principles,

reverse to loading.

drop table table_name;

3. Then, use the prepared export and load data back into the database. When requested,

use your credentials.

$ imp login@connect_string file='filename.exp'

In case the export file has not been created by you, but by another user, you must

code it explicitly by adding the fromuser clause.

$ imp login@connect_string fromuser=old_login file='filename.exp'

Standard users can import data only to their schemas. However, the user with DBA

privileges can import data to any user schema using the following command. Clause

touser defines the schema name to which data should be loaded. (If you use

the localhost database, the SYSTEM user has DBA privileges, so you can try it).

$ imp login@connect_string fromuser=old_login touser=new_login

 file='filename.exp'

Whereas it is invoked from the Instant client environment, the operating system tool

is launched using the host prefix.

host imp login@connect_string file='filename='library.exp'

6.4 Creating import/export using dump files

Data pump (DP) import/export has been introduced in version Oracle 10g. At the same

time, the original approach (imp, exp) has been marked as deprecated. Although future

versions will not support old export functionality, the import will still be available for

compatibility with older versions. Compared to a previously described solution, the Data

pump is a server process, not a user process, and is managed by Data Pump Master Process

and Workers. It can also generate SQL files.

Note: Please distinguish between the operating system directory and the Oracle

directory in the next section. The whole process is multi-step. Operate carefully to reach

the results.

Login expression in the next section expresses your real login to Oracle cloud and should

be replaced in your code.

6.4.1 Import using data pump

As already stated, data pump functionality is, in comparison with exp or imp

functionality, executed on the server-side. It is, therefore, necessary to copy the export file to

the cloud storage and make it available for the database and management processes. We will

186 Lab 6 – Data loading

need Object storage and Credentials to access the objects by the database and to allow you

to manage the import process using the locally installed SQL developer tool.

Access to a cloud account using SQL developer and Wallet has already been shown.

Object storage

Oracle Cloud Object Storage is high-performance cloud storage – reliable, resistant, and

cost-efficient data repository. Object storage repository can cover an unlimited number of

files with any structure. Always Free version is limited to 20 GB of the capacity. Oracle

Cloud Object Storage data can be easily, safely, and securely managed and retrieved

by the internet or by using a cloud platform. It is not associated with a specific compute

instance. The core element is the region itself.

Object storage can be accessed from the left panel of the Cloud management by selecting

the Storage option.

Fig. 6.13: Object storage

Object storage consists of the buckets holding data files themselves.

Bucket

The bucket is a logical container for storing data files. Each bucket is created

and associated with the compartment delimited by the policies limiting the actions, which

can be done there. We will use the general term “object” as a file of any data structure

and format for cloud storage. The object is defined by its representation and metadata.

Each object is stored within the bucket.

Lab 6 – Data loading 187

Fig. 6.14: Bucket creation (1)

To create a new bucket, the following parameters are defined:

• Bucket name.

• Bucket storage tier – standard or archive.

• Object auto-tiering option (enabled or disabled) allowing the system to move

infrequently accessed objects to the less expensive storage repository (if the paid

option is used).

• Object versioning option (enabled or disabled) storing all versions of the data object

in case of creating and uploading new object version or by deleting and overwriting

object, respectively.

• Emit object events – automation of the state changes (for the object of the whole

bucket) using pre-defined events (like user notifications) – CRUD (create, read,

update, delete) operations

• Encryption type using either Oracle managed keys or customer-managed keys.

• Tags – metadata, by which the resources can be categorized and tracked inside

the tenancy. Tags consist of pair – key and value.

Create a new bucket for the dump file repository. Name it bucket_library, whereas it will

hold relevant import, export, and log files for data pump operations. Let the bucket type set

as standard. Object changes do not need to be monitored or versioned. Let encryption be done

and managed by the Oracle.

Fig. 6.15: Bucket creation (2)

188 Lab 6 – Data loading

Press the Create button and wait for the system to create the bucket. After the creation,

a new bucket will be part of the list.

Fig. 6.16: Created bucket

By clicking on the bucket name, its definition is present, followed by the parameters,

availability, and list of objects stored there. For now, the bucket does not hold any data.

Fig. 6.17: Created bucket characteristics

Now, it is time to upload the exported dump file to the bucket (export file is available

in the file repository of the book – expdp_library.dmp). Click on the Upload button under

the Object definition.

Fig. 6.18: Object upload into the bucket

Object Prefix Name is optional and will be treated as the left-most part of the original

object name extension. The original name is self-explanatory so that the input field can

remain empty.

After upload operation, a particular file is available in the Object list of the Bucket,

meaning that the file is (can be) accessible via the internet or various interfaces.

Lab 6 – Data loading 189

Fig. 6.19: Uploaded file

At this stage, the file has been uploaded into Cloud Object storage. However, it is

not accessible from the database. It is even not accessible through the local SQL Developer.

The solution is to create Credentials by invoking the Create_credentials procedure

of the Dbms_cloud package.

Create_credentials procedure

Dbms_credentials is a package supervising the authentication process. It provides

an interface for authenticating and impersonating EXTPROC callout functions and external

or remote jobs and file watchers from the Scheduler.

Credentials are database objects holding username and password pairs. They are created

by invoking the Create_credentials procedure of the defined package. The syntax

of the method consists of seven parameters. The first three ones are mandatory. The others

have default clauses.

DBMS_CREDENTIAL.CREATE_CREDENTIAL (

 credential_name IN VARCHAR2,

 username IN VARCHAR2,

 password IN VARCHAR2,

 database_role IN VARCHAR2 DEFAULT NULL

 windows_domain IN VARCHAR2 DEFAULT NULL,

 comments IN VARCHAR2 DEFAULT NULL,

 enabled IN BOOLEAN DEFAULT TRUE);

Credential_name is a unique name used for reference. It cannot be undefined (NULL) and

is automatically converted to the uppercase unless specified in the double quotes (“).

Username is a definition of the connection to the cloud database – tenancy. Password

is provided by the authentication token. Database_role parameter delimits the administration

privileges (SYSDBA, SYSDG, SYSADMIN, or SYSBACKUP). By default, the connection

is made via standard user privileges delimited by the NULL value. Enabled parameter

defaults to True, limiting the availability of the Credentials.

The following code expresses the required parts. Credential_name is a unique, username

represents tenancy name and password is delimited by the authentication token

(do not execute the code now, it is just an example of the structure):

BEGIN

DBMS_CLOUD.CREATE_CREDENTIAL(

 credential_name => 'CREDENTIAL_NAME',

 username => 'tenancy_name',

 password => 'authentication_token');

END;

/

For the creation, we will need the credential name (use any you want, but without

the spaces). Note that it must be unique among the tenancy. Tenancy name has been specified

190 Lab 6 – Data loading

and provided to you during the registration process to the cloud. Its value can be obtained

by clicking on the profile inside the cloud.

Fig. 6.20: Getting tenancy name (1)

Fig. 6.21: Getting tenancy name (2)

In my case, the tenancy name is “kvetmichal”.

Authentication token

To define new Credentials, it is necessary to obtain an Authentication token. There are,

in principle, two ways, how to reach them. The first solution is based on clicking the Profile

and selecting username (in my case: oracleidentitycloudservice/kvet***@*******.com):

Fig. 6.22: Profile

Lab 6 – Data loading 191

The second solution is based on accessing it using the left navigation panel menu: Identity

& Security => Users.

Fig. 6.23: User identity

By clicking on the user, available resources are listed in the left part of the screen.

Fig. 6.24: Authentication token (1)

Select Auth Tokens and Generate token.

192 Lab 6 – Data loading

Fig. 6.25: Authentication token (2)

Provide some explanatory description.

Fig. 6.26: Authentication token (3)

Copy the generated token to the clipboard. Note that it is impossible to get it afterward.

It would be necessary to remove the token and create a new one.

Fig. 6.27: Authentication token (4)

Now, you have all the required values to create Credentials, so let´s return to the defined

syntax. Connect to the cloud instance as the administrator user (admin) via SQL Developer

desktop, web, or Instant client. Execute the following code. The process of getting a username

and authentication tokens has already been specified.

Lab 6 – Data loading 193

BEGIN

DBMS_CLOUD.CREATE_CREDENTIAL(

 credential_name => 'ATP_CREDENTIAL_MK',

 username => 'kvetmichal',

 password => '*******'); -- replace the value with the generated value

END;

/

The result provided by the SQL Developer Web:

Fig. 6.28: Create credentials – result

Check the created Credentials by retrieving data from the all_credentials data dictionary:

SELECT credential_name, username

 FROM all_credentials

 ORDER BY credential_name;

Fig. 6.29: List of created credentials

All prerequisites for the data pump operations are passed at this moment. Before we start,

create a new user account to cover the data import. Grant him at least connect, resource,

and tablespace limit privileges (it can be done by using admin user in the SQL Developer

or Instant client).

create user library_user identified by *******;

grant connect, resource, unlimited tablespace to library_user;

Replace the “*******” with the actual password (at least 8 characters with upper

and lower case and numeric value).

In the next part, import using the data dump (impdp) will be managed in the SQL

Developer desktop. Navigate to the View => DBA.

194 Lab 6 – Data loading

Fig. 6.30: Enabling DBA menu (1)

Fig. 6.31: Enabling DBA menu (2)

Specify a new DBA connection by clicking on the green plus symbol () in the DBA

group:

Fig. 6.32: DBA connection specification

The connection is delimited by the admin account to the cloud database. Let´s expand it.

It consists of several administration tools and performance monitoring. Navigate to the Data

Pump section. Right-click on the Data Pump. There are two options – wizard

for the Data Pump Import and Export.

Lab 6 – Data loading 195

Fig. 6.33: Data Pump import

Data Pump Import Wizard

Impdp Wizard consists of the six steps to be treated. All activity is done on the server-

side; a client is just treated as the supervisor process.

Namely, specify the Job Name by which the process can be monitored. Type of objects

to be imported – either the structure itself or extended by the data loading into the tables.

We will load the table structure (DDL) and the data, so the option “Data and DDL”

will be selected. The type of import can deal with various granularity levels. We will use

table precision reflection. The input source demands are credential definition and link to the

data file. Credentials have been created using in the previous step by using the

Create_credentials procedure:

BEGIN

DBMS_CLOUD.CREATE_CREDENTIAL(

 credential_name => 'ATP_CREDENTIAL_MK',

 username => 'kvetmichal',

 password => '*******'); -- replace the value with the generated value

END;

/

196 Lab 6 – Data loading

Fig. 6.34: Data Pump import wizard (1)

We still need the path to the import file, which is stored in the Object storage of the cloud.

It is done by the pre-authenticated request defined in the Oracle Cloud console.

Return to the cloud, navigate to the Object storage, select the Bucket and relevant file

inside (scroll down to the Objects section).

Fig. 6.35: Pre-authenticated request definition

Lab 6 – Data loading 197

In the Resources list of the left part of the screen – Pre-Authenticated Requests

are present. Click there and create a new element. Specify the name and target – either

the whole bucket or the object itself. Specify the access privileges and expiration, as well.

Fig. 6.36: Create a pre-authenticated request for the whole bucket

Copy the provided URL address. Note that it will not be visible later.

Fig. 6.37: Pre-authenticated request result

We have created a pre-authentication request for the whole bucket.

Similarly, the pre-authentication request can be created just for the individual object

(file), as well. In that case, it is done either by selecting Object type in the definition.

The name of the object inside the bucket needs to be specified explicitly, as well as access

rules (read, write privileges).

198 Lab 6 – Data loading

Fig. 6.38: Pre-authenticated request for the specific object (1)

A more straightforward solution can be reached by defining pre-authentication request

directly for the file in the bucket object list. Navigate to the Object storage, select the relevant

bucket by which the objects inside will be listed.

Fig. 6.39: Pre-authenticated request for the specific object (2)

Click on the three dots at the end of the file property list and select Create Pre-

authenticated Request.

Lab 6 – Data loading 199

Fig. 6.40: Pre-authenticated request for the specific object (3)

In that case, the Object name will be filled automatically.

Fig. 6.41: Pre-authenticated request for the specific object (4)

For now, read privilege is suitable.

Copy the link to the clipboard and return to the import wizard inside the SQL Developer

and use the copied link to the object (not the whole bucket) to the File Name position.

200 Lab 6 – Data loading

Fig. 6.42: Data Pump import wizard (1)

Navigate to the Next and wait to get the list of the available tables inside the export dump

file. Select the set of the tables to be imported. In my case, I will import all of them.

Fig. 6.43: Data Pump import wizard (2)

Lab 6 – Data loading 201

As stated, we have created one extra user as the import destination. His username is then

specified in the third step – Re-Map Schemas. Source username will be obtained

automatically, whereas the export file consists of only one user data. The destination user has

been created. In my case, the username is “library_user”. Tablespaces can remain original.

However, if necessary, they can be remapped similarly.

Fig. 6.44: Data Pump import wizard (3)

202 Lab 6 – Data loading

Step 4 defines the parameters of the import process – number of threads, log file

destination, action on the table, if a particular table already exists, etc. For the definition,

the Logging section is the most relevant.

Fig. 6.45: Data Pump import wizard (4)

The name of the Oracle directory mapper is DATA_PUMP_DIR, which is always created

for these data pump activities. The name of the log file is suitable, as well. However,

it is required. So, name it whatever you want.

Fig. 6.46: Log output specification

Logging import and export activities (via data pump) is inevitable to identify the issues

during the process, to get the information about the results, status, etc.

Optionally, you can define a job by the time when the action will start. Otherwise, it will

be executed immediately.

Lab 6 – Data loading 203

Fig. 6.47: Data Pump import wizard (5)

Proceed to the summary, check it, and start the process.

Fig. 6.48: Data Pump import wizard (6)

204 Lab 6 – Data loading

Now, the process is to be started.

Fig. 6.49: Setting data import job

Execution can be monitored using the SQL Developer, as well.

Fig. 6.50: Data Pump import execution monitoring

The import process has been done. IMPDP, as a data pump import process, has generated

a log file describing the import process. But where to find it?

The log file is not accessible directly. It is available, located on the cloud by using

the Oracle directory specified during the 4th step of the import process

(DATA_PUMP_DIR). It is not part of the bucket, so the user cannot get it directly. Looking

at the import process description of the SQL Developer desktop, the defined file name is

specified:

OPENING: MK_EXP_KNIZNICA_DIR: expdp_kniznica.log

Fig. 6.51: Log file location

To get the log file accessible, it must be copied to the bucket of the Object storage. It can

be ensured through the procedure Put_object of the DBMS_CLOUD package.

We will ensure this through a procedure DBMS_CLOUD.PUT_OBJECT. It copies a file

from Autonomous Database to the Cloud Object Storage. The maximum allowed file size is

50 GB.

Syntax of the Put_object procedure:

DBMS_CLOUD.PUT_OBJECT (

 credential_name IN VARCHAR2,

 object_uri IN VARCHAR2,

 directory_name IN VARCHAR2,

 file_name IN VARCHAR2);

• Credential_name has already been created, covered by a definition of the username

and password provided by the authentication request procedure to the Object

Storage.

• Object_uri represents the URL link to the bucket or object itself.

Lab 6 – Data loading 205

• Directory_name is an existing Oracle directory present in the Autonomous

Database.

• File_name – the name of the file located and accessible via a defined Oracle

directory (directory_name specification). It represents the log file of the data pump

import, and its name was specified either during the import definition in the wizard

or is obtainable using SQL Developer (as already stated).

Let's define the Put_object parameters and execute it. Let´s take emphasis on the

Object_uri parameter value.

We have created two pre-authenticated requests, one for the whole bucket, and the second

is associated with the object itself. Let´s evaluate their structures. N references namespace,

B covers the bucket, and O expresses the object.

Bucket

https://objectstorage.eu-frankfurt-1.oraclecloud.com

 /p/O8mTAKHDvT3qypjL1azUDoy1yt-KOemYLcQdl9DhcpMiRS6BzM68vSd5EAi3OCd7

/n/frrt85axbzme

/b/bucket_library

/o/

Object

https://objectstorage.eu-frankfurt-1.oraclecloud.com

/p/j4Ub7Rtqeb9ElqRaVdPsQooOPJ8XqUpAim-eiXsMhUPN2ziSDv1JAhcmsm7Zv5Gq

/n/frrt85axbzme

/b/bucket_library

/o/expdp_library.dmp

The URL address always consists of the cloud address, reflection to the Object storage,

Bucket, and optionally object (file) name.

So, if you use the whole bucket as the object_uri parameter, it must be extended

by the name of the destination file:

https://objectstorage.eu-frankfurt-1.oraclecloud.com

/p/O8mTAKHDvT3qypjL1azUDoy1yt-KOemYLcQdl9DhcpMiRS6BzM68vSd5EAi3OCd7

/n/frrt85axbzme

/b/bucket_library

/o/IMPORT_DP_library.LOG

The definition of the Put_object procedure can look like following (replace the values

with your defined structures and links):

BEGIN

 DBMS_CLOUD.PUT_OBJECT(

 credential_name => 'ATP_CREDENTIAL_MK',

 object_uri => 'https://objectstorage.eu-frankfurt-

 1.oraclecloud.com/p/O8mTAKHDvT3qypjL1azUDoy1yt-

 KOemYLcQdl9DhcpMiRS6BzM68vSd5EAi3OCd7

 /n/frrt85axbzme/b/bucket_library

 /o/IMPORT_DP_library.LOG',

 directory_name => 'DATA_PUMP_DIR',

 file_name => 'IMPORT-10_31_28.LOG');

END;

/

206 Lab 6 – Data loading

Look at the Cloud repository, navigate to the Object storage and particular bucket.

Now the file is visible there.

Fig. 6.52: Access to the log via Object storage

You can download it locally:

Fig. 6.53: Access to the log via Object storage – download option

The log consists of the summary of the activity, as well as the error description. The first

part deals with the total number of imported rows to each table.

Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA

Processing object type SCHEMA_EXPORT/TABLE/TABLE

Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA

. . imported "KNIZNICA_ENG"."K_RENT_BOOKS" 40.46 KB 1000 rows

. . imported "KNIZNICA_ENG"."K_BOOK" 21.75 KB 500 rows

. . imported "KNIZNICA_ENG"."K_PERSON" 15.58 KB 100 rows

. . imported "KNIZNICA_ENG"."K_TITLE" 12.38 KB 100 rows

. . imported "KNIZNICA_ENG"."K_READER" 11.01 KB 150 rows

. . imported "KNIZNICA_ENG"."K_AUTHOR" 8.062 KB 50 rows

. . imported "KNIZNICA_ENG"."K_AUTHORS_OF_BOOK" 6.593 KB 50 rows

Processing object type SCHEMA_EXPORT/TABLE/GRANT/OWNER_GRANT/OBJECT_GRANT

Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT

Processing object type

SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/INDEX_STATISTICS

Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT

Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS

Processing object type SCHEMA_EXPORT/STATISTICS/MARKER

Job "KNIZNICA_ENG"."SYS_IMPORT_FULL_01" successfully completed at Mon Mar

21 14:21:11 2022 elapsed 0 00:00:35

Fig. 6.54: Log file content

Note that if any error occurs, it is necessary to analyze and evaluate it. In my case, there

was a problem with the statistics. However, it can be ignored – the system will calculate new

statistics on demand.

Lab 6 – Data loading 207

ORA-39083: Object type INDEX_STATISTICS failed to create with error:

 ORA-01403: no data found

 ORA-01403: no data found

Fig. 6.55: Errors inside the log

6.4.2 ExpDp

ExpDp is a new, more flexible, and faster server-side alternative to the “exp”. ExpDp

functionality can be executed on various levels – either for the whole database, schema

(user), or specific tables.

The process of the export is analogous to the impdp already described. In the DBA

section, expand the connection and use the option Data Pump Export Wizard of the Data

Pump element.

Fig. 6.56: Data Pump Export Wizard

Note, that for explanatory reasons, I have created one extra user called “student_user”

consisting of the student model by using older imp version (launched in Instant client):

host imp student_user@studentdb_high

 fromuser=kvet1 touser=student_user

 file=exp_student.exp

Data pump export (ExpDp) is delimited by the eight-stage process. First of all, the result

set structure is defined, consisting of either the data structure definitions (DDL) or data

that can be present in the output, as well.

Exported Data Pump granularity can be the whole database, tablespace, schema, or table.

In this example, we will export all tables of the created user student_user:

208 Lab 6 – Data loading

Fig. 6.57: Data Pump Export – step 2

In the third step, a list of usernames is present, which can be filtered out. Select

the student_user and move it to the right part (Selected source schemas).

Fig. 6.58: Data Pump Export – step 3 (1)

Lab 6 – Data loading 209

Fig. 6.59: Data Pump Export – step 3 (2)

In the next phase, filters can be optionally applied. We will do not use any filtering option.

Fig. 6.60: Data Pump Export – step 4

210 Lab 6 – Data loading

Now, click on the Lookup button, by which the defined schema will be analyzed, list

of tables will be loaded.

Fig. 6.61: Data Pump Export – step 5 (1)

Copy tables, which should be exported to the above list. I will export all the tables.

Fig. 6.62: Data Pump Export – step 5 (2)

Lab 6 – Data loading 211

Then, the options are defined. I recommend forcing the system to create a log file covering

the data pump export process. It is maintained by the DATA_PUMP_DIR Oracle directory.

Specify the name of the log file created.

Fig. 6.63: Data Pump Export – step 6

In the Output Files step, result file names and other options influencing the compression,

copy processes, etc., are specified. Output files will be part of the DATA_PUMP_DIR Oracle

directory. Various parameters and flags can enhance the names for simplicity. For example,

let´s name the file – EXPDP_LIBRARY.DMP. Remove the check on the Append Timestamp

to Dump (if checked, the file names will be enhanced by the timepoint of the execution).

212 Lab 6 – Data loading

Fig. 6.64: Data Pump Export – step 7

Finally, name the job and optionally specify the description as well. Job time planning

can be done in this phase, or the export process can be launched immediately.

Fig. 6.65: Data Pump Export – step 8

Proceed with the summary, check the correctness and finish the definition by launching

(or planning) the expdp process.

Lab 6 – Data loading 213

Fig. 6.66: Data Pump Export – step 9

Note that the generated script to be executed in the PL/SQL tab is visible.

Fig. 6.67: PL/SQL script

The whole process can be monitored via SQL Developer. In the following figure, you can

see that the specified log file has been created.

214 Lab 6 – Data loading

Fig. 6.68: Log file specification (ExpDp)

After the execution, let´s make the output files visible and accessible via the Oracle

Object Storage bucket. The principle is analogous, as already described in the ImpDp section.

Execute the Put_object procedure of the DBMS_CLOUD package:

• Credential_name is a valid credential definition that has already been created.

Object_uri is a created URL link to the object or the whole bucket extended

by the destination file name.

• Directory_name represents an Oracle cloud directory, by which the original file is

accessible. In our case, it is DATA_PUMP_DIR.

• The last parameter delimits the file name to be loaded into the Object Storage

bucket. Its name has been specified during the data pump definition

(EXPDP_STUDENT.DMP) – step 7.

BEGIN

 DBMS_CLOUD.PUT_OBJECT(

 credential_name => 'ATP_CREDENTIAL_MK',

 object_uri => 'https://objectstorage.eu-frankfurt-

 1.oraclecloud.com

 /p/O8mTAKHDvT3qypjL1azUDoy1yt-

 KOemYLcQdl9DhcpMiRS6BzM68vSd5EAi3OCd7

 /n/frrt85axbzme

 /b/bucket_library

 /o/DP_STUDENT.DMP',

 directory_name => 'DATA_PUMP_DIR',

 file_name => 'EXPDP_STUDENT.DMP');

END;

/

Lab 6 – Data loading 215

Similarly, the log file can be put to the bucket:

BEGIN

 DBMS_CLOUD.PUT_OBJECT(

 credential_name => 'ATP_CREDENTIAL_MK',

 object_uri => 'https://objectstorage.eu-frankfurt-

 1.oraclecloud.com

 /p/O8mTAKHDvT3qypjL1azUDoy1yt-

 KOemYLcQdl9DhcpMiRS6BzM68vSd5EAi3OCd7

 /n/frrt85axbzme

 /b/bucket_library

 /o/EXPDP_student.LOG',

 directory_name => 'DATA_PUMP_DIR',

 file_name => 'EXPDP_student.LOG');

END;

/

In the Oracle Cloud environment, a particular dump file and a log are accessible. You can

download them locally.

Fig. 6.69: File in the bucket

Content of the log:

Processing "ADMIN"."EXPDP_STUDENT_18_3_2021":

Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA

. estimated "STUDENT_USER"."OS_UDAJE" 4.683 KB

. estimated "STUDENT_USER"."PREDMET" 4.683 KB

. estimated "STUDENT_USER"."PREDMET_BOD" 4.683 KB

. estimated "STUDENT_USER"."STUDENT" 4.683 KB

. estimated "STUDENT_USER"."ST_ODBORY" 4.683 KB

. estimated "STUDENT_USER"."ST_PROGRAM" 4.683 KB

. estimated "STUDENT_USER"."UCITEL" 4.683 KB

. estimated "STUDENT_USER"."ZAP_PREDMETY" 4.683 KB

Processing object type SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/INDEX_STATISTICS

Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS

Processing object type SCHEMA_EXPORT/STATISTICS/MARKER

Processing object type SCHEMA_EXPORT/USER

Processing object type SCHEMA_EXPORT/SYSTEM_GRANT

Processing object type SCHEMA_EXPORT/ROLE_GRANT

Processing object type SCHEMA_EXPORT/DEFAULT_ROLE

Processing object type SCHEMA_EXPORT/PASSWORD_HISTORY

Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA

Processing object type SCHEMA_EXPORT/TABLE/TABLE

Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT

Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT

Processing object type SCHEMA_EXPORT/POST_SCHEMA/PROCACT_SCHEMA

. . exported: "STUDENT_USER"."OS_UDAJE" 10.07 KB 35

216 Lab 6 – Data loading

. . exported: "STUDENT_USER"."PREDMET" 12.10 KB 218

. . exported: "STUDENT_USER"."PREDMET_BOD" 16.69 KB 372

. . exported: "STUDENT_USER"."STUDENT" 10.35 KB 37

. . exported: "STUDENT_USER"."ST_ODBORY" 6.773 KB 9

. . exported: "STUDENT_USER"."ST_PROGRAM" 22.39 KB 637

. . exported: "STUDENT_USER"."UCITEL" 7.25 KB 32

. . exported: "STUDENT_USER"."ZAP_PREDMETY" 25.93 KB 484

ORA-39173: Encrypted data has been stored unencrypted in dump file set

Master table "ADMIN"."EXPDP_STUDENT_18_3_2021" successfully loaded/unloaded

**

Dump file set for ADMIN.EXPDP_STUDENT_18_3_2021 is:

 /u03/dbfs/BD8E12C78924D962E0534111000A0D6E/data/dpdump/EXPDP_STUDENT.DMP

Job "ADMIN"."EXPDP_STUDENT_18_3_2021" successfully completed at Wed Mar 23 06:26:45

2022 elapsed 0 00:01:26

6.4.3 Useful notes

You can export all the data of defined schema or multiple schemas without the necessity

to define individual tables separately using the clause schemas:

schemas=KVET1,KVETTT

It is also possible to define objects which will be part of import or export using clause

include or exclude. Be aware when using these clauses, you refer to data dictionary views.

Therefore, the names must be uppercase:

exclude=TABLE:\"IN(\'FEES\',\FEES_HISTORY\')\"

include=TABLE:\"LIKE \'K%\'\"

expdp db_kniznica@orcl

 INCLUDE=TABLE:\”LIKE \'K%\'\”

 directory=mk_exp_kniznica_dir

 dumpfile=expdp_kniznica.dmp

 logfile=expdp_kniznica.log

Lab 7 – Managing privileges 217

Lab 7 – Managing privileges

This lab focuses on the Data Control Language (DCL) – Grant and Revoke. Privileges

can be made to individual users, or roles can be created and associated with multiple users.

Thus, instead of granting privileges to individual users sequentially, a defined role can be

more useful for the maintenance.

When dealing with the Grant command, it is inevitable to distinguish between system and

object privileges in case of allowing the grantee to inherit privileges.

7.1 Introduction
Access control mechanisms to the database provide a significant security layer between

users and objects, ensuring defense mechanisms. DBS systems highlight the strict control

mechanisms provided by at least the privilege principle. Thus, any operation, which

is not inevitable for a particular user, should be forbidden. DBS Oracle goes even further -

the user does not have any privilege by default. Any user cannot even log on to the database

without the grant.

Each database object is delimited by its creator (owner), who may assign appropriate

privileges to individual users for object usage and manipulation. Privileges are managed

using Grant and Revoke commands.

7.2 Grant command

This command allows you to assign privileges to the user or group, according to which

a particular user will be able to manipulate with database objects. Generally, we can

distinguish two Grant command types based on the handled object type.

7.2.1 System privilege management

System (database) privilege management allows users to access system resources. The

syntax is like following:

grant database_privilege to { public | list_of_users }

 [with admin option];

There are three categories of this command reflecting the usage and access opportunities.

As has been already mentioned, no privileges are automatically delegated. Thus, the first type

covers the Connect privilege, which allows the user to connect to the database, but he can

define no object. Resource privilege covers a group of database object definition

opportunities – create table, create trigger, create sequence, create procedure, and some

other ones, which are, however, out of the topic of this lab. To get the whole list of privileges

associated with Resource privilege can be obtained using the following query. It uses data

dictionary view dba_sys_privs (principles of data dictionary views are described in Lab 14 –

Data dictionary views). The condition reflects the name of the privilege group. Notice that

the value must be uppercase.

218 Lab 7 – Managing privileges

select privilege

 from dba_sys_privs

 where grantee = 'RESOURCE':

The last category of database privilege management is just Dba allowing the user

to administer the database.

grant connect to kvet_eng;

grant resource to kvet_eng;

grant dba to kvet_eng;

The optional clause of the defined command is “with admin option”. It allows the user

to grant received privileges to other users.

Let's have the following example. Create two users (U1, U2). One of them will have

Connect privilege granted. Then, connect as a created user with connect privilege (U1)

and try to add the same privilege (Connect) to user U2. As you can see, it is not possible

because Connect privilege has not been granted with the “with admin option” clause.

The following code shows the sequence of commands to demonstrate the principles.

The last Grant command will raise the exception.

-- login as system user

create user U1 identified by password1;

grant connect to U1;

create user U2 identified by password2;

 -- login as created user U1

grant connect to U2;

Error report -

ORA-01932: ADMIN option not granted for role 'CONNECT'

01932. 00000 - "ADMIN option not granted for role '%s'"

*Cause: The operation requires the admin option on the role.

*Action: Obtain the grant option and re-try.

However, if user U1 has system privilege Connect – with admin option definition – it will

be allowed to add a privilege to another user (U2) successfully. User U1 can also grant

privilege to user U2 by using with admin option clause.

-- login as system user

grant connect to U1 WITH ADMIN OPTION;

 -- login as created user U1

grant connect to U2;

Grant succeeded.

Naturally, several privileges to multiple users can be granted using one statement. Values

are delimited by the comma (,). In this case, all privileges in the whole defined set of users

are either with the admin option clause or not for any of them.

grant connect, resource to U1, U2;

grant connect, resource to U1, U2 with admin option;

Suppose it is necessary to divide the users based on particular clauses. In that case,

separate commands must be used (user U1 will get the privilege to grant it to other users,

but user U2 does not have such privilege).

grant resource to U1 with admin option;

Lab 7 – Managing privileges 219

grant resource to U2;

Notice that there is also a significant amount of other system privileges, which can be

used. Principles and descriptions can be found in database system documentation (for DBS

Oracle, use https://docs.oracle.com/en/database/).

7.2.2 Object privilege management

Object privilege command definition is always associated with the particular object

by its name. The syntax is following:

grant object_privilege to { public | list_of users }

 [with grant option];

Notice the significant difference between object and system privilege in the syntax

definition layer. In this case, for object privilege, the “with grant option” clause can be used.

Generally, we distinguish four table privileges for accessing and managing table data – Insert,

Update, Delete and Select. Insert and Update privilege can be extended by attribute list,

to which the privilege applies (privilege to the Select statement can also be defined

only for some attributes; however, it is done using views (see Lab 12 – Views)). Grants

represented by the attribute granularity are shown colored.

grant insert on personal_data to matiasko;

grant insert(personal_id, name, surname) on personal_data to krsak;

grant update on personal_data to matiasko;

grant update(date_to) on personal_data to krsak;

grant delete on personal_data to matiasko;

grant select on personal_data to matiasko;

However, if all mentioned privileges should be granted to the particular user, a special

placeholder – “all” – can also be used. Thus, the last two commands are equivalent.

grant insert, update, delete, select on personal_data to matiasko;

grant all on personal_data to matiasko;

In the previous example, user “krsak” can insert into a personal_data table. However,

only attributes personal_id, name, and surname (or their combinations) can be handled.

Any attempt to insert another attribute value will end unsuccessfully by raising the following

exception:

Error report -

ORA-01031: insufficient privileges

01031. 00000 - "insufficient privileges"

*Cause: An attempt was made to perform a database operation without

 the necessary privileges.

*Action: Ask your database administrator or designated security

 administrator to grant you the necessary privileges

A similar problem will occur if the user attempts to manage non-privileged table objects.

https://docs.oracle.com/en/database/

220 Lab 7 – Managing privileges

Management of method privilege is provided using Execute privilege. It ensures

that the granted users (or groups) can launch such a method. DBS defines three method types

– procedure, function, and package (reference Lab 9 – Procedures, functions and packages).

Adding execute privilege to user “matiasko” is shown in the following commands (the first

command reflects procedure, the second deals with function, and the last manages package).

Highlighted value expresses the name of the object. Notice that the execute privilege cannot

be set to the individual method of the package.

grant execute on procedure1 to matiasko;

grant execute on function1 to matiasko;

grant execute on package1 to matiasko with grant option;

By using the “with grant option” keyword, defined object privilege can be further

delegated to other users. However, there is a significant difference in the functionality

in comparison with the “with admin option” keyword for system (database) privilege,

which will be described during the Revoke command definition, whereas it significantly

influences mentioned operation and results.

7.3 Accessing another schema object

DML (Insert, Update, Delete, Select) statements can access not only owned tables

but also structures, which were created by another user, who granted privileges for access

and manipulation. The manipulation principles described sooner are the same. However,

when dealing with objects, the owner schema must be declared explicitly. Therefore,

by accessing another user object, the particular object name is preceded by the schema name.

Let´s execute the following statements by user “kvet”. In the first case, he accesses his

table, whereas the second statement deals with a table in the “kmat” schema. Sure, user “kvet”

must have granted privileges to the “kmat” table. Otherwise, an exception will be raised.

select name, surname

 from personal_data; -- own table

select name, surname

 from kmat.personal_data; -- table created (owned) by kmat

execute proc_man -- own procedure

execute kmat.proc_man -- procedure owned by kmat

7.4 Revoke command

This command allows the user to remove privilege from the particular user or group.

Let´s consider the following syntax. Privilege in the syntax can be either database (system)

privilege or object privilege (which also requires object naming used after the “on” keyword).

revoke privilege from { public | list_of users };

Also note the examples:

• Removing database privilege example:

revoke connect from matiasko;

Lab 7 – Managing privileges 221

revoke connect, resource from krsak;

revoke dba from kvet;

• Removing object privilege example:

revoke insert on personal_data from matiasko;

revoke select on personal_data from public;

The particular category forms the “public” role. If you grant any privilege to a public role,

it will be automatically given to each user in the database space. Thus, such activity

will be able to be performed by anyone. Therefore remember, that public role is implicitly

granted to anyone and cannot be removed. However, it is strictly recommended to pay

significant attention to granting privileges and monitoring accessible sources, data,

and objects of the particular user.

Principles and limitations are described in the following example. Let´s have two users

– kvet and matiasko. User kvet owns the table personal_data and grants the Select privilege

to matiasko. Afterward, he also grants such privilege to all users (using public role).

What will happen if the user kvet consecutively removes the Select privilege from the user

matiasko? Will he even be allowed to query the personal_data table owned by the kvet user

successfully?

Sure, he will be able. The reason is that user kvet is always part of the public role,

so the privilege is still active. Grant commands are performed by the user kvet. Select

statements are executed by the matiasko user.

-- KVET

grant select on personal_data to matiasko;

grant select on personal_data to public;

-- MATIASKO

select * from kvet.personal_data;

 PERSONAL_ID NAME SURNAME STREET TOWN ZIP NATIONALITY

1 841106/3456 Michael Pearce Kamenna 27 Banska Bystrica 97401 SK

2 840312/7845 Jack Smith Zelena 9
Nove Mesto nad

Vahom
91501 SK

3 860907/1259 John Young
Slnecne

namestie
Komarno 94501 SK

4 850130/3695 Carol Pearce Stred 49/7 Povazska Bystrica 01701 SK

-- KVET

revoke select on personal_data from matiasko;

-- MATIASKO

select * from kvet.personal_data;

 PERSONAL_ID NAME SURNAME STREET TOWN ZIP NATIONALITY

1 841106/3456 Michael Pearce Kamenna 27 Banska Bystrica 97401 SK

2 840312/7845 Jack Smith Zelena 9
Nove Mesto nad

Vahom
91501 SK

3 860907/1259 John Young
Slnecne

namestie
Komarno 94501 SK

4 850130/3695 Carol Pearce Stred 49/7 Povazska Bystrica 01701 SK

222 Lab 7 – Managing privileges

As already mentioned, there is a significant difference in management between objects

and system privileges, and it is currently the suitable place to explain the characteristics

deeper. In principle, revoking object privilege cascade, system privilege remains. Thus,

if some user has the privilege to grant it to another user, at the moment such privilege

is removed from him, it is automatically removed from all users who had such privilege

granted by the particular user. It applies to object privileges.

Let´s have the following example. User Kvet, who owns the personal_data table and has

administrator privileges, will create two users (Peter, Jacob). He will grant the user Peter

privilege to connect and the privilege to query his personal_data table (Select privilege).

Moreover, such privileges can be granted later. Notice that these privileges must be granted

using two commands, whereas one of them is database privilege associated

with the “with admin option” clause, the second one is object privilege and is associated with

the “with grant option” clause. Then, Peter connects to the database and grants

his privileges to Jacob. Thus, Jacob can connect to the database and query the personal_data

table residing in the Kvet schema. (Auxiliary question – can users Peter or Jacob create their

objects? Why not?). Now, remove these privileges by user kvet from Peter user.

What will happen? Naturally, Peter will not be able to connect to the database

and consequently will not be able to query any table. However, what about the user Jacob?

Ascertain the solution using the following example – object privilege is removed (he will

not be able to query personal_data table later), but database privilege will remain valid

(he will be able to connect to the database).

The following code must be evaluated sequentially – the first column characterizes user

Kvet, the second column deals with created user Peter and the last one is user Jacob.

Be aware, if Jacob user queries personal_data of the Kvet user, raised exception

does not explicitly describe the reason – Jacob will get information, that particular table

does not exist. However, that is not true. He only does not have sufficient privileges to access

it.

Tab. 7.1: Session management

Kvet Peter Jacob

create user peter

 identified by

 pass_peter;

create user jacob

 identified by

pass_jacob;

grant connect to

Peter

 with admin

option;

grant select

 on personal_data

 to Peter

 with grant

option;

 -- Peter successfully

connects to the database

select *

 from

kvet.personal_data;

 grant connect to Jacob;

Lab 7 – Managing privileges 223

Kvet Peter Jacob

grant select

 on kvet.personal_data

 to Jacob;

 -- Jacob successfully

connects to the

database

select *

 from

kvet.personal_data;

revoke connect

 from Peter;

revoke select

 on personal_data

 from Peter;

-- Peter cannot connect

later at all.

An error was encountered

performing the requested

operation:

ORA-01045: user Peter

lacks CREATE SESSION

privilege; logon denied

 -- Jacob successfully

connects to the database

select *

 from

kvet.personal_data;

ORA-00942: table or view

does not exist

00942. 00000 - "table or

view does not exist"

7.5 Grouping privileges to roles

Individual database systems allow the user to define roles (in DBS Postgres, its name

is a group, however, principles are the same) to cover multiple privileges. These roles

are consequently granted to users, so multiple privileges are not necessary to be granted

individually. One of the examples of the role that has been already mentioned before – role

resource –is system role, so it cannot be edited. The particular category covers public role,

which is implicitly granted to each user (such role cannot be revoked).

The following code structure shows the syntax of the role definition. Then, the role

is associated with the privileges using Grant and Revoke commands. In logical meaning

in command, the group would behave the same as the user. Afterward, defined roles

are granted to the users.

Role definition syntax:

create role role_name;

Setting privileges to role syntax:

grant privilege_name to role_name;

224 Lab 7 – Managing privileges

Associating user with the defined role syntax:

grant role_name to user_name;

This is an example of group definition, privilege management, and user group association.

Role definition syntax:

create role manager_role;

Setting privileges to role syntax:

grant select, insert, update(name, surname, street, town, zip)

 on personal_data

 to manager_role;

grant execute on function get_user_results to manager_role;

Setting privileges to role syntax:

grant manager_role to novakova, sicova;

7.6 Practice

Create user_test and user_test2 accounts and grant them connect privileges.

1. Grant privilege to query your table personal_data to defined user user_test.

2. Can user user_test access your defined table? Can he change any value?

3. Can user user_test2 access your defined table? Can he change any value?

4. Extend the previous privilege definition so that the user_test can grant the defined

privilege to other users.

5. Grant the Select privilege on the personal_data table to all users by user_test

account.

6. Can user user_test2 access your defined table?

7. Remove the Select privilege from the user_test2 account (by your personal account).

8. Can user user_test2 access your defined table?

9. Remove the Select privilege on personal_data from the user_test user

(by your personal account).

10. Can user user_test access your defined table?

11. Can user user_test2 access your defined table?

12. Remove defined user accounts user_test2, user_test2 if created explicitly by you.

Lab 8 – Advanced techniques of data retrieval 225

Lab 8 – Advanced techniques of data retrieval

The focus of the Lab 2 is made by the Select, From, Where and Order by clauses of the

Select statement. The discussion was done on the Inner Join limiting the output to the rows,

which can be interconnected using multiple tables.

In this lab, we emphasize the aggregate functions by creating groups for which the

calculation is done. Conditions related to the aggregations cannot be placed in the Where

clause, whereas the groups have not been created yet. Instead, the Having clause is used,

whereas it is evaluated at the end of the processing.

The second part is related to the extended versions of the Join operation and relational

algebra operations Union, Difference, and set Intersection.

Finally, there is a practical discussion related to the self-relationship. In this chapter, it

is evaluated from the data retrieval point of view.

8.1 Introduction
The Select statement is used to get data from one or more database tables, which can

also be encapsulated by views. In most systems, the Select statement is the most often used

data manipulation language (DML) command returning the result set consisting of zero

or more rows. The main advantage of SQL is the non-procedurality of the statements. Thus,

the query specifies only the result set format but does not specify how to get desired data,

how to join them, or how to calculate results. This lab extends the capabilities

of the previously defined lab – Select statements (Lab 2 – Basics of data retrieval) and

highlights the possibilities of aggregate functions, extended methods for table joining with

regards to an outer join, recursive relationships, and joining the same table several times in

one Select statement.

8.2 Aggregate functions
Aggregate functions return a single result row based on groups of rows rather than

on single rows. For this course, we will deal only with five main aggregate functions

(min, max, sum, avg, count), using which you can understand principles and functionality.

An aggregate function can be part of the Select, Having, and Order by clause. You can never

locate aggregate function to the Where clause because the order of the execution processes

conditions in the Where clause sooner than creating groups using Group by clause. Therefore,

the system would not be able to evaluate it. If the condition is based on aggregate function,

it must be processed after creating groups. Thus, it must be in the Having clause (place only

conditions based on aggregate functions in the Having clause, standard conditions should be

found in the Where clause. Putting common conditions on the Having clause is also possible,

but ineffective).

Aggregate functions are commonly associated with the Group by clause, which defines

the groups for which the aggregate function should be evaluated. Thus, everything

in the Select statement clause except the aggregate function MUST be noticed in the Group

by clause, but there can also be something more. As we can see in the following examples,

it is often necessary to add other attributes (usually primary key) to prevent incorrect data

groups processing (e.g., two namesakes cannot be processed as one person).

226 Lab 8 – Advanced techniques of data retrieval

If only one value for the whole group created by the Select statement is returned,

no Group by clause is necessary. This is because the result set consists of only one numerical

value.

The following query gets the minimal value of the student_id attribute. One value

is returned: 500422.

select min(student_id) from student;

To get the maximal value of the student_id, the principle is similar, but the max aggregate

function will be used.

select max(student_id) from student;

The following query gets the total number of credits (ects) of one student

(student_id=501103), which he can obtain if all registered subjects are passed successfully.

Aggregate function sum is used.

select sum(ects) from study_subjects

 where student_id=501103;

To get an average value for the processed attributes or function results, an aggregate

function avg can be used. This case returns the average number of credits (ects) for the subject

in the school year 2007 (the output value would be 4.8).

select avg(ects) from subject_year

 where school_year=2007;

Count aggregate function in its pure way expresses the cardinality of the table – number

of rows stored.

select count(*) from student;

The result expresses the total number of rows in the student table.

The expression inside the aggregate function can be attribute value, function result or can

be substituted by the “*”, which reflects the whole row. Thus, the same results will be

obtained if you replace the symbol “*” with the primary key or any NOT NULL attribute.

select count(student_id) from student;

select count(personal_id) from student;

However, if you put an attribute with NULL values inside the aggregate function, you

will get a lower output value, whereas aggregate functions ignore NULL values.

Let´s consider the two following Select statements. The first one will return a value of 484.

The second one will return 295.

select count(*) from study_subjects;

select count(result) from study_subjects;

So, 189 (484-295) rows in the table have a NULL value assigned for the result attribute.

select count(*) - count(result) from study_subjects;

Lab 8 – Advanced techniques of data retrieval 227

As you can see, we can combine multiple aggregate functions in one statement, but they

MUST be based on the same grouping set (they bind themselves to the same Group by clause,

if defined).

Getting a number of the unique attribute values can be done by adding Distinct keyword:

select count(distinct class) from student;

The query's result is 4. This is because the attribute class consists of values 0, 1, 2, and 3.

However, be aware NULL values are not processed at all. So, if you replace the value

for class 2 with NULL values, the same query will return only value 3.

update student

 set class = null

 where class = 2;

select count(distinct class) from student;

If you want to evaluate also NULL values, they must be replaced before processing,

like this:

select count(distinct nvl(class, -1)) from student;

Notice also the difference between the following notations:

• Count(distinct A) – it removes duplicates for values of attribute A.

• Distinct count(A) – the result set will contain unique values of the function

count(A) results.

8.3 Fundamentals for Group By clause management
If the output of the Select statement is only one value, Group by clause will not be present

in the statement. Vice versa, if the aggregate function should be calculated for specific

groups, they must be defined in the Group by clause.

If you state some attributes in the Select clause (not important whether direct or by using

the function), they MUST be part of the Group by clause. Often, it is necessary to add other

attributes to prevent incorrect data groups processing (e.g., two namesakes cannot

be processed as one person).

Let´s have the table “flight” identified by id_flight and plane table attribute – capacity.

Let´s also have the table consisting of sold flight numbers (flight_ticket). If you want to get

actual free capacity for each id_flight, the Select clause will be following:

select id_flight, capacity – count(id_flight_ticket) ...

However, what about the Group by clause? Remember, at least each attribute in the Select

clause except aggregate function must be present in the Group by set, thus remember,

that also capacity MUST be there:

group by id_flight, capacity

228 Lab 8 – Advanced techniques of data retrieval

8.4 Working with aggregate function Count and Group By

clause
Let's have the following structure (table study_subjects) with these data (assume that

the particular table consists of only these values). Consider the Select statements as well

as provided results.

Tab. 8.1: Data table and result set

Student_id Subject_id School_year Result Teacher_id

501319 BL14 2005 C EX001

501319 BE13 2005 D KMT01

501319 BL11 2005 EX001

501319 BL11 2006 C EX001

501201 IM16 2002 C KMM01

501201 II08 2003 KDS01

501345 BA12 2002 C KI003

501345 IS04 2003 D KI001

550123 II07 2001 KI001

550123 IA07 2001 C KMM02

550123 II17 2002 D KI002

1. A total number of rows in the table:

select count(*) from study_subjects;

COUNT(*)

11

2. A total number of registered subjects for each student (the group is created for each

student, thus, student identifier (student_id) must be placed in Group by section).

Moreover, it is also placed in the Select clause:

select student_id, count(*)

 from study_subjects

 group by student_id;

STUDENT_ID COUNT(*)

501319 4

501201 2

502345 2

550123 3

Lab 8 – Advanced techniques of data retrieval 229

Tab. 8.2: Data table and result set

Student_id Subject_id School_year Result Teacher_id

501319 BL14 2005 C EX001

501319 BE13 2005 D KMT01

501319 BL11 2005 EX001

501319 BL11 2006 C EX001

501201 IM16 2002 C KMM01

501201 II08 2003 KDS01

501345 BA12 2002 C KI003

501345 IS04 2003 D KI001

550123 II07 2001 KI001

550123 IA07 2001 C KMM02

550123 II17 2002 D KI002

3. A total number of registered subjects for each student and school year (the group is

created based on student_id attribute as well as school_year):

select student_id, school_year, count(*)

 from study_subjects

 group by student_id, school_year;

STUDENT_ID SCHOOL_YEAR COUNT(*)

501319 2005 3

501319 2006 1

501201 2002 1

501201 2003 1

501345 2002 1

201345 2003 1

550123 2001 2

550123 2002 1

Tab. 8.3: Data table and result set

Student_id Subject_id School_year Result Teacher_id

501319 BL14 2005 C EX001

501319 BE13 2005 D KMT01

501319 BL11 2005 EX001

501319 BL11 2006 C EX001

501201 IM16 2002 C KMM01

501201 II08 2003 KDS01

501345 BA12 2002 C KI003

501345 IS04 2003 D KI001

550123 II07 2001 KI001

550123 IA07 2001 C KMM02

550123 II17 2002 D KI002

230 Lab 8 – Advanced techniques of data retrieval

A number of students assigned to the teacher:

select teacher_id, count(*)

 from study_subjects

 group by teacher_id;

TEACHER_ID COUNT(*)

EX001 3

KDS01 1

KI001 2

KI002 1

KI003 1

KMT01 1

KMM01 1

KMM02 1

Tab. 8.4: Data table and result set

Student_id Subject_id School_year Result Teacher_id

501319 BL14 2005 C EX001

501319 BL11 2005 EX001

501319 BL11 2006 C EX001

501201 II08 2003 D KDS01

501345 IS04 2003 C KI001

550123 II07 2001 KI001

550123 II17 2002 D KI002

501345 BA12 2002 C KI003

501319 BE13 2005 D KMT01

501201 IM16 2002 C KMM01

550123 IA07 2001 C KMM02

If you omit the attribute teacher_id in the Select clause, the results will be the same,

but the output set will not contain teacher_id information. Instead, only the numbers

will be listed.

4. Dealing with NULL values – aggregate functions ignore NULL values. Therefore,

be careful that the provided result is correct, just as you expected

a) To eliminate NULL values – as you can see from the following table, rows

which do not have assigned real value for result attribute are ignored.

select student_id, count(result)

 from study_results

 group by student_id;

STUDENT_ID COUNT(RESULT)

501319 3

501201 1

502345 2

550123 2

Lab 8 – Advanced techniques of data retrieval 231

Tab. 8.5: Data table and result set

Student_id Subject_id School_year Result Teacher_id

501319 BL14 2005 C EX001

501319 BE13 2005 D KMT01

501319 BL11 2005 EX001

501319 BL11 2006 C EX001

501201 IM16 2002 C KMM01

501201 II08 2003 KDS01

501345 BA12 2002 C KI003

501345 IS04 2003 D KI001

550123 II07 2001 KI001

550123 IA07 2001 C KMM02

550123 II17 2002 D KI002

b) Eliminating NULL values and get a number of unique results

(rows with the NULL value assigned to result attribute are ignored. Moreover,

only unique values are evaluated. Thus, the result set will consist of a number

of unique NOT NULL exam results for each student):

select student_id, count(DISTINCT result)

 from study_results

 group by student_id;

STUDENT_ID COUNT(DISTINCT RESULT)

501319 2

501201 1

502345 2

550123 2

Tab. 8.6: Data table and result set

Student_id Subject_id School_year Result Teacher_id

501319 BL14 2005 C EX001

501319 BE13 2005 D KMT01

501319 BL11 2005 EX001

501319 BL11 2006 C EX001

501201 IM16 2002 C KMM01

501201 II08 2003 KDS01

501345 BA12 2002 C KI003

501345 IS04 2003 D KI001

550123 II07 2001 KI001

550123 IA07 2001 C KMM02

550123 II17 2002 D KI002

Be aware incorrect Group by definition can lead to incorrect results:

select name, surname, count(*)

 from personal_data JOIN student using(personal_id)

 group by name, surname;

232 Lab 8 – Advanced techniques of data retrieval

NAME SURNAME COUNT(*)

Mark Bailey 2

Milan Clarke 2

Jack Clever 1

If two people have the same first name and surname, they will be considered one person,

which is absolutely incorrect. Therefore, an additional attribute for distinguishing and

separating these people should be added. In our case, we add there primary key – personal_id.

select name, surname, count(*)

 from personal_data JOIN student using(personal_id)

 group by name, surname, personal_id;

NAME SURNAME COUNT(*)

Mark Bailey 2

Milan Clarke 1

Milan Clarke 1

Jack Clever 1

Let´s have two following Select statements (based on the course student model). Is there

any difference? How does it influence the results?

select name, surname, count(*)

 from personal_data JOIN student using(personal_id)

 JOIN study_subjects using(student_id)

 group by name, surname, personal_id;

NAME SURNAME COUNT(*)

Wiliam Whittel 9

Mark Bailey 6

Jack Robinson 8

select name, surname, count(*)

 from personal_data JOIN student using(personal_id)

 JOIN study_subjects using(student_id)

 group by name, surname, student_id;

NAME SURNAME COUNT(*)

Mark Bailey 4

Mark Bailey 2

Jack Robinson 3

Jack Robinson 1

Jack Robinson 4

Wiliam Whittel 5

Wiliam Whittel 4

The answer is clear. The first statement gets the number of registered subjects

for a particular person. In contrast, the second statement gets the number of registered

subjects for a specific student. In principle, results are different because each person can be

present as a student multiple times (e.g., bachelor, master study).

Lab 8 – Advanced techniques of data retrieval 233

8.5 Having clause
If you want to process data based on aggregate function condition, such expression must

be placed in the Having clause, never put in the Where clause, whereas it is impossible.

The evaluation starts with the Where clause and joining operations. Afterward, the groups

are created. Thus, the aggregate function cannot be evaluated in the Where clause, whereas

groups have not been created yet.

Let's have the study_subjects table. We want to list the number of students registered

for the particular subject during the year 2010. However, the result set should contain those

subjects which have at least 5 registered students. Aggregate function result is therefore

limited to minimal value 5:

select subject_id, count(*)

 from study_subjects

 where school_year = 2010

 group by subject_id

 having count(*) >= 5;

As already mentioned, the aggregate function cannot be placed in the Where clause.

It would lead to the ORA-00934 exception.

select subject_id, count(*)

 from study_subjects

 where school_year = 2010

 and count(*) >= 5

 group by subject_id;

ORA-00934: group function is not allowed here

The following example shows how to list students based on their study results.

The aim is to get the students with the worst results. So, first of all, calculate the study results

for each student and sort the result set based on results.

select student_id,

 avg(decode(result,'A',1,'B',1.5,'C',2,'D',2.5,'E',3,4))

 from study_subjects

 group by student_id

 order by 2 desc,1;

The first proposed solution is based on using the Rownum function. For each row returned

by the query, pseudo column Rownum indicates the order. The first selected row has a value

of 1. The second has 2, and so on. Sorting the result set based on study results and limiting

the Rownum value to 1 will list only one student, although several students have the same

results.

select * from(

 select student_id,

 avg(decode(result, A',1,'B',1.5,'C',2,'D',2.5,'E',3,4))

 from study_subjects

 group by student_id

 order by 2 desc, 1

)

 where rownum = 1;

234 Lab 8 – Advanced techniques of data retrieval

The correct solution is based on using Set operations and subquery. The calculated study

result grade average is compared to the highest (worst) values obtained by the subquery.

The solution can look like this.

select student_id,

 avg(decode(result,'A',1,'B',1.5,'C',2,'D',2.5,'E',3,4))

 from study_subjects

 group by student_id

 having avg(decode(result,'A',1,'B',1.5,'C',2,'D',2.5,'E',3,4)) in

 (select max(avg(decode(result,'A',1,'B',1.5,'C',2,'D',2.5,'E',3,4)))

 from study_subjects

 group by student_id);

Notice that DBS Oracle allows you to define an aggregate function from an aggregate

function, but it is the specialty of that DBS. The inner aggregate function reflects the Group

by clause. The outer aggregate function processes obtained value and cannot have Group by

section at all. So, only one value can be returned. First of all, the nested Select statement gets

the average value for each student:

(select avg(decode(result, 'A',1,'B',1.5,'C',2,'D',2.5,'E',3,4))

 as st_avg

 from study_subjects

 group by student_id

)

Afterward, the maximal value from that is obtained. Notice that there is a necessity

to define column alias.

(select max(st_avg)

 from

 (select avg(decode(result, 'A',1,'B',1.5,'C',2,'D',2.5,'E',3,4))

 as st_avg

 from study_subjects

 group by student_id

)

)

Complete solution can look like this:

select student_id,

 avg(decode(result, 'A',1,'B',1.5,'C',2,'D',2.5,'E',3,4))

 from study_subjects

 group by student_id

 having avg(decode(result, 'A',1,'B',1.5,'C',2,'D',2.5,'E',3,4)) in

 (select max(st_avg)

 from

 (select avg(decode(result, 'A',1,'B',1.5,'C',2,'D',2.5,'E',3,4))

 as st_avg

 from study_subjects

 group by student_id

)

);

So, to get a universal solution, a nested (inner) Select statement must be used.

Lab 8 – Advanced techniques of data retrieval 235

Another example is based on listing the oldest actual student based on his registration

date (first_date). For these purposes, please update table student using the following

command:

update student

 set first_date = to_date('01.09.2007', 'DD.MM.YYYY')

 where first_date is null and status = 'S';

Then, the oldest students can be listed as follows. Notice that the first_date attribute value

is compared with the minimal value.

select name, surname, personal_id, first_date

 from personal_data join student using(personal_id)

 where status = 'S' and first_date IN (select min(first_date)

 from student

 where first_date is null);

Now, you can rollback the transaction so that table will hold original values.

8.6 Extended versions of table joining
Join is a query functionality that combines rows from two or more tables or views.

It is performed whenever multiples tables appear in the From clause of the query (except

Cartesian product). To avoid a Cartesian product, join conditions must be defined based

on the whole attribute set for the connection.

The syntax of the JOIN:

select ...

 from table_name1 [{INNER | {LEFT | RIGHT | FULL} [OUTER]}] JOIN

 table_name2 { ON (joining_conditions) | USING (column_list) }

 [{INNER | {LEFT | RIGHT | FULL} [OUTER]}] JOIN

 table_namen { ON (joining_conditions) | USING (column_list) }

There are several JOIN types:

• [INNER] JOIN – the result set to be subsequently processed consists only of

attributes with corresponding (same) values of foreign key and particular

referenced primary key.

• OUTER JOIN – extends the INNER JOIN principle by adding data to the result set,

which do not have the corresponding reference in the second table. Three types

of OUTER JOIN are distinguished:

o LEFT OUTER JOIN – all table data from the left table are processed, and

they are supplemented by rows of the right table, which can be joined (there

is a reference to PK),

o RIGHT OUTER JOIN – all table data from the right table are processed,

and they are supplemented by rows of the left table, which can be joined

(there is a reference to PK),

o FULL OUTER JOIN – consists of all data from both tables. Relevant data

are joined. In this case, there is no data loss.

• SEMI JOIN gets rows from one table, which can be joined with the second one.

It is based on these condition clauses – IN, EXISTS keywords.

• ANTI JOIN is vice versa based on the negations. It provides data from the first

table, which cannot be joined with the second one. Thus keywords NOT IN

and NOT EXISTS are used.

236 Lab 8 – Advanced techniques of data retrieval

Graphical representation focusing on the provided data are shown in fig. 8.1.

Fig. 8.1: Join types

Be aware. If you do not JOIN tables correctly, a Cartesian product is generated.

Therefore, special attention must be used to reference composite keys. In both following

examples, a Cartesian product is produced. The first example does not use the join condition

at all. The second one uses only one element of the composite key.

select name, surname, s.student_id

 from personal data, student s;

select field_name, spec_name, student_id

 from student JOIN st_field USING (field_id);

NATURAL JOIN is a particular category. In this case, it is not possible to use the ON

(condition) or USING clause because the join will be done under the equivalent column

names in the tables. Referential integrity is not checked. Such an approach is not used very

often, whereas it can provide undesirable results, e.g., if the attribute name is renamed.

8.6.1 INNER JOIN type

Inner join has been described in Lab 2 – Basics of data retrieval. It uses only rows, which

can be connected directly.

select name, surname, student_id, subject_id, result

 from personal_data JOIN student USING (personal_id)

 JOIN study_subjects USING (student_id);

Lab 8 – Advanced techniques of data retrieval 237

Fig. 8.2: Joining

8.6.2 ON / USING CLAUSE

USING keyword can be used only if the names of the attributes to be joined have the same

names.

select name, surname, student_id, subject_id, result

 from personal_data JOIN student USING (personal_id)

 JOIN study_subjects USING (student_id);

USING clause is impossible to be used in the following example. Namely, in the teacher

table, the primary key is teacher_id, but the reference in the study_subjects table is named as

a lecturer.

select name, surname, teacher_id, subject_id

 from teacher t

 JOIN study_subjects ss ON (t.teacher_id = ss.lecturer);

ON – always possible to be done. Interconnected attributes are listed in both tables.

select name, surname, s.student_id, subject_id, result

 from personal_data pd

 JOIN student s ON (pd.personal_id = s.personal_id)

 JOIN study_subjects ss ON (s.student_id = ss.student_id);

8.6.3 LEFT OUTER JOIN type

Left Join selects all data from the left table of the relationship definition and connects

them to the table on the right side, if possible. If the row cannot be joined to the second table,

particular attributes reflecting the right table of the relationship will be listed as NULL.

select name, surname, p.personal_id,

 s.personal_id, s.student_id

 from personal_data p LEFT JOIN student s

 ON (p.personal_id = s.personal_id);

Notice the NULL values for the student_id attribute as well as personal_id_1 (created

by renaming the personal_id attribute of the table student, whereas the result set must have

unique column names).

SURNAME PERSONAL_ID PERSONAL_ID_1 STUDENT_ID

Pearce 855122/8569 855122/8569 550698

Hoom 890608/4543 890608/4543 550807

Murgas 900913/3326 900913/3326 550945

Pearce 841201/1248 (null) (null)

Austin 871124/3578 (null) (null)

238 Lab 8 – Advanced techniques of data retrieval

select *

 from teacher LEFT JOIN study_subjects

 ON (teacher.teacher_id = study_subjects.lecturer);

Notice NULL values for attributes belonging to the study_subjects table.

NAME SURNAME
DEPART

MENT

SCHOOL

_YEAR

STUDENT

_ID

SUBJECT

_ID

LECTUR

ER

RESU

LT

EXAM_

DATE

SIGN_

DATE
ECTS

Arnas Beaudoin DTK 2004 550945 BN10 KTK01 D
30.01.

2003

09.07.

2005
4

Wiliam Santos DI 2003 550945 BI06 KI001 C
31.05.

2004

13.06.

2004
6

Wiliam Santos DI 2008 550545 BI02 KI001 A
12.06.

2009

30.05.

2009
6

Mark Madrigal Gar (null) (null) (null) (null) (null) (null) (null) (null)

Owen Boudreau DTK (null) (null) (null) (null) (null) (null) (null) (null)

From the historical perspective, also the following syntax could be used. However, now,

for clarity, it has been replaced with the Left Join keyword. Thus, everything is taken

from the teacher table supplemented by the study_subjects table data, if possible (based

on join).

select *

 from teacher, study_subjects

 where teacher.teacher_id = study_subjects.lecturer(+);

8.6.4 RIGHT OUTER JOIN type

Right Join selects all data from the right table of the relationship definition and connects

them to the table on the left side, if possible. If the row cannot be joined to the first (left table

of the relationship) table, particular attributes reflecting the left table of the relationship will

be listed as NULL.

select name, surname, p.personal_id

 from personal_data p RIGHT JOIN student s

 ON (p.personal_id = s.personal_id);

SURNAME PERSONAL_ID

Smith 840312/7845

Young 860907/1259

Pearce 850130/3695

Whittel 830514/5341

What about the data result differences between the previous Select statement modeled

using Right Join and standard Inner Join in this case? Try to explain. The solution is based

on relationship type with an emphasis on membership.

select name, surname, p.personal_id

 from personal_data p JOIN student s ON (p.personal_id = s.personal_id);

8.6.5 FULL OUTER JOIN type

Full Outer Join gets all the data from both tables. If defined table rows can be joined,

it is done. If not, particular values will be noted as NULL values. It is done using the Full

Join keyword for the relationship definition type.

Lab 8 – Advanced techniques of data retrieval 239

select * from personal_data FULL JOIN contact using (personal_id);

Left table data can hold NULL values. The right table data can have NULL values as well.

But naturally, it cannot happen that the whole row would hold NULL values due to primary

key definition, which cannot hold NULL values.

NAME SURNAME STREET TOWN ZIP NATIONALITY TYPE VALUE

Milan Clarke Ligetska 10 Handlova 97251 SK M 8404097900

Thomas Hall SNP 41
Slovenska

Lupca
 97613 SK M 908123456

(null) (null) (null) (null) (null) (null) M 1234567890

Sim Eas Kolarovce 12 Kolarovce 1401 SK (null) (null)

Daniel Gomes Razusa 40/10 Prievidza 4 97101 SK (null) (null)

John Young
Bratislavska

cesta 2
Zilina 1001 SK (null) (null)

8.6.6 SEMI JOIN type

Semi Join type selects all data from the left table of the relationship, which can be inner

joined to the right table.

select *

 from personal_data

 where personal_id IN (select personal_id from student);

Let´s also consider the second example providing similar data. Is there any difference

between these two mentioned Select statements? If so, why? The answer is based

on duplicates.

select p.*

 from personal_data p JOIN student s ON (p.personal_id = s.personal_id);

8.6.7 ANTI JOIN type

Anti Join type selects all data from the left table of the relationship, which cannot be inner

joined to the right table. It is modeled by the Set operators.

select *

 from personal_data

 where personal_id NOT IN (select personal_id from student);

select *

 from personal_data p

 where NOT EXISTS(select 'x '

 from student s

 where s.personal_id = p.personal_id);

The following solution is similar to ANTI JOIN but does not remove duplicate values

from the result set.

select p.*

 from personal_data p LEFT JOIN student ON (p.personal_id=s.personal_id)

 where s.personal_id IS NULL;

240 Lab 8 – Advanced techniques of data retrieval

8.6.8 NATURAL JOIN type

Natural Join type reflects Equi Join type and is constructed so that relationship is created

according to attributes with the same name. So, no USING nor ON keyword is used.

Associated tables must have one or more identically named columns. Moreover, columns

must have the same data type. Using this type can be a bit dangerous because of the naming.

Therefore, avoid using this approach if you are not sure that the attribute names cannot

be changed (even later).

select name, surname, personal_id

 from personal_data NATURAL join student;

8.7 Relational algebra operations

An essential and inseparable part of any relational data model cover languages that allow

you to specify operations that can make changes to the database or get required data from it.

The query itself can be considered as a functionality of the database, which results

in providing data in relations. The languages for query definitions are based on relational

algebra and relational calculus.

Relational algebra represents the procedural language describing features

and functionalities by which desired data results can be obtained. It is formed based

on the algebraic concept. Relational calculus represents a declarative language, which

describes the properties of the result set. Using relational algebra expressions, database

commands can be constructed using several operations through which queries can be defined,

expressed, and consequently evaluated by the optimizer.

These eight operations create the basic operation set of the relational algebra:

• Selection

• Projection

• Cartesian product

• Union

• Difference

• Intersection

• Division

• Join

• Split

These operations can be classified using various aspects:

• Number of source relations

o unary – selection, projection

o binary – Cartesian product, union, difference, intersection, division, join

and split.

• Relation types

o Set operations – union, difference, intersection, Cartesian product.

o Relational operations – join, split, division, selection, projection.

Selection, projection, Cartesian product, and Inner Join, have been described in Lab 2 –

Basics of data retrieval with the emphasis of Select statement syntax, therefore in the

following section, we will define the rest part, again with the focus on real usage in the Select

statement environment. The Operations Union, Difference, and Intersection require the

processed sets to be union compatible, meaning they share the same amount of attributes

Lab 8 – Advanced techniques of data retrieval 241

with the same data types and order. This is because of the attribute context considerations.

For example, consider the following relations, they are union compatible.

• Student (name, surname)

• Employee (name, surname)

Following examples, however, show the relations, which are not compatible and therefore

cannot be processed using mentioned operations:

• Person (name, surname)

• Country (name, population)

Another example of union non-compatibility is based on two student group definitions

(students in the Zilina and students in the detached office Prievidza). Again, the relations

are not compatible because of the attribute order:

• Student_ZA (name, surname, personal_id, class, status)

• Student_PD (personal_id, name, surname, class, status)

In the literature, other relational algebra operations can be defined, which form

the extension of basic relational algebra operations:

• Natural join

• Theta join

• Inequi join

• External join

• Semi join

• Complement

8.7.1 Union operation

Union operation creates from two relations R1(A1, A2, ..., An), R2(A1, A2, ..., An)

and the third relation R3 with the same attribute definition R3(A1, A2, ..., An), for which applies,

that data tuple is part of the result relation R3, if it belongs to either input relation R1 or relation

R2:

Fig. 8.3: Relational algebra operation Union

Graphical representation of the defined operation is following:

Fig. 8.4: Relational algebra operation Union

242 Lab 8 – Advanced techniques of data retrieval

In the Select statement, it is represented by the UNION operation.

Let´s have the example formed by two tables consisting of the musical instrument player

information – saxophone_player and guitar_player table with the following data (export

can be found in your CD, respectively server – exp_music.exp).

Saxophone_player table data:

SURNAME PERSONAL_ID CLASS

Pearce 841106/3456 3

Smith 840312/7845 2

Young 860907/1259 2

Pearce 850130/3695 1

Roger 781015/4431 3

Whittel 830514/5341 7

Fig. 8.5: Saxophone_player table data

Guitar_player table data:

SURNAME PERSONAL_ID CLASS

Pearce 850130/3695 1

Whittel 830514/5341 2

Bailey 800407/3522 1

Fig. 8.6: Guitar_player table data

Each table consists of the name, surname, personal_id of the student, as well as class.

To get data from both tables regardless of the studied musical instrument, UNION

operation can be used.

select name, surname, personal_id

 from saxophone_player

 UNION

select name, surname, personal_id

 from guitar_player;

Notice that UNION operation automatically removes duplicate tuples. The cardinality

of the table saxophone_player is 6, and the cardinality of the table guitar_player is 3.

However, the result set consists of only 7 rows (Carol Pearce and William Whittel study both

musical instruments).

 NAME SURNAME PERSONAL_ID

1 Carol Pearce 850130/3695

2 Jack Smith 840312/7845

3 John Young 860907/1259

4 Mark Bailey 800407/3522

5 Michael Pearce 841106/3456

6 Peter Roger 781015/4431

7 Wiliam Whittel 830514/5341

To ensure that no duplicates will be removed, use the operator UNION ALL instead

of UNION in its pure form.

Lab 8 – Advanced techniques of data retrieval 243

select name, surname, personal_id

 from saxophone_player

 UNION ALL

select name, surname, personal_id

 from guitar_player;

Now, the result set contains 9 rows:

 NAME SURNAME PERSONAL_ID

1 Michael Pearce 841106/3456

2 Jack Smith 840312/7845

3 John Young 860907/1259

4 Carol Pearce 850130/3695

5 Peter Roger 781015/4431

6 Wiliam Whittel 830514/5341

7 Carol Pearce 850130/3695

8 Wiliam Whittel 830514/5341

9 Mark Bailey 800407/3522

Column names are formed based on the attribute name of the first Select statement.

Thus, if the guitar_player attribute was renamed to first_name, the result set would contain

“name” for the attribute name, whereas it is formed by the tuples from the saxophone_player

table first.

alter table guitar_player rename column name to first_name;

select name, surname, personal_id

 from saxophone_player

 UNION ALL

select first_name, surname, personal_id

 from guitar_player;

 NAME SURNAME PERSONAL_ID

1 Michael Pearce 841106/3456

2 Jack Smith 840312/7845

3 John Young 860907/1259

4 Carol Pearce 850130/3695

5 Peter Roger 781015/4431

6 Wiliam Whittel 830514/5341

7 Carol Pearce 850130/3695

8 Wiliam Whittel 830514/5341

9 Mark Bailey 800407/3522

Therefore, if a column alias is used, it must be placed in the first Select statement:

select name, surname, personal_id as PID

 from saxophone_player

 UNION ALL

select first_name, surname, personal_id

 from guitar_player;

 NAME SURNAME PID

1 Michael Pearce 841106/3456

2 Jack Smith 840312/7845

244 Lab 8 – Advanced techniques of data retrieval

 NAME SURNAME PID

3 John Young 860907/1259

4 Carol Pearce 850130/3695

5 Peter Roger 781015/4431

6 Wiliam Whittel 830514/5341

7 Carol Pearce 850130/3695

8 Wiliam Whittel 830514/5341

9 Mark Bailey 800407/3522

Vice versa, the Order method can be set at the end of the last Select statement. Naturally,

it sorts the whole result set (do not place the Order by clause at the end of each statement,

it is not possible):

select name, surname, personal_id as PID

 from saxophone_player

 UNION ALL

select first_name, surname, personal_id

 from guitar_player

 order by PID;

Notice that defined alias must be used in the Order by clause. Original name (personal_id)

cannot be used.

8.7.2 Difference operation

Difference operation creates from two relations R1(A1, A2, ..., An) and R2(A1, A2, ..., An)

the third relation R3 with the same attribute definition R3(A1, A2, ..., An), for which applies,

that data tuple is part of the result relation R3, if it belongs to input relation R1, but is not part

of the relation R2:

Fig. 8.7: Relational algebra operation Difference

Graphical representation of the defined operation is following:

Fig. 8.8: Relational algebra operation Difference

Lab 8 – Advanced techniques of data retrieval 245

In Select statements, the solution can be provided using SET operators or by using MINUS

operation. Let´s get the list of the students, who study “Information systems” as a field,

but their specialization is not “Applied informatics”. For illustration purposes, create

two tables. Table ST_AI will contain students of “Applied informatics”. ST_IS will contain

all students of the “Information systems” as a field. Information systems field meets the value

field_id = 200, Applied informatics is specialization_id = 2.

Create table ST_AI

 as select name, surname, personal_id

 from personal_data p

 where EXISTS (select 'X'

 from student s

 where p.personal_id = s.personal_id

 and field_id = 200

 and specialization_id = 2);

Create table ST_IS

 as select name, surname, personal_id

 from personal_data p

 where EXISTS (select 'X'

 from student s

 where p.personal_id = s.personal_id

 and field_id = 200);

To get the results, the MINUS operator can be used.

select * from ST_IS

 MINUS

select * from ST_AI;

The rest principles (aliases, sorting possibilities) are the same as described for the UNION

operation.

8.7.3 Intersection operation

Intersection operation creates from two relations R1(A1, A2, ..., An) and R2(A1, A2, ..., An)

the third relation R3 with the same attribute definition R3(A1, A2, ..., An), for which applies

that data tuple is part of the result relation R3 if it belongs to input relation R1 as well as to

relation R2:

Fig. 8.9: Relational algebra operation Intersection

246 Lab 8 – Advanced techniques of data retrieval

Graphical representation of the defined operation is following:

Fig. 8.10: Relational algebra operation Intersection

For illustration purposes, let´s use previously created tables – saxophone_player

and guitar_player table (export can be found in your CD, respectively server –

exp_music.exp).

To get the solution – students playing saxophone as well as guitar, operation INTERSECT

can be used:

select name, surname, personal_id

 from saxophone_player

 INTERSECT

select first_name, surname, personal_id

 from guitar_player;

NAME SURNAME PERSONAL_ID

Carol Pearce 850130/3695

Wiliam Whittel 830514/5341

The rest principles (aliases, sorting possibilities) are the same as described for the UNION

operation.

8.8 Recursive relationships
A recursive relationship connects a single table to itself serving in another role (person

has his mother and father, who are also persons; the employee is obviously supervised by one

manager, whose data can also be found in the employee table). The recursive relationship

defines a reference of the foreign key to the same table. Therefore, the foreign key attributes

must be renamed.

Regarding the primary key, foreign key, and referential integrity definition.

Can a recursive relationship be defined as identifying? Why not?

Modeling principles have been described in Lab 4 – Data modeling, now will deal with

using recursive relationships in the Select statements.

Lab 8 – Advanced techniques of data retrieval 247

Principles will be described using Smith’s family tree. To store it in the database,

the person_rec table will be created with the explicit management of the parents (mother_id

and father_id). Let´s have the following family tree (fig. 8.11):

Fig. 8.11: Family tree

For illustration purposes, each person will be delimited by the unique identifier

(person_id), which will also be the primary key of the table (fig. 8.12):

Fig. 8.12: Family tree

248 Lab 8 – Advanced techniques of data retrieval

Next commands show the person_rec table definition:

create table person_rec(

 person_id integer primary key,

 name varchar2(20),

 surname varchar2(20),

 mother_id integer,

 father_id integer

);

alter table person_rec

 add foreign key (mother_id)

 references person_rec(person_id);

alter table person_rec

 add foreign key (father_id)

 references person_rec(person_id);

Fig. 8.13: Person_rec data model

Data shown in the previous figure are loaded into the database (script can be downloaded

from the server – family_tree_script.txt):

PERSON_ID NAME SURNAME MOTHER_ID FATHER_ID

1 Emily Burney

2 Adam Smith

3 Grace Smith 1 2

4 Daniel Phue

5 Harry Smith 1 2

6 Olivia Clarke

7 Bella Smith 1 2

8 Peter Roger

9 James Smith 6 5

10 Sofia Smith 6 5

11 Lautaro Smith 6 5

12 Jack Robinson

13 Jacob Robinson 10 12

14 William Robinson 10 12

Fig. 8.14: Data in the person_rec table

Lab 8 – Advanced techniques of data retrieval 249

Task 1: Get the name of the mother for Sofia Smith

To get the required data, the relationship must be used; thus, the defined person_rec table

must be used twice and joined. For simplicity, imagine the table as two separate tables

connected using a non-identifying relationship:

Fig. 8.15: Mother, Child table model

select m.name, m.surname

 from person_rec m join person_rec c on (m.person_id = c.mother_id)

 where c.surname = 'Smith' and c.name = 'Sofia';

The result should be “Olivia Clarke”:

Task 2: Get the name of the people, whose mother is Sofia Smith:

select c.name, c.surname

 from person_rec m join person_rec c on (m.person_id = c.mother_id)

 where m.surname = 'Smith' and m.name = 'Sofia';

NAME SURNAME

Jacob Robinson

William Robinson

8.9 Using the same table multiple times in the Select

statement
Tables can be linked together using various relationship types. Moreover, several

relationships can be created between two tables (do you remember the table flight and airport

from the data modeling lab, don´t you?). If the departure airport, as well as the arrival airport

(names of the airports), should be listed for the defined flight, it is necessary to join table

airport twice – one join expresses departure, the second one reflects the arrival.

Let´s have the following example for dealing with the address. Town, region, and state

have been separated into separate tables as a result of data normalization. Thus,

for any person, airport, or company, the current address (street) is stored with reference

to town (e.g., act_zip).

250 Lab 8 – Advanced techniques of data retrieval

Fig. 8.16: Multiple relationships between Person and Town table

If you want to get the name list of the people living in the same town as they were born,

attributes birth_zip and act_zip can be compared.

select name, surname

 from person

 where birth_zip = act_zip;

The previously defined statement will work; however, it will not provide desired data

based on the task. Once again, the aim is to get a name list of the people living in the same

town as they were born. Do not forget that multiple zip codes can delimit one town,

so the name of the towns must be compared (one name of the town can be used numerous

times in the world. Therefore, the comparison is based on region as well). In the following

example, tables must be aliased (whereas one table will be used multiple times), birth_town

table alias expresses the town of person birth, act_town table alias defines the actual town,

where the person is living.

select name, surname

 from person join town birth_town on (person.birth_zip = birth_town.zip)

 join town act_town on (person.act_zip = act_town.zip)

 where birth_town.name = act_town.name

 and birth_town.region = act_town.region;

Can Join clause type USING be used? If not, why? If so, under what conditions?

8.10 Practice
1. Get the age of the oldest student at the time of leaving school (use the attribute

final_date in the student table).

2. List the name of the students who will celebrate a birthday next month (use actual

system time).

Lab 8 – Advanced techniques of data retrieval 251

3. List the name of the students who will celebrate the anniversary this year (e.g., 25,

30, 35, ... years old).

4. Get the following statistics for each student – the best result, worst result,

and the total number of registered subjects in the school year 2008.

5. Get the name list of the students who have the grade average better than 3. At first,

transfer the character value to the particular coefficient. If the subject is failed,

it should be considered as the result 4.

• A = 1

• B = 1.5

• C = 2

• D = 2.5

• E = 3

• F, Fx = 4

6. List the names of the subjects, which at least 4 students have registered in the school

year 2006.

7. List the name of the students who have repeated some subjects. Each student should

be listed only once in the result set.

8. List the name of the students with the total number of subjects registered in the school

year 2008.

9. List the name of the subjects which have not been registered by any student

in the school year 2006 but were available (particular subject can be found

in the st_program table).

10. Get the number of days between the sign_date and exam_date for the subjects

with accreditation and exam (get the required information from ending_type

parameter) in the subject_year table.

• subject_year.ending_type:

o B = exam + accreditation to exam,

o E = exam,

o S = semester only (no exam).

11. List the name of the students and their subjects, which end with accreditation

to the exam and an exam. List only those where the difference between accreditation

and exam was at least 1 month.

12. List the name of the students who have never repeated any subject.

13. List the name of the students who have at least one subject, which the particular

student has not repeated.

14. List the total number of students in each class.

15. List the total number of students for each class and each study field

and specialization.

16. Get the list of the optional subjects for a student with student_id = 500439.

The optional subject can be identified by the absence of mandatory or mandatory-

optional subject sets with an emphasis on the study field and specialization of the

student. However, be aware, if the subject is valid for the whole study field

(regardless of the specialization), the particular specialization_id in the st_program

table will have the value “0”.

• st_program.mandatory_type:

o M = mandatory,

o O = optional,

o X = mandatory / optional.

252 Lab 8 – Advanced techniques of data retrieval

17. List the name of the students who have never studied Information systems

(field_name).

18. List the name of the people with textual information about their student status.

If the person is not a student, write three dashes (---).

• student.status:

o S = student (actual),

o E = ended successfully,

o A = aborted

o X = fired due to disciplinary commission decision.

19. List the name of the mandatory subjects in the school year 2008 with the total number

of registered students for them. If there is none registered, write there dash (-)

symbol.

BONUS: Get the following statistics:

• Rows – individual study fields and specifications

• Columns – classes

• Cells – the total number of particular students

Advice: individual study fields and specifications will be in the group by section, numbers

should be calculated conditionally.

 FIELD 1.CLASS 2.CLASS 3.CLASS 4.CLASS 5.CLASS

1 Information systems, Decision support systems 1 0 0 0 0

2 Computer engineering, 0 1 0 0 0

3 Computer engineering, 1 2 0 0 0

4 Management, 0 2 1 0 0

5 Information management, 1 0 1 0 0

6 Informatics, 2 4 1 0 0

7 Information systems, Applied informatics 1 4 0 0 0

8
Information systems, Information and communication

systems
0 5 0 0 0

Fig. 8.17: Required data layout

Lab 9 – Procedures, functions and packages 253

Lab 9 – Procedures, functions and packages

In this lab, the reader will get a complex overview of the procedural extension of the SQL

language (PL/SQL). It focuses on the named data blocks (procedures and functions), which

can be optionally grouped into the packages and managed as one unit. Vice versa, anonymous

blocks are executed only once with no consecutive evidence in the system nor the repeated

reference opportunity.

This lab summarizes the code preliminaries – variable definitions, assignments, NULL

handling, conditional processing and loops. Reader will get the complex overview. All

principles are explained in the examples.

Both procedures and functions can be executed from the block or by using the EXEC

command. If some prerequisites are passed, function can be executed using SQL, as well. The

reader will learn three types of passing parameters – position way, named reference, and

hybrid. Output can sent to the data structures, variables, etc. or can be printed to the console.

It is commonly done using the methods of the DBMS_OUTPUT package.

In this chapter, the reader will learn how to access table data inside the block. The output

of the Select statement must be stored into variables. Using Select ... Into variant, it must be

ensured that the particular statement returns one row (no more, no less). Otherwise, the

exception is raised.

The cursor provides the general solution, which associates the data with variables using

the loop. The reader will be provided with various cursor types. For the purposes of this book,

we will, however, just focus on the static cursor types.

9.1 Introduction
SQL itself is a non-procedural language – we define data we want to, but not how to get

them. Therefore, complex usage in an application environment is ensured only

in combination with procedural language or specific procedural database language, often

referred to as fourth-generation language. In this lab, we will shortly introduce the syntax

definition, specific clauses, and notations regarding standalone procedures and functions, but

also packages, which can group multiple methods into the common class. Procedures and

functions are created using PL/SQL (Procedural Language of SQL) and are called by their

names. The difference between procedure and function is based on the possibilities of

returning values. The function must have only one return value (which can also be

composite), whereas the procedure cannot return any value by its name definition. The only

way the procedure can return values are output (IN OUT or OUT) parameters. As we will

describe later, if the function meets the essential prerequisites, it can be called from the Select

statement (we have already dealt with the to_char conversion function, for example).

A significant advantage of the package is the possibility to group methods together.

Privileges granting and revoking is done on package level instead of single methods

(it is not possible to grant a privilege only to the particular method of the package). Moreover,

the packaged method can be overloaded, which is not feasible for standalone methods.

A particular case of the block is an anonymous type. The principles are the same

as a standalone procedure. However, such a block cannot pass parameters and is not stored

254 Lab 9 – Procedures, functions and packages

in the database. Thus, after its execution, it is removed from the system and cannot be called

anymore.

9.2 Code preliminaries
In the following part, we will describe the essential code characteristics.

9.2.1 Variable definition

When managing procedures and functions (optionally enclosed by the packages),

it is usually necessary to define local variables for the execution. Variable must have some

data type, which can also be based on the table attribute data type, the row of the table, or the

result of the cursor. It can be initialized to a specific value during definition or even be noted

as constant (there is no possibility of changing its value later).

We strongly recommend not to use the same name of the variable as the table attribute

name, mainly during the execution of the Select statement, whereas it can result in getting

incorrect data (table attribute has a higher priority than variable). Therefore, we prefer

the standard of naming – the first letter of the variable is “v”. In that case, there cannot

be any misunderstanding.

Variable definition:

Variable data_type;

Definition and value initialization of the variable:

Variable data_type := init_value;

Defined variable has the same structure as the schema of the table (reflects the data types

and attribute names):

Variable_record table%rowtype;

Defined variable data type will correspond table attribute data type:

Variable table.attribute%type;

Example of usage is following:

v_pid char(11); -- 11 character string

v_student_id integer := 1; -- integer variable, value 1 is assigned

 -- during the definition

v_student_data student%rowtype; -- variable is record, has the same

 -- elements as table attributes

v_surname personal_data.surname%type; -- data type of the variable is

 -- the same as data type

 -- for attribute surname of

 -- the table personal_data

9.2.2 Assignment, NULL

Assignment inside the body of the expression value to the variable is done by the symbol

of a colon followed by the equality sign (:=).

Variable := expression;

Lab 9 – Procedures, functions and packages 255

And also some examples. The result can be direct value, expression, or function result.

v_count := 10;

v_str := to_char(sysdate, 'DD. Month YYYY');

No command block can be empty. Therefore another command has been introduced,

which, however, does not execute anything (NULL). It is primarily intended for testing

purposes, to cover branches for which we do not want to run any command. It can

also be placed in LOOPs and conditional processing (IF), with at least one command inside

each processing line.

NULL;

Naturally, each created code can be rewritten so that this command will not be used at all.

9.2.3 Conditional processing

Branching of the execution code can be done using IF – THEN – ELSE command type

or by using CASE.

IF condition

IF condition starts with the keyword “IF” followed by the condition, which should

be evaluated as Boolean (True, False). After that, the keyword “THEN” is used

and the commands of the positive branch. The negative branch is optional, characterized

by the “ELSE” keyword. Do not forget to add the “END IF” keyword after the command

itself to border it.

IF condition THEN

 Commands_to_be_executed;

[ELSE

 Commands_else_clause;]

END IF;

The syntax mentioned above uses only one, respectively, two branches. However,

it can be extended by multiple branches forming more complex conditions. In this case,

the negative branch is divided into several IF conditions using the keyword “ELSIF”

(it is one word, character “e” is omitted). Thus, there can be several “ELSIF” conditional

branches in one “IF” condition.

Another solution is to divide the “ELSE” branch of the condition into several conditions,

which must also be enclosed by the “END IF” keyword.

IF condition THEN

 Commands_if;

ELSIF condition2 THEN

 Commands_elsif;

[ELSE

 Commands_else;]

END IF;

Therefore, notice a significant difference between “ELSIF” (part of the same IF

condition) and “ELSE IF” (forming new IF condition). Each IF branching command must

have pair – “END IF” keyword.

256 Lab 9 – Procedures, functions and packages

IF condition THEN

 Commands;

ELSE

 IF condition2 THEN

 Commands;

 [ELSE

 commands;]

 END IF;

END IF;

Condition-based on using IF conditions cannot be used in SQL statements like Insert,

Update, Delete, Select. However, do not be scared, CASE commands can replace them.

In the previous lines, we explained that the result of the condition to be evaluated must

be Boolean. But to be honest, it also reflects NULL, which can cause significant problems

because of the 3 valued logic and evaluation.

It is important to remember that any condition with NULL expression is evaluated

as NULL and led to the ELSE branch. Therefore, never compare values to NULL value using

the equality sign (=). Problems are shown in the following example. Let´s have the

uninitialized variable and IF condition comparing the defined variable. First of all, ensure

that variable with no explicit value assignment is treated as NULL. For these purposes, we

declare simple integer variable and IF condition for comparison. Make sure that comparison

is made using “IS NULL”. Put_line method of the dbms_output package buffers data from

the parameter and sends them to the console output. More about the dbms_output package

can be found in chapter 9.5 Executing stored method.

declare

 v_int integer;

begin

 if (v_int is null) then

 dbms_output.put_line('v_int IS NULL');

 else

 dbms_output.put_line('v_int is NOT NULL');

 end if;

end;

/

v_int IS NULL

PL/SQL procedure successfully completed.

Notice that the output display must be enabled to see the results. The SERVEROUTPUT

setting controls whether SQL*Plus prints the output generated by the dbms_output package

from PL/SQL procedures. It must be enabled for the session (or for the whole server) before

the first execution of the dbms_output package (see chapter 9.5 Executing stored method).

Otherwise, no output will be printed to the user.

set serveroutput on

Set serveroutput on executed in SQL Plus executes behind the scene following command

(see chapter 9.5.2 Enable procedure):

dbms_output.enable(buffer_size => NULL);

Lab 9 – Procedures, functions and packages 257

Vice versa, to disable output printed to the screen, Set serveroutput off can be used, which

reflects the calling disable procedure of the dbms_output package (see chapter 9.5.1 Disable

procedure).

set serveroutput off

dbms_output.disable;

It is not possible to evaluate NULL value using the equality sign. As we can see,

regardless of the equality or even non-equality character, the condition is always routed

to the ELSE branch (the result of the condition is NULL).

declare

 v_int integer;

begin

 if (v_int = NULL) then

 dbms_output.put_line('v_int = NULL');

 else

 dbms_output.put_line('v_int != NOT NULL');

 end if;

end;

/

v_int != NOT NULL

PL/SQL procedure successfully completed.

declare

 v_int integer;

begin

 if (v_int != NULL) then

 dbms_output.put_line('v_int = NULL');

 else

 dbms_output.put_line('v_int != NOT NULL');

 end if;

end;

/

v_int != NOT NULL

PL/SQL procedure successfully completed.

Notice that incorrect management of NULL values is a source of very severe problems,

and it is really very hard to find the reasons and solve the issue. Therefore, be strictly

attentive.

Moreover, also variables cannot be compared to nullity using the equality sign to get

information, whether such variables are the same or not. Simply, two NULL values are never

the same! Thus, let´s have the anonymous block containing two variable definitions,

which gets the NULL values. Once again, such defined condition is always evaluated

as NULL and routed to the ELSE branch.

258 Lab 9 – Procedures, functions and packages

declare

 v_int1 integer;

 v_int2 integer;

begin

 if (v_int1 = v_int2) then

 dbms_output.put_line('are the same');

 else

 dbms_output.put_line('are NOT the same');

 end if;

end;

/

are NOT the same

PL/SQL procedure successfully completed.

declare

 v_int1 integer;

 v_int2 integer;

begin

 if (v_int1 != v_int2) then

 dbms_output.put_line('are NOT the same');

 else

 dbms_output.put_line('are the same');

 end if;

end;

/

are NOT the same

PL/SQL procedure successfully completed.

Also, a comparison based on mathematical operators lower than (<) or higher than (>)

can cause problems with NULL values. Its evaluation always ends in the ELSE branch

with strange results. The first evaluation result is that variable v_int1 is lower, and the second

one evaluates variable v_int1 as higher than variable v_int2.

declare

 v_int1 integer:=1;

 v_int2 integer;

begin

 if (v_int1 > v_int2) then

 dbms_output.put_line('v_int1 is higher than v_int2');

 else

 dbms_output.put_line('v_int1 is lower than v_int2');

 end if;

end;

/

v_int1 is lower than v_int2

PL/SQL procedure successfully completed.

Lab 9 – Procedures, functions and packages 259

declare

 v_int1 integer:=1;

 v_int2 integer;

begin

 if (v_int1 < v_int2) then

 dbms_output.put_line('v_int1 is lower than v_int2');

 else

 dbms_output.put_line('v_int1 is higher than v_int2');

 end if;

end;

/

v_int1 is higher than v_int2

PL/SQL procedure successfully completed.

To have clear evidence, compare the evaluated condition based on “IS NULL”.

As you can see, it has been evaluated as NULL.

declare

 v_int1 integer;

 v_int2 integer;

begin

 if ((v_int1 > v_int2) is NULL) then

 dbms_output.put_line('treated as NULL');

 else

 dbms_output.put_line('NOT treated as NULL');

 end if;

end;

/

treated as NULL

PL/SQL procedure successfully completed.

Fig. 9.1 shows the evaluation table of the conditions based on NULL values with an

emphasizing AND, OR, and inversion (NOT) condition grouping.

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

NOT

TRUE FALSE

FALSE TRUE

NULL NULL

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

Fig. 9.1: Three-value logic

Condition CASE

There are two possibilities, how to deal with the CASE. The left part of the condition can

be covered on the top level (in that case, it is then compared based on only the values

themselves), or the conditions can be expressed on each level. It starts with the “CASE”

keyword and ends with “END CASE” for a procedural language. When using in SQL,

the keyword “CASE” is omitted from the end. Thus, there is “END”, not “END CASE”.

260 Lab 9 – Procedures, functions and packages

Moreover, in SQL value is evaluated and processed, there are no commands

after the Then keyword.

CASE value_of_condition

 WHEN value1 THEN commands1;

 WHEN value2 THEN commands2;

 ...

 [ELSE commands_else];

END CASE;

CASE

 WHEN condition1 THEN commands1;

 WHEN condition2 THEN commands2;

 ...

 [ELSE commands_else];

END CASE;

The “ELSE” clause is optional. However, if you do not define it explicitly, the database

system manager will automatically add it by raising an exception if no suitable processing

branch is found:

ELSE RAISE CASE_NOT_FOUND;

Thus, create a simple anonymous block (all principles of the anonymous block will

be described a bit later, we will now highlight only CASE usage), declare two variables,

and see the principles. The first variable (v_personal_id) will deal with the personal_id,

the second (v_month) will be the extraction of the birth month, and string text will be shown

as output. In this case, we use the first CASE principle – the value of the v_month is compared

with values covered in individual “WHEN” parts.

declare

 v_personal_id char(11);

 v_month integer;

begin

 v_personal_id := '690309/1234';

 v_month := substr(v_personal_id, 3, 2);

 case v_month

 when 1 then dbms_output.put_line('January');

 when 2 then dbms_output.put_line('February');

 when 3 then dbms_output.put_line('March');

 when 4 then dbms_output.put_line('April');

 when 5 then dbms_output.put_line('May');

 when 6 then dbms_output.put_line('June');

 when 7 then dbms_output.put_line('July');

 when 8 then dbms_output.put_line('August');

 when 9 then dbms_output.put_line('September');

 when 10 then dbms_output.put_line('October');

 when 11 then dbms_output.put_line('November');

 when 12 then dbms_output.put_line('December');

 end case;

end;

/

The second CASE principle will look like the following example. The whole condition

is in each “WHEN” part.

Lab 9 – Procedures, functions and packages 261

declare

 v_personal_id char(11);

 v_month integer;

begin

 v_personal_id := '690309/1234';

 v_month := substr(v_personal_id, 3, 2);

 case

 when v_month=1 then dbms_output.put_line('January');

 when v_month=2 then dbms_output.put_line('February');

 when v_month=3 then dbms_output.put_line('March');

 when v_month=4 then dbms_output.put_line('April');

 when v_month=5 then dbms_output.put_line('May');

 when v_month=6 then dbms_output.put_line('June');

 when v_month=7 then dbms_output.put_line('July');

 when v_month=8 then dbms_output.put_line('August');

 when v_month=9 then dbms_output.put_line('September');

 when v_month=10 then dbms_output.put_line('October');

 when v_month=11 then dbms_output.put_line('November');

 when v_month=12 then dbms_output.put_line('December');

 end case;

end;

/

Do you consider the solutions to be correct? Why not? We do not care about women,

do we? What will happen if we change the personal_id characterizing woman? Naturally,

an exception will be raised:

ERROR at line 1:

ORA-06592: CASE not found while executing CASE statement

ORA-06512: at line 7

Thus, for women, get the month's value by subtracting the third and fourth value

of the personal_id by 50 (we will use the mod function in the example to create a universal

solution).

declare

 v_personal_id char(11);

 v_month integer;

begin

 v_personal_id := '695309/1234';

 v_month := mod(substr(v_personal_id, 3, 2), 50);

 case

 when v_month=1 then dbms_output.put_line('January');

 when v_month=2 then dbms_output.put_line('February');

 when v_month=3 then dbms_output.put_line('March');

 when v_month=4 then dbms_output.put_line('April');

 when v_month=5 then dbms_output.put_line('May');

 when v_month=6 then dbms_output.put_line('June');

 when v_month=7 then dbms_output.put_line('July');

 when v_month=8 then dbms_output.put_line('August');

 when v_month=9 then dbms_output.put_line('September');

 when v_month=10 then dbms_output.put_line('October');

 when v_month=11 then dbms_output.put_line('November');

 when v_month=12 then dbms_output.put_line('December');

 end case;

end;

/

262 Lab 9 – Procedures, functions and packages

Now, the solution is correct, however not so robust. What about typos in personal_id

value? Naturally, an exception will be raised. To avoid it, add the “ELSE” branch of the case.

declare

 v_personal_id char(11);

 v_month integer;

begin

 v_personal_id := '699309/1234';

 v_month := mod(substr(v_personal_id, 3, 2), 50);

 case

 when v_month=1 then dbms_output.put_line('January');

 when v_month=2 then dbms_output.put_line('February');

 when v_month=3 then dbms_output.put_line('March');

 when v_month=4 then dbms_output.put_line('April');

 when v_month=5 then dbms_output.put_line('May');

 when v_month=6 then dbms_output.put_line('June');

 when v_month=7 then dbms_output.put_line('July');

 when v_month=8 then dbms_output.put_line('August');

 when v_month=9 then dbms_output.put_line('September');

 when v_month=10 then dbms_output.put_line('October');

 when v_month=11 then dbms_output.put_line('November');

 when v_month=12 then dbms_output.put_line('December');

 else dbms_output.put_line('Unknown month...');

 end case;

end;

/

Unknown month...

PL/SQL procedure successfully completed.

In the previous case, the solution provides correct results and is exception prove. Another

situation will, however, occur if you want to process the age of the person. Extracting

value_of_condition from the “WHEN” branch does not provide sufficient power. Why?

It would be necessary to name all possible values separately (for simplicity, we declare

variable v_age defining a transformation from the personal_id value):

declare

 v_age integer;

begin

 v_age := 19;

 case v_age

 when 1 then dbms_output.put_line('Child');

 when 2 then dbms_output.put_line('Child');

 when 3 then dbms_output.put_line('Child');

 -- ...

 when 18 then dbms_output.put_line('Adult');

 when 19 then dbms_output.put_line('Adult');

 -- ...

 else dbms_output.put_line('???');

 end case;

end;

/

It is too complicated and hard-coded, isn´t it? If you create the second CASE type,

comparison functions can be used, so the solution can be like following:

Lab 9 – Procedures, functions and packages 263

declare

 v_age integer;

begin

 v_age := 19;

 case

 when v_age between 0 and 17 then dbms_output.put_line('Child');

 when v_age > 18 then dbms_output.put_line('Adult');

 else dbms_output.put_line('???');

 end case;

end;

/

Significantly easier, isn´t it? So, which CASE type is better? The answer is a bit tricky.

Simply, it depends. One side of the issue is just the simplification of the code

for the programmer. The second aspect is, however, just the performance. If you use

the complex function, forming the whole condition requires evaluating it for each branch.

It can be time and resource-demanding. It can be partially solved by variable definition

for storing function result. Thus, each time, think of the consequences and try to optimize

your code.

9.2.4 LOOPs

Database systems provide us multiple tools for repeated processing of the same code

using LOOPs. In principle, we can distinguish these types:

Infinite loop, EXIT condition

LOOP

 Commands;

END LOOP;

In this case, there must be some condition, which will force the system to terminate cycle

processing and move to execute consecutive code parts. To do so, the command EXIT is used.

So, if the condition (condition) in the IF command is evaluated as “True”, the EXIT command

is executed, and Loop processing is terminated.

LOOP

 Commands1;

 IF condition THEN

 EXIT;

 END IF;

 Commands2;

END LOOP;

Also, another syntax is possible to be defined. It can be considered as a particular type

of the IF command – EXIT WHEN condition. Functionality is the same.

LOOP

 EXIT WHEN condition;

END LOOP;

The example can look like the following. The body of the Loop is executed three times.

264 Lab 9 – Procedures, functions and packages

declare

 i integer;

begin

 i := 1;

 loop

 dbms_output.put_line(i);

 exit when i = 3;

 i := i + 1;

 end loop;

end;

/

WHILE loop type

The execution of the cycle is delimited by the WHILE condition, which is evaluated

at the beginning of each round of the cycle.

WHILE condition LOOP

 Commands;

END LOOP;

The previous example rewritten using While is the following:

declare

 i integer;

begin

 i := 1;

 while i <= 3 loop

 dbms_output.put_line(i);

 i := i + 1;

 end loop;

end;

/

FOR loop type

The number of rounds in the cycle is directly delimited by the two numbers – starting

value (min) and maximal value (max). Each round of the cycle automatically increases

the control loop variable (control_variable). Such variable is defined implicitly, and its scope

is terminated after the cycle execution.

FOR control_variable IN min..max LOOP

 Commands;

END LOOP;

It is strongly recommended not to name the control loop variable with the same name

as the existing parameter or variable. This is because, inside the cycle, the highest priority

has just control variable. However, always try to prevent possible problems by using correct

name notations.

begin

 FOR i IN 1..3 LOOP

 dbms_output.put_line(i);

 END LOOP;

end;

/

Lab 9 – Procedures, functions and packages 265

Notice that the control loop variable cannot be changed in the loop body.

begin

 FOR i IN 1..3 LOOP

 i := 2; -- it is NOT possible

 dbms_output.put_line(i);

 END LOOP;

end;

/

There is also a particular case when the control loop variable starting position is delimited

by the maximal value, and its value is sequentially decreased (“-1”) during the execution.

This functionality can be provided by using the REVERSE keyword. However, the order

limitations (min, max) is the same as in the standard approach. Thus, the minimum value

is listed sooner:

FOR control_variable IN REVERSE min..max LOOP

 Commands;

END LOOP;

begin

 FOR i IN REVERSE 1..3 LOOP

 dbms_output.put_line(i);

 END LOOP;

end;

/

9.3 PL/SQL anonymous block
PL/SQL block is a sequence of the commands to be executed. In principle, the structure

of such defined PL/SQL block can be divided into two groups based on the storage principles.

The first group covers an anonymous block, which has no name. Thus, it cannot be referenced

from any other blocks, as well as from functions or procedures. It is executed directly

after its definition.

Here is a simple example of the anonymous block.

begin

 dbms_output.put_line('Welcome...');

end;

/

After the definition and execution of such a block, we have no evidence about the past

existence and processing. Thus, if we want to execute it once again, it is necessary to code

it again.

266 Lab 9 – Procedures, functions and packages

Next block shows the syntactical structure of the anonymous PL/SQL block:

[DECLARE

 Variable datatype [:= init_value];

]

BEGIN

 Commands;

 [EXCEPTION

 WHEN exception_type1 THEN commands;

 WHEN exception_type1 THEN commands;

 ...

]

END;

/

Each PL/SQL block consists of the body, which is mandatory. It can also contain the

DECLARATION part (between keywords DECLARE and BEGIN) and EXCEPTION part

at the end of the body (enclosed between keywords EXCEPTION and END).

If you want to refer to the local variable, it must be first defined in the first part –

declaration. Usually, local variables are initialized to NULL. If there is any exception raised

in the body of the block, it can be processed using the EXCEPTION part of the body.

The order of the clauses in the EXCEPTION clause is critical – if it finds a suitable

EXCEPTION branch covering such a problem, it will not check later EXCEPTION

branches. Thus, it is processed by the first condition it meets. A typical example is OTHERS

as a type of the EXCEPTION, which covers all raised exceptions. Thus, none later defined

can be processed at all.

The second block type is stored definition – procedure/function.

9.4 Procedure, function
If you want to store PL/SQL block for later referencing and calling, it must be named and

stored as a procedure or function. In the following text, we will use the term method covering

both procedures and functions. The main difference between them is the one value, which is

returned using the function by its name. Thanks to that, the function can be used in the SQL

statements (if some conditions are fulfilled, which will be described later).

Lab 9 – Procedures, functions and packages 267

9.4.1 Procedure syntax

CREATE [OR REPLACE] PROCEDURE proc_name

 [(parameter1 [mode1] datatype1,

 parameter2 [mode2] datatype2,

 ...)]

IS | AS

 [variable1 datatype1 [:= init_value];

 variable2 datatype2 [:= init_value];

 ...]

BEGIN

 Commands;

 [EXCEPTION

 WHEN exception_type1 THEN commands;

 WHEN exception_type2 THEN commands;

 ...

]

END [proc_name];

/

The keyword “OR REPLACE” is optional. However, very convenient, if you want to edit

the structure of the method. Thanks to that, it is not necessary to drop it and create a new

one. However, if it is defined without this clause, it cannot be replaced at all. It must be

simply dropped and recreated.

The method can have multiple parameters. Some of them can be optional (in that case,

the appropriate value must be obtained inside the procedure or replaced using the DEFAULT

value). Be aware. Parameter data types DO NOT contain the size of the string format.

Therefore, there is no CHAR(10) or VARCHAR(10), but there is only data type definition –

CHAR, VARCHAR. Additionally, each parameter can be delimited by its mode.

There are three types to be recognized:

• IN (default mode) – input parameter. It passes parameter from the calling

environment to method execution (constant or variable value). Inside the method,

it is noted as constant. If attempting to change will cause raising an error.

• OUT – output parameter. It passes a value to the calling environment code.

Therefore, the output parameter must be associated with a variable, not constant.

• IN OUT – input-output parameter. Similar to output parameter mode – it must be

associated with the variable. It passes input value from the environment, which can

be optionally (and even usually) changed during execution.

Tab. 9.1: Method parameters

IN OUT IN OUT

can be represented by a

variable (commonly) or

constant

must be specified

by the variable

must be specified

by the variable

formal parameter works

like constant

works like a non-initialized

variable

works like an initialized

variable

You can choose which keyword you will use (IS or AS). After this keyword,

there is a list of the local variables.

In the procedure body, the keyword RETURN can be used as well, but there is no value

connected to the procedure name to be processed as output. Using it means that no other code

268 Lab 9 – Procedures, functions and packages

after it will be processed inside the procedure at all. Thanks to that, it provides simpler

mechanisms to end processing.

9.4.2 Function syntax

CREATE [OR REPLACE] FUNCTION func_name

 [(parameter1 [mode1] datatype1,

 parameter2 [mode2] datatype2,

 ...)]

RETURN datatype

IS | AS

 [variable1 datatype1 [:= init_value];

 variable2 datatype2 [:= init_value];

 ...]

BEGIN

 Commands;

 RETURN expression;

 [EXCEPTION

 WHEN exception_type1 THEN commands;

 WHEN exception_type2 THEN commands;

 ...

]

END [func_name];

/

The difference between procedure is just the Return clause characterizing the value

to be returned by the function name based on the defined data type specified in the function

header.

Be aware, after raising the RETURN keyword, no more code is processed,

and the management is returned to the calling environment. In function processing, be sure

that each branch is associated with the RETURN keyword.

In addition, the result of the function cannot be thrown away but must be assigned

to a variable, respectively, as a parameter to another function or procedure. The result can

also be used by the Select statement if some requirements are met.

To allow users to create (any) procedures and functions, the appropriate privilege must

be granted (this privilege does not differentiate between procedures and functions, thus if it

is granted, a particular user can create procedures and functions, too):

GRANT CREATE ANY PROCEDURE TO username;

You must also distinguish another privilege, which allows the user to execute defined

procedure:

GRANT EXECUTE ON procedure_name TO username;

Notice that if you want to deal with the Select statement in the PL/SQL block, the results

must be stored (using SELECT INTO) or processed using cursors. If the Select Into type

is used, exactly one row must be returned. Otherwise, an exception will be raised.

Let´s have the following example. It returns name and surname in one string as well

as a group of the student delimited by the p_st_id parameter.

Lab 9 – Procedures, functions and packages 269

create or replace procedure query_student_proc

 (p_st_id IN student.student_id%type,

 p_name OUT varchar2,

 p_group OUT student.st_group%type)

is

begin

 select name || ' ' || surname, st_group into p_name, p_group

 from personal_data join student using(personal_id)

 where student_id = p_st_id;

end;

/

9.5 Executing stored method
Let´s have the previous procedure defined. To execute it, first of all, whereas two

parameters are OUT mode, it is necessary to define variables in the SQL environment.

Variable definition is provided using the variable keyword of the SQL. Notice that there is no

information for you after variable creation in the system.

variable v_name varchar2(30)

variable v_group char(6)

Then, it is possible to execute that procedure. But be aware that SQL variable name must

be prefixed with a colon (:) when calling using procedure.

EXECUTE query_student_proc(501567, :v_name, :v_group);

After successful execution, you will get the following information:

PL/SQL procedure successfully completed.

On the other hand, when you want to write the value of the SQL variable to the console,

there is no colon prefix:

PRINT v_name v_group

And this is the output:

V_NAME

Wiliam Whittel

V_GROUP

5ZI000

As already mentioned, any PL/SQL block can call a stored data block (procedure,

function). Let´s have the following example – calling the procedure using anonymous block.

270 Lab 9 – Procedures, functions and packages

Calling defined procedure from the anonymous block looks like the following example:

declare

 v_name varchar2(30);

 v_group char(6);

begin

 -- execute procedure

 query_student_proc(501567, v_name, v_group);

 -- get the variable values and show them on the console screen

 dbms_output.put_line('Name: ' || v_name);

 dbms_output.put_line('Group: ' || v_group);

end;

/

Values shown on the display are following:

Name: Wiliam Whittel

Group: 5ZI000

Realize that there is no “execute” keyword when calling the procedure from the PL/SQL

block.

At this point, other methods of the dbms_output package should be explained, which are

mostly used. Package dbms_output allows you to send messages from the blocks

(anonymous, procedure, function, trigger) to the console output. It is beneficial for displaying

PL/SQL debugging information.
Package dbms_output contains these methods:

Tab. 9.2: Methods of the dbms_output package

Subprogram Description

DISABLE procedure Disables message output

ENABLE procedure Enables message output

GET_LINE procedure Retrieves one line from the buffer

GET_LINES procedure Retrieves an array of lines from the buffer

NEW_LINE procedure Terminates a line created with the PUT method

PUT procedure Places a partial line in the buffer

PUT_LINE procedure Places line in the buffer
 Source: https://docs.oracle.com/database/121/ARPLS/d_output.htm#ARPLS67312

9.5.1 Disable procedure

This procedure disables calls to Put, Put_line, New_line, Get_line, and Get_lines

and purges the buffer of any remaining information.

DBMS_OUTPUT.DISABLE;

9.5.2 Enable procedure

This procedure enables calls to Put, Put_line, New_line, Get_line, and Get_lines.

Calls to these procedures are ignored if the dbms_output package is not activated.

DBMS_OUTPUT.ENABLE(buffer_size IN INTEGER DEFAULT 20000);

Buffer_size parameter is an upper limit (in bytes) expressing the amount of buffered

information. A NULL value means no limit.

https://docs.oracle.com/database/121/ARPLS/d_output.htm#i999293
https://docs.oracle.com/database/121/ARPLS/d_output.htm#BABGBACJ
https://docs.oracle.com/database/121/ARPLS/d_output.htm#i1000253
https://docs.oracle.com/database/121/ARPLS/d_output.htm#i1000062
https://docs.oracle.com/database/121/ARPLS/d_output.htm#BABGHBIA
https://docs.oracle.com/database/121/ARPLS/d_output.htm#i1000105
https://docs.oracle.com/database/121/ARPLS/d_output.htm#ARPLS67312

Lab 9 – Procedures, functions and packages 271

9.5.3 Get_line procedure

This procedure retrieves a single line of buffered information.

DBMS_OUTPUT.GET_LINE

(

 line OUT VARCHAR2,

 status OUT INTEGER

);

Line parameter returns a single line of buffered information, excluding a final newline

character. The maximal length for the parameter is 32767 (VARCHAR2 (32767)) limited

by potentially raised exception ORA-06502: PL/SQL: numeric or value error: character

string buffer too small.

Status parameter expresses the evaluation result of the procedure. If the call completes

successfully, then the returned value is 0. Otherwise, the status will hold value 1.

9.5.4 Get_lines procedure

This procedure retrieves an array of lines from the buffer.

DBMS_OUTPUT.GET_LINES

(

 lines OUT CHARARR,

 numlines IN OUT INTEGER

);

DBMS_OUTPUT.GET_LINES

(

 lines OUT DBMSOUTPUT_LINESARRAY,

 numlines IN OUT INTEGER

);

9.5.5 New_line procedure

This procedure puts an end-of-line marker. As a result, the content of the buffer

is produced to the console output.

DBMS_OUTPUT.NEW_LINE;

9.5.6 Put procedure

This procedure places a partial line in the buffer.

DBMS_OUTPUT.PUT(item IN VARCHAR2);

Item parameter holds the item to buffer.

The function put works a bit differently as we know from the other programming

language, where data are shown, but there is no line spacing. In PL/SQL, the principle

is different. After the calling function put, data are only buffered but not written to display

at all. This is done just after calling put_line or new_line methods, which flush the buffer

by displaying data.

Let's have the following example. Function put is used. In the first case, no output

is printed. The second solution is extended by calling the new_line method causing data

to be displayed. Thus, be aware of it. Otherwise, no data will be written to the output.

272 Lab 9 – Procedures, functions and packages

begin

 dbms_output.put('Hello');

end;

/

PL/SQL procedure successfully completed.

begin

 dbms_output.put('Hello');

 dbms_output.new_line();

end;

/

Hello

PL/SQL procedure successfully completed.

9.5.7 Put_line procedure

This procedure places a line in the buffer and sends it to the console output.

DBMS_OUTPUT.PUT_LINE(item IN VARCHAR2);

Internally, it calls the new_line procedure.

Notice that the maximum line size is 32767 bytes. The default buffer size is 20000 bytes.

The minimum size is 2000 bytes, and the maximum is unlimited.

Following exceptions can be raised when dealing with buffers using the dbms_output

package:

Tab. 9.3: Exceptions of the dbms_output package

Error Description

ORU-10027 Buffer overflow

ORU-10028 Line length overflow

Let's move forward to the functions like having the following one. It reflects the easy

solution for getting the total amount of gained ects of the defined student. Notice

that for the real environment, data are not correct. Also, information about the sign_date,

result, exam_date, and ending_type must be evaluated. Is it necessary to define exception

handling? No, because aggregate function SUM will always return one row. In this case,

if the student does not exist, a NULL value will be returned.

Create or replace function get_ects_count

 (p_st_id student.student_id%type)

 return number

is

 v_count study_subjects.ects%type;

begin

 select sum(nvl(ects, 0)) into v_count

 from study_subjects

 where student_id = p_st_id and result IN ('A', 'B', 'C', 'D', 'E');

 return v_count;

end get_ects_count;

/

There are three possibilities how to execute the function. Compared to the procedure,

which offers two methods – calling from SQL or PL/SQL block, function definition

Lab 9 – Procedures, functions and packages 273

also allows calling from the queries (after passing some preliminary conditions). So, define

two variables – v_credit_count and v_st_id.

variable v_credit_count number

variable v_st_id number

The variable assignment can be done by calling Execute command, like the following

example (assignment of the value to the variable can be therefore considered as a special case

of function calling):

EXECUTE :v_st_id := 501567;

The function itself is also called using the Execute command. Returned value is assigned

into v_credit_count variable. The v_st_id variable provides an identifier of the student.

However, whereas it is an input parameter, also constant can be used.

EXECUTE :v_credit_count := get_ects_count(:v_st_id);

Assigned values after function execution are obtained and written to the output using

the PRINT command.

print v_credit_count

V_CREDIT_COUNT

 19

Naturally, it is possible to call the function from any PL/SQL block (anonymous block,

procedure, function).

declare

 v_count integer;

 v_student_id integer := 501567;

begin

 v_count := get_ects_count(v_student_id);

 dbms_output.put_line('Student ' || v_student_id || ' has ' ||

 v_count || ' credits.');

end;

/

Student 501567 has 19 credits.

9.6 Calling function from the Select statement

The function can be called from the SQL statement if it meets some requirements. Notice

that the procedure cannot be called at all, whereas it does not return any value from

the definition (only OUT parameters can be used, however, such parameters cannot be used

in SQL statements).

Limitation of the functions called from DML statements:

• function bodies cannot contain destructive DML statements (Insert, Update,

Delete),

• functions called from Update or Delete statement cannot include any DML

statement (Insert, Update, Delete, Select) referencing the same table,

• functions called from any SQL statement cannot contain (or generate) TCL

statement (Commit, Rollback),

274 Lab 9 – Procedures, functions and packages

• also, calling any method from them is prohibited if any of the above rules are

violated.

We have dealt with multiple functions called from SQL, like to_char, to_date, round,

trunc, and many others previously. Now, there is an example of calling a user-defined

function. Principles are the same in comparison with standard server functions.

select student_id, name, surname,

 get_ects_count(student_id) as credit_number

 from personal_data join student using(personal_id)

 where student_id = 501567;

STUDENT_ID NAME SURNAME CREDIT_NUMBER

501567 Wiliam Whittel 19

However, what will happen, if you do not specify the person for who the total number

of credits should be summed?

Will the error be raised? If yes, why?

Select Into statement used in the PL/SQL block requires one significant property – result

set of the statement must get exactly one row (no less, no more).

What will happen if the Select statement in the procedure or function does not return

any data? Think of the following example.

declare

 v_count integer;

 v_student_id integer := null;

begin

 v_count := get_ects_count(v_student_id);

 dbms_output.put_line('Student ' || v_student_id || ' has ' ||

 v_count || ' credits.');

end;

/

A student cannot exist without an assigned student_id value. Although an exception

will be raised, it will not be visible to the user.

Student has credits.

Another example shows a similar situation. There is no student with student_id=1.

declare

 v_count integer;

 v_student_id integer := 1;

begin

 v_count := get_ects_count(v_student_id);

 dbms_output.put_line('Student ' || v_student_id || ' has ' ||

 v_count || ' credits.');

end;

/

The exception will be raised. However, it will be “invisible”. Thus, please do not rely

on it and ensure that no exception can be raised, respectively manage them.

The next chapter deals with Exception handling.

Lab 9 – Procedures, functions and packages 275

9.7 Exception handling
The optional Exception handler can extend each PL/SQL block.

[DECLARE

 Variable datatype[:=init_value];

]

BEGIN

 Commands;

[EXCEPTION

 WHEN exception_type1 THEN commands;

 WHEN exception_type2 THEN commands;

 ...

]

END;

/

As already highlighted, a subgroup of the exception is covered by the super-group.

Therefore, the order of the Exception listed is critical.

System exceptions characterize the first category. The second category forms user-

defined exceptions. The user-defined exception is raised explicitly if some specific situation

(problem) occurs. However, do not replace standard conditions, code tracing,

and standard management by raising exceptions. They should cover only special cases,

not standard functionality.

User exceptions can be raised by two approaches. The first one is based

on the RAISE_APPLICATION_ERROR method:

RAISE_APPLICATION_ERROR(error_code, error_description);

The error_code must belong to interval <-20999; -20000>. There is no need for special

functionality to cover user-defined exceptions in the Exception handler.

Another approach is based on the variable declaration, raising exception and error

processing:

• Declaration – exception type:

v_error_variable EXCEPTION;

• Exception raising:

RAISE v_error_variable;

• Error handling and processing:

EXCEPTION WHEN v_error_variable THEN commands;

So, let´s have a simple example, on which we will demonstrate principles and

opportunities.

276 Lab 9 – Procedures, functions and packages

declare

 v_name personal_data.name%type;

 v_surname personal_data.surname%type;

begin

 select name, surname into v_name, v_surname

 from personal_data

 where personal_id IS NULL;

 dbms_output.put_line(v_name || ' ' || v_surname);

end;

/

After launching such code, an exception will be raised – Select Into has returned no value:

ERROR at line 1:

ORA-01403: no data found

ORA-06512: at line 5

Think of the previous example. If no row is returned in the SELECT INTO command

in the PL/SQL block, an exception is raised. So, to solve such situation, add an Exception

handler to manage that exception type:

declare

 v_name personal_data.name%type;

 v_surname personal_data.surname%type;

begin

 select name, surname into v_name, v_surname

 from personal_data

 where personal_id IS NULL;

 dbms_output.put_line(v_name || ' ' || v_surname);

EXCEPTION

 WHEN no_data_found THEN

 dbms_output.put_line('Row with such defined personal_id ' ||

 'does not exist');

 WHEN others THEN

 dbms_output.put_line('Not covered error raised...');

end;

/

What about the results? No_data_found exception raised:

Row with such defined personal_id does not exist

PL/SQL procedure successfully completed.

However, what will happen, if you change the order in the Exception clause, “others”

type will also cover the “no_data_found” exception type.

Lab 9 – Procedures, functions and packages 277

declare

 v_name personal_data.name%type;

 v_surname personal_data.surname%type;

begin

 select name, surname into v_name, v_surname

 from personal_data

 where personal_id IS NULL;

 dbms_output.put_line(v_name || ' ' || v_surname);

EXCEPTION

 WHEN others then

 dbms_output.put_line('Not covered error raised...');

 WHEN no_data_found then

 dbms_output.put_line('Row with such defined personal_id ' ||

 'does not exist');

End;

/

The result is that it is even not possible to build it:

PLS-00370: OTHERS handler must be last among the exception handlers of a

block

So, notice that “Others” cover all exceptions, thus should be placed last.

The following table shows the most commonly used and raised standard (system

generated) errors. All of them with the description can be found in Oracle documentation.

Tab. 9.4: Exceptions

Exception
Oracle

Error

SQLCODE

Value
Raised when

ACCESS_INTO_NULL
ORA-

06530
-6530

Your program attempts to assign

values to the attributes

of an uninitialized (atomically

NULL) object.

CASE_NOT_FOUND
ORA-

06592
-6592

None of the choices

in the WHEN clauses

of a CASE statement is selected,

and there is no ELSE clause.

COLLECTION_IS_NULL
ORA-

06531
-6531

Your program attempts to apply

collection methods other than

EXISTS to an uninitialized

(atomically NULL) nested table

or varray. The program attempts

to assign values to the elements

of an uninitialized nested table

or varray.

CURSOR_ALREADY_OPEN
ORA-

06511
-6511

Your program attempts to open

an already open cursor. A cursor

must be closed before it can be

reopened. A cursor FOR loop

automatically opens the cursor

to which it refers. So, your

program cannot open that cursor

inside the loop.

278 Lab 9 – Procedures, functions and packages

Exception
Oracle

Error

SQLCODE

Value
Raised when

DUP_VAL_ON_INDEX
ORA-

00001
-1

Your program attempts to store

duplicate values in a database

column that is constrained

by a unique index.

INVALID_CURSOR
ORA-

01001
-1001

Your program attempts an illegal

cursor operation, such as closing

an unopened cursor.

INVALID_NUMBER
ORA-

01722
-1722

In a SQL statement, converting

a character string into a number

can generally fail because the

string does not represent a valid

number. (In procedural

statements, VALUE_ERROR is

raised.) This exception is also

raised when the LIMIT-clause

expression

in a bulk FETCH statement

does not evaluate a positive

number.

LOGIN_DENIED
ORA-

01017
-1017

Your program attempts to log on

to Oracle with an invalid

username and/or password.

NO_DATA_FOUND
ORA-

01403
100

A SELECT INTO statement

returns no rows, or your program

references a deleted element in a

nested table or an uninitialized

element in an index-by table. SQL

aggregate functions such as AVG

and SUM always return a value or

a NULL. So, a SELECT INTO

statement that calls an aggregate

function never raises

NO_DATA_FOUND.

The FETCH statement is

expected to return no rows

eventually, so when that happens,

no exception is raised.

NOT_LOGGED_ON
ORA-

01012
-1012

Your program issues a database

call without being connected to

Oracle.

PROGRAM_ERROR
ORA-

06501
-6501 PL/SQL has an internal problem.

ROWTYPE_MISMATCH
ORA-

06504
-6504

The host cursor variable and

PL/SQL cursor variable involved

in an assignment have

incompatible return types.

For example, when an open host

cursor variable is passed to

a stored subprogram, the return

types of the actual and formal

parameters must be compatible.

Lab 9 – Procedures, functions and packages 279

Exception
Oracle

Error

SQLCODE

Value
Raised when

SELF_IS_NULL
ORA-

30625
-30625

Your program attempts to call

a MEMBER method on a NULL

instance. That is, the built-in

parameter SELF (which is always

the first parameter passed to a

MEMBER method) is null.

STORAGE_ERROR
ORA-

06500
-6500

PL/SQL runs out of memory or

memory has been corrupted.

SUBSCRIPT_BEYOND_COUNT
ORA-

06533
-6533

Your program references a nested

table or varray element using an

index number larger

than the number of elements in

the collection.

SUBSCRIPT_OUTSIDE_LIMIT
ORA-

06532
-6532

Your program references a nested

table or varray element using an

index number outside the legal

range (e.g. -1).

SYS_INVALID_ROWID
ORA-

01410
-1410

The conversion of a character

string into a universal ROiWID

fails because the character string

does not represent a valid

ROWID.

TIMEOUT_ON_RESOURCE
ORA-

00051
-51

A time-out occurs while Oracle is

waiting for a resource.

TOO_MANY_ROWS
ORA-

01422
-1422

A SELECT INTO statement

returns more than one row.

VALUE_ERROR
ORA-

06502
-6502

Arithmetic, conversion,

truncation, or size-constraint error

occurs. For example, when your

program selects a column value

into a character variable,

if the value is longer than the

declared length of the variable,

PL/SQL aborts the assignment

and raises VALUE_ERROR.

In procedural statements,

VALUE_ERROR is raised if the

conversion of a character string

into a number fails. (In SQL

statements, INVALID_NUMBER

is raised.)

ZERO_DIVIDE
ORA-

01476
-1476

Your program attempts to divide

a number by zero.
 Source: docs.oracle.com

280 Lab 9 – Procedures, functions and packages

Raising user-defined exception using RAISE_APPLICATION_ERROR method:

CREATE OR REPLACE PROCEDURE

 Proc_register_subj(p_st_id student.student_id%type,

 P_subj_id subject.subject_id%type,

 P_year study_subjects.school_year%type)

IS

 V_count integer;

begin

 select count(*) into v_count

 from student

 where student_id = p_st_id;

 IF v_count = 0 THEN

 RAISE_APPLICATION_ERROR(-20000, 'Such student does not exist...');

 END IF;

 select count(*) into v_count

 from subject

 where subject_id = p_subj_id;

 IF v_count = 0 THEN

 RAISE_APPLICATION_ERROR(-20001, 'Such subject does not exist...');

 END IF;

 select count(*) into v_count

 from subject_year

 where subject_id = p_subj_id and school_year = p_year;

 IF v_count = 0 THEN

 RAISE_APPLICATION_ERROR(-20002, 'Such subject cannot be ' ||

 'registered during defined school year...');

 END IF;

 select count(*) into v_count

 from study_subjects

 where subject_id = p_subj_id and school_year = p_year

 and student_id = p_st_id;

 IF v_count = 1 THEN

 RAISE_APPLICATION_ERROR(-20003, 'Such subject is already ' ||

 'registered for particular student and school year');

 END IF;

 -- everything ok, new data row can be inserted

 insert into study_subjects(school_year,student_id,subject_id,lecturer)

 select school_year, p_st_id, subject_id, guarantee

 from subject_year

 where subject_id = p_subj_id and school_year = p_year;

end;

/

An exception will be raised after launching a defined procedure because the determined

student does not exist.

execute Proc_register_subj(null, 'BI06', 2015);

ORA-20000: Such student does not exist.

Lab 9 – Procedures, functions and packages 281

Now, try another example. Execute procedure with other parameters:

execute Proc_register_subj(550545, 'BI06', 2015);

ORA-20002: Such subject cannot be registered during the defined school

year.

If you define the correct data, the procedure will be completed successfully.

execute Proc_register_subj(550545, 'BI06', 2009);

PL/SQL procedure successfully completed.

The second example is based on the RAISE command:

CREATE OR REPLACE PROCEDURE

 Proc_register_subj(p_st_id student.student_id%type,

 P_subj_id subject.subject_id%type,

 P_year study_subjects.school_year%type)

IS

 V_count integer;

 Err1 EXCEPTION;

 Err2 EXCEPTION;

 Err3 EXCEPTION;

 Err4 EXCEPTION;

begin

 select count(*) into v_count

 from student

 where student_id = p_st_id;

 IF v_count = 0 THEN

 RAISE err1;

 END IF;

 select count(*) into v_count

 from subject

 where subject_id = p_subj_id;

 IF v_count = 0 THEN

 RAISE err2;

 END IF;

 select count(*) into v_count

 from subject_year

 where subject_id = p_subj_id and school_year = p_year;

 IF v_count = 0 THEN

 RAISE err3;

 END IF;

 select count(*) into v_count

 from study_subjects

 where subject_id = p_subj_id

 and school_year = p_year

 and student_id = p_st_id;

 IF v_count = 1 THEN

 RAISE err4;

 END IF;

282 Lab 9 – Procedures, functions and packages

 -- everything ok, new data row can be inserted

insert into study_subjects(school_year, student_id, subject_id, lecturer)

 select school_year, p_st_id, subject_id, guarantee

 from subject_year

 where subject_id = p_subj_id and school_year = p_year;

EXCEPTION

 WHEN err1

 THEN dbms_output.put_line('Such student does not exist.');

 WHEN err2

 THEN dbms_output.put_line('Such subject does not exist.');

 WHEN err3

 THEN dbms_output.put_line('Such subject cannot be registered during

 the defined school year.');

 WHEN err4

 THEN dbms_output.put_line('Such subject is already registered for

 particular student and school year');

 WHEN others

 THEN dbms_output.put_line('Another exception has been raised...');

end;

/

Thus, how to define a function to get a total number of credits for a particular student

without raising any error? What about students with no registered (passed) subjects yet?

You can use OUTER JOIN to ensure that the total number will be processed. However,

an exception will be raised if you specify student_id, which is not assigned to any student.

Be aware, the name of the parameter or variable cannot be the same as the attribute

name of the table or view in the Select statement. It is a severe mistake, which the compiler

cannot distinguish. However, it can produce incorrect data results. The name of the attribute

has higher importance (weight).

9.8 Ways of passing parameters

Database system Oracle provides three ways to pass parameters to the stored PL/SQL

block – by position, by name or the combination of both previously mentioned.

9.8.1 Position way of passing parameters.

If the position way of passing parameters is used, in that case, the order of values

to be passed must reflect the order of definition of the stored PL/SQL block, so let´s have

the following example:

create or replace proc_register_subj

 (p_st_id student.student_id%type,

 p_subj_id subject.subject_id%type,

 p_year study_subjects.school_year%type)

So, the first parameter should identify the student (p_st_id), then, you must write

an identifier of the subject (p_subj_id), and the last one, there is information about the school

year (p_year). By using position way, there is no possibility to change the order. If

some attribute value should be omitted, it must also be noted there (e.g., by using NULL

value):

execute proc_register_subj(12345, 'BI06', 2015);

Lab 9 – Procedures, functions and packages 283

execute proc_register_subj(12345, 'BI06', NULL);

Let´s have another example of the procedure:

create or replace procedure proc_set_exam_result

 (p_st_id student.student_id%type,

 p_subj_id subject.subject_id%type,

 p_year study_subjects.school_year%type,

 p_result study_subjects.result%type,

 p_date study_subjects.exam_date%type DEFAULT sysdate)

...

In the case of the position way approach, the execution command looks like following:

exec proc_set_exam_result(1, 'BI', 2014, 'A',

 to_date(15.7.2017, 'DD.MM.YYYY'));

Notice the default value in the procedure header. DEFAULT values can be processed

only at the end of the definition. Thus, if we have the following header of the function,

we have to code each value for the first four parameters explicitly. The last one is enhanced

with a default value.

exec proc_set_exam_result(1, 'BI', 2014, 'A');

However, if you change the order in the definition, then the DEFAULT value cannot

be used when using position way:

create or replace procedure proc_set_exam_result

 (p_date study_subjects.exam_date%type DEFAULT sysdate,

 p_st_id student.student_id%type,

 p_subj_id subject.subject_id%type,

 p_year study_subjects.school_year%type,

 p_result study_subjects.result%type)

...

9.8.2 Passing parameters using names

Named way of passing parameters is another technique, each parameter value

is associated directly with the name. In that case, the order of parameter definition

(and DEFAULT values) is not important:

proc_set_exam_result(123 => p_st_id,

 sysdate-1 => p_date,

 'BI06' => p_subj_id,

 2015 => p_year,

 'C' => p_result);

The default value can be assigned automatically by omitting a particular value during

the calling – p_date will be set based on the default value.

proc_set_exam_result(123 => p_st_id,

 'BI06' => p_subj_id,

 2015 => p_year,

 'C' => p_result);

284 Lab 9 – Procedures, functions and packages

9.8.3 Hybrid passing

In this case, the first parameters can be passed using position, followed by naming

convention. However, be aware, all parameters after using any named convention must

be called by name. Hybrid passing is a combination of position and name passing.

Let´s have the following example again:

Create or replace procedure proc_set_exam_result

 (p_st_id student.student_id%type,

 p_subj_id subject.subject_id%type,

 p_year study_subjects.school_year%type,

 p_result study_subjects.result%type,

 p_date study_subjects.exam_date%type DEFAULT sysdate)

So, the first three examples are correct, however, the fourth cannot be used:

proc_set_exam_result(123, 'BI06', 2015, 'A', sysdate);

proc_set_exam_result(123, 'BI06', 'A' => p_result, 2015 => p_year,

 sysdate => p_date);

proc_set_exam_result(123, 'BI06', 2015 => p_year, sysdate => p_date,

 'A' => p_result);

proc_set_exam_result(123, 'BI06', 2015 => p_year, 'A', sysdate);

In the following calling, default value for p_date will be used:

proc_set_exam_result(123, 'BI06', 2015 => p_year, 'A' => p_result);

9.9 Differences between anonymous and stored (named)

PL/SQL block
The main difference between anonymous and stored (name) PL/SQL blocks is execution.

Anonymous block is executed directly after compilation, and its code is not stored

in the database. On the other hand, procedure and function are delimited by their unique

name, and its processing has two phases – compilation and execution. Once the stored

PL/SQL block is compiled, it can be used and executed multiple times without direct access

to the implementation code. Keeping the named (stored) PL/SQL block can be processed

more effectively based on optimization techniques (like using statistics). The code

of the named PL/SQL block is stored in the data dictionary. Original file with the code

of the method is not later necessary for the processing.

9.10 Removing procedures and functions

To remove stored PL/SQL block from the system, the following syntax should be used:

drop procedure procedure_name;

drop function function_name;

drop procedure raise_salary;

Lab 9 – Procedures, functions and packages 285

Result:

Procedure dropped;

Function dropped.

9.11 Select statement in PL/SQL

Results of the Select statement in the PL/SQL block must be stored for processing.

If the statement result is only one row, the SELECT … INTO type definition can be used.

The cursor can provide generalization and can deal with any Select statement based

on resulting cardinality.

9.11.1 SELECT INTO type

To use the SELECT INTO type, the particular Select statement must return directly

one row. Otherwise, an Exception will be raised (no_data_found or ORA-01422: exact fetch

returns more than requested a number of rows).

After keyword INTO, there is a list of variables. The order must correspond

with the definition in the Select statement clause. For variables definition, the data type

can be copied from the table attribute (table_name.attribute_name%type). Moreover,

the record can be defined to store all attributes together.

SELECT list_of_attributes INTO list_of_variables

 FROM ...

Example:

declare

 v_name personal_data.name%type;

 v_surname personal_data.surname%type;

 v_count integer;

begin

 select name, surname, count(subject_id) into v_name, v_surname, v_count

 from personal_data JOIN student using(personal_id)

 LEFT JOIN study_subjects using(student_id)

 where student_id = 550545

 group by name, surname, student_id;

 dbms_output.put_line('Total number of student ('

 || v_name || ' ' || v_surname

 || ') subjects is ' || v_count || '.');

end;

/

Total number of student (Carol Pearce) subjects is 3.

Using record definition, the solution will look like the following. The record is defined

as the type with individual elements listed after the “is record” keyword. Each element

286 Lab 9 – Procedures, functions and packages

consists of the name and data type. The defined variable itself uses such type as data type

(v_rec t_rec):

declare

 type t_rec is record(

 name personal_data.name%type,

 surname personal_data.surname%type,

 count integer

);

 v_rec t_rec;

begin

 select name, surname, count(subject_id) into v_rec

 from personal_data JOIN student using(personal_id)

 LEFT JOIN study_subjects using(student_id)

 where student_id = 550545

 group by name, surname, student_id;

 dbms_output.put_line('Total number of student (' || v_rec.name || ' '

 || v_rec.surname || ') subjects is '

 || v_rec.count ||'.');

end;

/

9.11.2 CURSOR

In this chapter, we will deal only with static cursor type. Dynamic cursor definition is out

of the scope of this subject. Using cursor definition, the total number of data rows in the result

set is not essential. However, they have to be processed sequentially. DBS Oracle

does not provide scroll cursor functionality for row identifier management and definition.

It can manage only sequential cursors.

There are many cursor definitions. Cannan [6] defines it as a mechanism allowing access

to table rows. Pokorný [68] extends the definition – a cursor is an object of SQL language,

which numbers the data in the record set obtained by the Select statement and allows to

update or delete currently addressed record tuple. Finally, Matiaško [49] [50] provides the

following definition – cursor is the object of SQL language, which makes entries available,

obtained from the Select statement.

We will distinguish three cursor types. The coding techniques only cause their difference.

However, they provide the same result sets.

Let´s have an anonymous block, by which we want to list the names and actual class

of the actual students:

The Select statement to provide required data will look like this:

select name, surname, student_id, class

 from personal_data JOIN student using(personal_id)

 where final_date IS NULL;

To encapsulate it into PL/SQL block, it is necessary to define a cursor.

Fig. 9.2 shows the commands for dealing with cursors – declare, open, fetch, process and

close.

Lab 9 – Procedures, functions and packages 287

Fig. 9.2: Cursor processing step; source: Oracle PL/SQL and administration materials

Cursor processing and management can be associated with the box (container)

in the memory. The Declaration clause creates the box with the data inside. Opening cursor

causes opening the box making data available. Individual fetch operations retrieve data until

the box is empty. Then, the defined box is closed and freed from the memory.

Fig. 9.3: Cursor processing step; source: Oracle PL/SQL and administration materials

Open command ensures these activities:

• the syntax of the Select statement checking,

• controlling access rights,

• checking the existence of the tables and columns inside,

• specifies the active set,

• allocates memory for the defined command,

• sets the pointer to the beginning of the memory space.

Close command:

• undefines the active set,

• releases and frees allocated memory.

The cursor itself can be used after the declaration and opening cursor itself. Otherwise,

an exception will be raised.

Fetch command is a core part of the cursor definition – moves the pointer to the current

(consecutive) row of the active set and enforces the data selection of the current row

from the database by placing it into allocated memory.

Notice that DBS usually locks all rows, which are accessed using a cursor. Therefore,

commit and rollback commands close all opened cursors and release locks.

288 Lab 9 – Procedures, functions and packages

The following example shows the cursor's explicit definition and manages it explicitly

by opening, fetching, and closing the cursor.
declare

 cursor cur_st IS select name, surname, student_id, class

 from personal_data JOIN student using(personal_id)

 where final_date IS NULL;

 v_row cur_st%rowtype;

begin

 open cur_st;

 loop

 fetch cur_st into v_row;

 exit when cur_st%notfound;

 dbms_output.put_line(v_row.name || ' ' || v_row.surname || ', ' ||

 v_row.student_id || ', class: ' || v_row.class);

 end loop;

 close cur_st;

end;

/

The results will look like this:

Milan Clarke, 500426, class: 2

Hugo Davis, 500425, class: 2

Michael Pearce, 501512, class: 3

Carol Pearce, 550545, class: 1

John Pearce, 550698, class: 2

…

Do not forget to close the cursor at the end of the execution, although it will be closed

automatically after the execution. However, if you would like to process data multiple times

using the same cursor in one PL/SQL block, it must be opened before processing (an open

operation can be made only if the cursor is in the closed state).

For example purposes, we have used the record v_row defined automatically

with the same structure as the cursor. Thus, the data type will be defined like this –

cur_st%rowtype.

An infinite loop is used with the command Exit when cur_st%notfound to ensure

the limitation of the processing. If no other data can be obtained, processing in the loop ends.

Be careful. When using this cursor processing type, the following keywords must

be present (in the following order) when coding – open, loop, fetch, exit, end loop, close.

Another cursor type is easier for coding because open, close, and fetch operations

are managed automatically using the code and should not be written explicitly. It is based

on using FOR loop:

declare

 cursor cur_st IS select name, surname, student_id, class

 from personal_data JOIN student using(personal_id)

 where final_date IS NULL;

begin

 for v_row in cur_st loop

 dbms_output.put_line(v_row.name || ' ' || v_row.surname || ', ' ||

 v_row.student_id || ', class: ' || v_row.class);

 end loop;

end;

/

Lab 9 – Procedures, functions and packages 289

Using this FOR loop approach, FOR keyword expresses and also executes automatic

OPENing of the cursor. Each transition reflects FETCH operation. END LOOP command

also executes the CLOSE operation. Therefore, they cannot be coded explicitly. If you try

to close the cursor after processing explicitly, an exception will be raised:

declare

 cursor cur_st IS select name, surname, student_id, class

 from personal_data JOIN student using(personal_id)

 where final_date IS NULL;

begin

 for v_row in cur_st loop

 dbms_output.put_line(v_row.name || ' ' || v_row.surname || ', ' ||

 v_row.student_id || ', class: ' || v_row.class);

 end loop;

 close cur_st;

end;

/

ORA-01001: invalid cursor

A particular case of the FOR loop processing with emphasis on the cursor is based

on the direct association of the FOR loop with the cursor definition by the Select statement.

Thus, there is no defined variable for the cursor. However, if you want to use such a cursor

twice or more times, every time, it must be coded explicitly without any possibility

to reference it once again.

begin

 for v_row in (select name, surname, student_id, class

 from personal_data JOIN student using(personal_id)

 where final_date IS NULL) loop

 dbms_output.put_line(v_row.name || ' ' || v_row.surname || ', ' ||

 v_row.student_id || ', class: ' || v_row.class);

 end loop;

end;

/

Likewise, FOR loop implicitly defines the structure for result fetching. The structure

is the same as the data inside the cursor.

Although it can also be defined in the declare section, they are separate variables

with differing relevance, as demonstrated by the following example.

declare

 control integer := 1;

begin

 for control in (select student_id from student) loop

 dbms_output.put_line(control.student_id);

 end loop;

 dbms_output.put_line(control);

end;

/

550123

550127

550807

550945

...

290 Lab 9 – Procedures, functions and packages

There is no possibility to manage variable “control” inside the loop because, in that block,

it is predefined using FOR loop.

Be sure implicitly defined variable “control” inside the FOR loop is always record,

although only one attribute or function is referenced inside the particular Select statement.

Name of the attribute or alias (if dealing with functions creating an attribute, the result must

be aliased to be possible to reference them) delimits the structure of the record.

Thus, in standard conditions, inside the FOR loop, the only reference to particular record

can be done:

declare

 control integer := 1;

begin

 for control in (select student_id from student) loop

 control.student_id := 10;

 control := 1; --it is impossible to perform

 dbms_output.put_line(control.student_id);

 end loop;

 dbms_output.put_line(control);

end;

/

However, do not be confused. It is available to reference and overlap individual validities.

Individual parts of the code can be named, and by using such names, the individual variable

scope can be delimited to potential problems. How does it work? The principles

can be effectively described in the example:

<<main>>

declare

 control integer:=0;

begin

 <<inner>>

 for control in (select student_id from student) loop

 main.control := main.control + 1;

 dbms_output.put_line(control.student_id);

 dbms_output.put_line(inner.control.student_id);

 dbms_output.put_line(main.control);

 end loop;

 dbms_output.put_line(control);

end;

/

Provided results:

500422

500422

2

500423

500423

3

500424

500424

4

…

In that case, in the inner block, a higher priority gets the record. Thus, it can be referenced

directly (control.student_id) or by using name of the block (inner.control.student_id).

Lab 9 – Procedures, functions and packages 291

But referencing variable defined in the outer (<<main>>) block, it is necessary to use

also its name – block name (main. control).

So, as you can see, you can have multiple structures with the same name, but it is not very

convenient to use it. Developers and programmers managing code can be confused.

As procedures and functions, also cursors can depend on parameters, which are

then obviously reflected as conditions. Parameters are defined after the name of the cursor:

declare

 cursor cur_st(p_class integer) is

 select name, surname, student_id

 from personal_data join student using(personal_id)

 where class = p_class;

begin

 for v_row in cur_st(1) loop

 dbms_output.put_line(v_row.name || ' ' || v_row.surname || ', ' ||

 v_row.student_id);

 end loop;

end;

/

Jack Robinson, 501333

Mark Bailey, 501555

Carol Pearce, 550545

John Young, 550127

Suzanne Walker, 550123

Mark Vox, 501448

To conclude the processing data generated by the Select statement in the PL/SQL block,

let’s show you one more complex example of cursor processing. The aim is to create a header

for each student followed by his registered subjects. The solution will be based on two

cursors. One of them will make a header. The second one will list the registered subjects. As

you can see, the second cursor (cur_subj) will be used multiple times but with different

parameters. Therefore, proper managing of the CLOSE operation is significant.

For the explanation purposes, lines are numbered:

 1 declare

 2 cursor cur_st is select name, surname, student_id

 3 from personal_data join student

 using(personal_id);

 4 cursor cur_subj(st_id integer) is (select subject_id, name

 5 from study_subjects join subject

 using(subject_id)

 6 where student_id=st_id);

 7 v_student cur_st%rowtype;

 8 v_subject cur_subj%rowtype;

 9 begin

 10 open cur_st;

 11 loop

 12 fetch cur_st into v_student;

 13 exit when cur_st%notfound;

 14 dbms_output.put_line('Name: '|| rpad(v_student.name,15) ||

 15 'Surname: ' || rpad(v_student.surname,15)||

 16 'ID: ' || rpad(v_student.student_id,15));

 17 open cur_subj(v_student.student_id);

292 Lab 9 – Procedures, functions and packages

 18 loop

 19 fetch cur_subj into v_subject;

 20 exit when cur_subj%notfound;

 21 dbms_output.put_line('...' || rpad(v_subject.subject_id,8) ||

 v_subject.name);

 22 end loop;

 23 close cur_subj;

 24 end loop;

 25 close cur_st;

 26 end;

Lines 1-8 are used for variables declaration. There are two cursors defined – the second

one is parametrical. Fetched records of the cursors are assigned to defined variables (lines

7,8). Lines 10-26 form the body of the PL/SQL block. First, the cursor for managing students

is opened (line 10), then individual student records are subsequently assigned to a defined

variable (line 12) and written to the console (line 14-16). The limitation of the LOOP

processing is provided by line 13. If the row has been read, a particular student identifier

(student_id of the v_student variable) is passed as a parameter to the second cursor (line 17),

which lists the subjects for a particular student (line 18-23). If you omit to CLOSE the second

cursor (line 23), during the processing of the second student, an exception will be raised:

ORA-06511: PL/SQL: cursor already open.

The output will look like this:
Name: Jacob Surname: Murgas ID: 550945

...BN10 Communication technologies

...BI10 Java

...BI06 Database systems - the best subject :)

Name: Jack Surname: Clever ID: 501003

...BI06 Database systems - the best subject :)

...BI06 Database systems - the best subject :)

...BS03 Software engineering

Name: Mark Surname: Vox ID: 501448

...BI03 Programming language C

...BI23 Object programming

...BA10 Theory of managing schedules

Name: Sim Surname: Eas ID: 501559

...BI06 Database systems - the best subject :)

9.12 Increasing control – access rights
The standard method management approach is based on accessing objects owned

by the owner of such a method. Thus, if there is no fully qualified object name (owner_name.

object_name), the owner schema object is accessed by default. Let´s have a simple example,

which gets the number of rows of the student table. Let´s assume that such a procedure

is created by user Kvet (Kvet is the owner of the procedure).

Lab 9 – Procedures, functions and packages 293

create or replace procedure get_student_count

is

 v_count integer;

begin

 select count(*) into v_count from student;

 dbms_output.put_line('Number of rows in the student table is: ' ||

 v_count);

end;

/

Regardless of who executes the procedure, the result will be 37.

-- KVET

execute get_student_count;

Number of rows in the student table is: 37

Then, grant execute privilege to Kmat:

-- KVET

grant execute on get_student_count to Kmat;

And execute defined procedure by user Kmat:

-- KMAT

execute kvet.get_student_count;

Number of rows in the student table is: 37

To demonstrate that it reflects the table of the Kvet schema, let´s remove all data

from the student table of the user Kvet (be careful with referential integrity):

-- KVET

delete from study_subjects;

delete from student;

commit;

The result of the calling procedure by both users is value 0:

-- KVET

execute get_student_count;

Number of rows in the student table is: 0

-- KMAT

execute kvet.get_student_count;

Number of rows in the student table is: 0

Some cases require increasing control access rights mechanism to the used objects.

One way to deal with it is to transfer control rights to the user who wants to execute

a particular method.

If we want to control user access rights, who wants to execute the method, it is necessary

to define it in the particular method using the AUTHID CURRENT_USER clause. It means

that the default approach controlling the owner of the method is redefined and moved

to the user, who executes the method (default schema for object access is redefined).

Thus, control mechanisms (rights on objects used in the method) are performed before

the execution itself. If no AUTHID CURRENT_USER clause is defined, only rights

to execute a particular method are controlled (EXECUTE privilege). Notice that

294 Lab 9 – Procedures, functions and packages

in the previous example, user Kmat does not need to have privileges to the student table

of Kvet schema.

Let's have the following example.

First of all, user Kvet creates a table converting the exam percentage to the string format.

-- KVET

Create table result_tab

 (perc_from integer,

 perc_to integer,

 result char(1),

 description varchar2(50));

Then, the table is filled.

-- KVET

insert into result_tab values(93, 100, 'A', 'excellent results');

insert into result_tab values(85, 92, 'B', 'results above average');

insert into result_tab values(77, 84, 'C', 'results on average');

insert into result_tab values(69, 76, 'D', 'acceptable result');

insert into result_tab values(61, 68, 'E',

 ' results fulfilling the minimum requirements');

insert into result_tab values(0, 60, 'F',

 ' failed - further work required');

commit;

Afterward, user Kvet creates function get_result and authorizes the user who wants

to execute such function.
-- KVET

Create or replace function get_result (p_points integer)

 return varchar2

 AUTHID CURRENT_USER

is

 v_Result varchar2(35);

begin

 select result_tab.result || ' - ' || description into v_result

 from kvet.result_tab

 where p_points between perc_from and perc_to;

 return v_result;

EXCEPTION

 when others then return 'unknown';

end;

/

Add privileges to Kmat a let him execute the defined function.

-- KVET

grant execute on get_result to KMAT;

-- KMAT

select KVET.get_result(95) from dual;

What will be the result? Will it be associated with result “A”? No, at all. The result will

be “unknown”.

KVET.GET_RESULT(95)

--

unknown

Lab 9 – Procedures, functions and packages 295

Try to explain the reason why that happened.

The reason is that exception has been raised because user Kmat does not have

the privilege to access the result_table table of the user Kvet. Whereas the OTHERS type

in the EXCEPTION covers all exception types, it has been processed by it.

That is the consequence of using AUTHID CURRENT_USER, so access rights to the table

must be granted to the caller. Notice that the owner of the table inside the function is defined

explicitly. A side effect of using the AUTHID CURRENT_USER clause is checking access

rights for the objects inside the method.

Therefore, if the table privilege is granted, results are corrected (notice that the table

in the query inside the function contains the fully qualified name of the table

(kvet.result_tab)):

-- KVET

grant select on result_tab to KMAT;

Then, the results of the method are correct – privileges are successfully checked,

table of kvet user is accessed:

GET_RESULT(95)

--

A – excellent results

By the definition of access rights controlling, one stored PL/SQL block can deal

with multiple tables based on the schema of the caller. So, if the table name in the Select

statement in the PL/SQL block is not prefixed by the user schema, the caller schema will be

used during the execution.

Let´s create the function in the KVET schema and grant the EXECUTE privilege to

KMAT:

-- KVET

create or replace function get_result (p_points integer)

 return varchar2

 AUTHID CURRENT_USER

is

 v_Result varchar2(35);

begin

 select result_tab.result || ' - ' || description into v_result

 from result_tab

 where p_points between perc_from and perc_to;

 return v_result;

EXCEPTION

 when others then return 'unknown';

end;

/

-- KVET

grant execute on get_result to KMAT;

Now, let´s have the table result_tab in KVET and also KMAT schema. What will happen

if the data in the tables are not the same (realize that the table inside the function does

296 Lab 9 – Procedures, functions and packages

not denote schema explicitly)? They will get different results, although both call the same

function. Let´s have the example:

-- KMAT

Create table result_tab(perc_from integer,

 perc_to integer,

 result char(1),

 description varchar2(30));

-- KMAT

insert into result_tab values(90, 100, 'A', 'excellent results');

insert into result_tab values(80, 89, 'B', 'results above average');

insert into result_tab values(70, 79, 'C', 'results on average');

insert into result_tab values(60, 69, 'D', 'acceptable result');

insert into result_tab values(50, 59, 'E',

 ' results fulfilling the minimum requirements');

insert into result_tab values(0, 49, 'F',

 ' failed - further work required');

What about the results? Emphasize the results:

-- KVET

select KVET.get_result(90) from dual;

GET_RESULT(90)

B – results above average

-- KMAT

Select KVET.get_result(90) from dual;

GET_RESULT(90)

A – excellent results

Thus, be aware each user processes his own table representation. Therefore, they can

get different results.

9.13 Packages

A package is a schema object which can group multiple types, items, and subprograms

(procedure and functions). Compared with standalone function or procedure, the package

supports the overloading of the methods.

The package usually has two parts – specification and body. However, the body

is optional but traditionally defined, too (if the specification does not have a method

definition, there is no necessity to define the body. Otherwise, it is required – all methods

must be implemented in the body). The specification defines the interface between

the implemented code of the subprograms and the user interface (application interface).

It contains all variables, constants, cursors, exceptions, and header of the methods, which

can be called from the outside environment, so it is a public part of the package. On the other

hand, there is also a private part, called a body. It contains the implementation of all methods,

regardless of whether they are public or private, and also it deals with local (private)

variables, cursors, and exceptions. Private methods and items can be managed only inside

the package by the implemented methods. There is no possibility to deal with them externally.

There is also possible to authorize the caller (AUTHID CURRENT_USER), but that clause

Lab 9 – Procedures, functions and packages 297

is associated with the whole package, not with individual methods, and should be listed

in the specification. The following figure shows the principles of the package definition

and association with the applications, and then, the syntax is defined.

Fig. 9.4: Package

9.13.1 Package specification syntax

CREATE [OR REPLACE] PACKAGE package_name

 [AUTHID {CURRENT_USER | DEFINER}]

 {IS | AS}

 [PRAGMA SERIALLY_REUSABLE;]

 [collection_type_definition ...]

 [record_type_definition ...]

 [subtype_definition ...]

 [collection_declaration ...]

 [constant_declaration ...]

 [exception_declaration ...]

 [object_declaration ...]

 [record_declaration ...]

 [variable_declaration ...]

 [cursor_spec ...]

 [function_spec ...]

 [procedure_spec ...]

 [call_spec ...]

 [PRAGMA RESTRICT_REFERENCES(assertions) ...]

END [package_name];

/

298 Lab 9 – Procedures, functions and packages

9.13.2 Package body syntax

[CREATE [OR REPLACE] PACKAGE BODY package_name {IS | AS}

 [PRAGMA SERIALLY_REUSABLE;]

 [collection_type_definition ...]

 [record_type_definition ...]

 [subtype_definition ...]

 [collection_declaration ...]

 [constant_declaration ...]

 [exception_declaration ...]

 [object_declaration ...]

 [record_declaration ...]

 [variable_declaration ...]

 [cursor_body ...]

 [function_spec ...]

 [procedure_spec ...]

 [call_spec ...]

[BEGIN

 sequence_of_statements]

END [package_name];]

/

When trying to compile the package, at first, compile specifications. It is impossible

to compile the body successfully without the compilation of specifications without errors.

Moreover, the specification can be used without a body, but no body can exist without

specification.

Be aware that each package specification and package body, as well as standalone

procedure or function, MUST end with the command “END;“ followed by the slash (/)

in the separate line. If it is missing, during the compilation, the system will wait to complete

the definition. We want to highlight it because often, students are confused and do not know

why the defined method is not compiled. Slash is a default delimiter of the code block.

Example of the package specification:

Create or replace package pack_student

is

 Procedure Register_subject(p_st_id integer,

 p_subj_id char,

 p_year study_subjects.school_year%type);

 Procedure Set_result(p_st_id integer,

 p_subj_id char,

 p_year study_subjects.school_year%type,

 p_result study_subjects.result%type);

 Procedure Set_result(p_st_id integer,

 p_subj_id char,

 p_year study_subjects.school_year%type,

 p_result study_subjects.result%type,

 p_exam_date date);

end;

/

Lab 9 – Procedures, functions and packages 299

Example of the package body:

Create or replace package body pack_student

is

 procedure register_subject(p_st_id integer,

 p_subj_id char,

 p_year study_subjects.school_year%type)

 is

 v_count integer;

 begin

 select count(*) into v_count

 from student

 where student_id = p_st_id;

 IF v_count = 0 then

 RAISE_APPLICATION_ERROR(-20000, 'Such student does not exist...');

 END IF;

select count(*) into v_count

 from subject

 where subject_id = p_subj_id;

 IF v_count = 0 then

 RAISE_APPLICATION_ERROR(-20001, 'Such subject does not exist...');

 END IF;

 select count(*) into v_count

 from subject_year

 where subject_id = p_subj_id and school_year = p_year;

 IF v_count = 0 then

 RAISE_APPLICATION_ERROR(-20002, 'Such subject cannot be registered

during defined school year...');

 END IF;

 select count(*) into v_count

 from study_subjects

 where subject_id = p_subj_id and school_year = p_year and

 student_id = p_st_id;

 IF v_count = 1 then

 RAISE_APPLICATION_ERROR(-20003, 'Such subject is already registered

for particular student and school year');

 END IF;

 -- everything ok, new data row can be inserted

 insert into study_subjects(school_year, student_id, subject_id,

 lecturer)

 select school_year, p_st_id, subject_id, guarantee

 from subject_year

 where subject_id = p_subj_id and

 school_year = p_year;

 end register_subject;

 Procedure Set_result(p_st_id integer, p_subj_id char,

 p_year study_subjects.school_year%type,

 p_result study_subjects.result%type)

 is

 v_count integer;

300 Lab 9 – Procedures, functions and packages

 begin

 select count(*) into v_count

 from study_subjects

 where school_year = p_year

 and student_id = p_st_id

 and subject_id = p_subj_id;

 IF v_count=0 then

 RAISE_APPLICATION_ERROR(-20004, 'Such subject has not been

registered for particular student and school year');

 END IF;

 select count(*) into v_count

 from study_subjects

 where school_year = p_year

 and student_id = p_st_id

 and subject_id = p_subj_id

 and RESULT IS NULL;

 IF v_count=0 then

 RAISE_APPLICATION_ERROR(-20005, 'Such subject has been already

evaluated by the result. You cannot change it.');

 END IF;

 -- everything ok, row can be updated

 update study_subjects

 set result = p_result, exam_date = sysdate

 where school_year = p_year

 and student_id = p_st_id

 and subject_id = p_subj_id;

 end Set_result;

 Procedure Set_result(p_st_id integer, p_subj_id char,

 p_year study_subjects.school_year%type,

 p_result study_subjects.result%type,

 p_exam_date date)

 is

 v_count integer;

 Begin

 select count(*) into v_count

 from study_subjects

 where school_year = p_year

 and student_id = p_st_id

 and subject_id = p_subj_id;

 IF v_count=0 then

 RAISE_APPLICATION_ERROR(-20004, 'Such subject has not been

registered for particular student and school year');

 END IF;

 select count(*) into v_count

 from study_subjects

 where school_year = p_year

 and student_id = p_st_id

 and subject_id = p_subj_id

 and RESULT IS NULL;

Lab 9 – Procedures, functions and packages 301

 IF v_count=0 then

 RAISE_APPLICATION_ERROR(-20005, 'Such subject has been already

evaluated by the result. You cannot change it.');

 END IF;

 -- everything ok, row can be updated

 update study_subjects

 set result = p_result, exam_date = p_exam_date

 where school_year = p_year

 and student_id = p_st_id

 and subject_id = p_subj_id;

 end Set_result;

end pack_student;

/

What about if you want to change the implementation of any procedure? No problem,

existing applications are associated with package specification. Thus, only the package body

is needed to be recompiled. If you want to add a private method, you can make the change

and then recompile only the package body.

However, the problem can occur if you want to change the package specification.

If the specification is modified, it has to be compiled. Moreover, also package body should

be recompiled.

Let's have the following example. We want to add a public function, which will express

whether such student has already passed successfully defined subject (return value

will be TRUE), otherwise, return value will be FALSE. Alter package is used.

Alter package pack_student

 add function student_pass(p_st_id integer, p_subj_id char)

 return boolean rebuild;

Now, new functionality is added to package pack_student specification. However,

it cannot be used because the package body does not reflect the change, so it is necessary

to add its implementation to the package body. Notice that such added function cannot

be used in SQL statements because it returns non-SQL data type result (boolean).

Packages have a lot of advantages in comparison with standalone methods. It is possible

to group related actions and types together with regards to overloading, which is not possible

to be done directly (without packaging). Moreover, we can define private methods,

which will not be available outside the package. Also, private items (constants, variables, ...)

can be defined.

9.13.3 Overloading

As you can see in the previous example, one of the main advantages of the package

is overloading technology (only methods in the package can be overloaded). In that case,

methods can have the same name, but they differ in parameters – multiple solutions can have

the same name). However, take care of implicit conversions when using overloading.

If various methods can be used, the system cannot evaluate which one it should use

so that the exception will be raised.

Let´s see the following example. There is no problem distinguishing between methods

to be used because each one has another number of parameters.

302 Lab 9 – Procedures, functions and packages

Create or replace package pack_student

is

 procedure Register_subject(p_st_id integer,

 p_subj_id char,

 p_year

 study_subjects.school_year%type);

 procedure Set_result(p_st_id integer,

 p_subj_id char,

 p_year study_subjects.school_year%type,

 p_result study_subjects.result%type);

 procedure Set_result(p_st_id integer,

 p_subj_id char,

 p_year study_subjects.school_year%type,

 p_result study_subjects.result%type,

 p_exam_date date);

end;

/

However, let´s have another example. Can you assume, which procedure will be used,

when calling? No, because both procedures have the same name and compatible parameter

data type, which can be converted to each other implicitly. In that case, the system cannot

decide which one should be used.

Create or replace package pack_overloading

is

 Procedure proc(str char);

 Procedure proc(str varchar);

end;

/

However, if the names of the parameters differ, the named notation can be used

to distinguish the method to be called.

create or replace package pack_overloading

is

 Procedure proc(str1 char);

 Procedure proc(str2 varchar);

end;

/

exec pack_overloading.proc('some string' => str1);

9.13.4 Initialization block

An optional part of the package is an initialization block, which is executed only once

when there is the first reference on the package – when it is loaded to the memory.

Initialization block is located at the end of the package body, started with the BEGIN

Lab 9 – Procedures, functions and packages 303

command, until the end of the body. Notice there is no extra END command

of the initialization, only the global end of the package body:

[CREATE [OR REPLACE] PACKAGE BODY package_name {IS | AS}

 [PRAGMA SERIALLY_REUSABLE;]

 [collection_type_definition ...]

 [record_type_definition ...]

 [subtype_definition ...]

 [collection_declaration ...]

 [constant_declaration ...]

 [exception_declaration ...]

 [object_declaration ...]

 [record_declaration ...]

 [variable_declaration ...]

 [cursor_body ...]

 [function_spec ...]

 [procedure_spec ...]

 [call_spec ...]

[BEGIN

 sequence_of_statements]

END [package_name];]

/

So, let´s have the following example – create a package with one public procedure,

which can set the private variable and one public function to get the actual value of it.

Let´s create an initialization block and see the principles and results:

create or replace package pack_init

is

 procedure Set_value_proc(p_id integer);

 function Get_value_func return integer;

end;

/

create or replace package body pack_init

is

 value integer;

 procedure Set_value_proc(p_id integer)

 is

 begin

 value := p_id;

 end;

 function Get_value_func return integer

 is

 begin

 return value;

 end;

begin

 value := 1;

end pack_init;

/

So, execute the following statement sequence. What about the results? Think and check

your assumption (results are bold).

304 Lab 9 – Procedures, functions and packages

select pack_init.Get_value_func() from dual;

PACK_INIT.GET_VALUE_FUNC()

 1

exec pack_init.Set_value_proc(2);

PL/SQL procedure successfully completed.

select pack_init.Get_value_func() from dual;

PACK_INIT.GET_VALUE_FUNC()

 2

Be aware. The defined package is loaded into memory during the first reference.

However, it is loaded to PGA (Process Global Area), not SGA (System Global Area), causing

that every process (each session) has its own values and variables of the package.

Thus, one session does not affect the other:

Add user “Kmat” privilege to execute such defined package:

grant execute on pack_init to Kmat;

Now, execute the following methods by user “Kvet” and “Kmat” and compare results.

See that the results do not influence another user.

-- Kvet

select pack_init.Get_value_func() from dual;

PACK_INIT.GET_VALUE_FUNC()

 1

exec pack_init.Set_value_proc(2);

PL/SQL procedure successfully completed.

select pack_init.Get_value_func() from dual;

PACK_INIT.GET_VALUE_FUNC()

 2

-- Kmat (immediately after)

select kvet.pack_init.Get_value_func() from dual;

PACK_INIT.GET_VALUE_FUNC()

 1

exec pack_init.Set_value_proc(3);

PL/SQL procedure successfully completed.

select pack_init.Get_value_func() from dual;

PACK_INIT.GET_VALUE_FUNC()

 3

Lab 9 – Procedures, functions and packages 305

-- Kvet (immediately after)

select pack_init.Get_value_func() from dual;

PACK_INIT.GET_VALUE_FUNC()

 2

The same results will be reached if two sessions of the same user are used.

9.14 Practice
1. Create procedure Get_group_proc, which will consist of these six parameters:

• Workplace (abbreviation of the town – first letter):

o Z – Zilina

o P – Prievidza

• Field (its numerical value) – a reference to st_field table

• Specialization (its numerical value) – a reference to st_field table

• Class

• Sequence number of the group (1, 2, 3, ... A, B, C ...)

• St_group as an OUTPUT parameter

The aim is to create the value for the study group and return it using the output

parameter st_group.

Example: input: Z, 100, 0, 1, 2 output: 5ZI012

 input: Z, 101, 0, 3, A output: 5ZP03A

Abbreviations for fields and specializations can be found in the table

ABBREVIATION_TAB in the KVET_ENG schema.

desc kvet_eng.abbreviation_tab

Name Null Type

--

FIELD_ID NOT NULL NUMBER(3)

SPECIALIZATION_ID NOT NULL NUMBER(1)

FIELD_ABBR CHAR(1)

SPEC_ABBR CHAR(1)

2. Rewrite the previous procedure and create a similar function (Get_group_func).

The value to be returned is a study group.

3. Try to use such function (Get_group_func) in the Select statement. Is it possible?

4. Create procedure Add_subject_proc, which will execute Insert statement

of the new subject into the subject table.

Try to insert the following data. Is it possible? If not, why?

• Subject_id: BI14, name: Advanced database indexing

• Subject_id: BI12, name: Introduction to studying

• Subject_id: BI12, name: Introduction to studying

5. Extend the previous procedure (Add_subject_proc) by adding particular exception

handling. Test it.

6. Try to use the previous procedure (Add_subject_proc) to add the following data

to the table. Is it possible? If not, why?

• Subject_id: null, name: Unknown subject name

306 Lab 9 – Procedures, functions and packages

7. Extend the previous procedure (Add_subject_proc) by adding particular exception

handling. Test it.

8. Create function Get_student_count_func, which will have two parameters (subject

identifier and school year). The result of the processing should be the total number

of students who registered for a particular subject at a defined school year.

9. List the name of the subjects with the total number of students by using the previous

function (Get_student_count_func).

10. Create the function Register_func, which will register the student for a particular

subject. The school year should be based on the actual date:

• if the actual month belongs to the following interval <1,8>, the school year

should be decreased by one,

• if the actual month belongs to the following interval <9,12>, use the actual

school year.

Example: actual date: 23.3.2016 --> 2015

 1.11.2016 --> 2016

Check the conditions before attempting to Insert new data. Return information (boolean)

expresses whether it is possible to add it or not. Can we use that function in the Select

statement? If not, adjust it and recompile once again.

Homework practice:

1. Create function Get_birth_func, which parameter will be personal_id, and the return

value will be the birth date.

2. Create function Change_subj_func, which will perform the Update operation

of the subject name. Input parameter will be the identifier of the subject and new

name. The return value should be:

• The old name of the subject (if the defined subject exists),

• Constant string “nothing”, if no subject with defined identifier was found.

3. Create package pack_management and define methods ensuring the following

requirements:

• Register students for the particular subject. It can be done only if he has not

already passed it successfully before (also during another study of a particular

person).

• Get the actual value of the credits associated with the student (only if the

subject is passed successfully (based on ending_type)).

Attribute ending_type of the subject_year table:

o B exam + accreditation to exam,

o E exam,

o S semester only (no exam).

• Get the length of the study of the defined student.

• Register (insert) new student into the system. Ensure that he has no parallel

study during a defined time.

4. Create procedure List_stud_proc, which will list all students

(using dbms_output.put_line method) who achieved at least 40 credits (based

on attribute ects) (take into account only subjects, which are passed successfully).

5. Create procedure Delete_stud_proc, which will accept one parameter – identifier

of the student. It will delete data from the student table (emphasizing referential

integrity). If he has no other references in the student table, remove his information

from the personal_data table.

Lab 10 – Triggers 307

Lab 10 – Triggers

This lab provides the reader a complex integrity management overview using the trigger

associated with Insert, Update or Delete statement forming the DML trigger. It is a specific

functionality that is fired automatically if a particular event occurs. The trigger can be

statement type (fired only once regardless of the number of changed rows) or row (fired once

for each applied row). In this lab, the reader will be navigated through the syntax and

definition restrictions. He will learn how to influence the values manipulated through the

operations (records) and limit the trigger firing to specific conditions.

As discussed in the section, triggers provide a robust solution for maintaining integrity.

However, some constraints can be ensured using easier solutions, like CHECK constraints,

default values, etc.

In section 10.11, the reader will learn the sequences, their definitions, and parameters,

which can provide sufficient solutions for the primary key definition. The trigger commonly

does association. There are two methods for obtaining value – NEXTVAL by applying the

specified INCREMENT and CURVAL getting the current value.

Finally, the reader will get an overview related to the DDL and event triggers.

10.1 Introduction
The trigger is a stored procedure associated with the object or object type. Oracle manager

automatically executes a trigger (independent of user or application that ran particular

command) if the defined conditions are met. DML trigger can be fired only with destructive

DML statements (Insert, Update, Delete). The important fact is that one trigger can be

associated only with one object (table or view). It cannot be associated with the Select

statement at all. Moreover, it cannot accept arguments.

Triggers provide a wide range of possibilities; the main tasks for them are following:

• ensure complex data security,

• restrict undesirable activities,

• allow creating strategic application rules,

• monitor user activity and data processing (audits),

• ensure synchronization,

• create statistics about the table management and activities,

• ensure consistency and referential integrity for all nodes in a distributed

environment,

• …

A particular category is formed using DDL triggers. They deal with creating persistent

database objects and reflect the security politics.

The central part of this lab focuses on DML triggers. We will just briefly introduce

principles of DDL trigger as well in the second part of the lab.

308 Lab 10 – Triggers

10.2 Syntax

CREATE [OR REPLACE] TRIGGER [schema.]trigger_name

{ {BEFORE | AFTER}

 {INSERT | DELETE | UPDATE [OF column_name1 [column2 [, ...]]]}

 OR {DELETE | INSERT | UPDATE [OF column_name1 [column2 [, ...]]]}

 [...]

|

INSTEAD OF {INSERT | UPDATE | DELETE}}

 ON [schema.]table_name

 [REFERENCING {OLD [AS] old_name | NEW [AS] new_name}]

 [FOR EACH ROW]

 [WHEN (condition)]

trigger_body

Each trigger must have its name. The firing position can be either before or after

the associated operations. We can define one trigger for multiple operations, but only for one

object (table or view). Triggers can be fired either at all times or when the conditions are met.

By using the UPDATE [OF column_name1 [column2 [, …]] clause, the number of times

the trigger is fired is reduced – trigger is not associated only with the update statement itself,

but also particular attributes must be updated. List of them is in UPDATE

[OF column_name1 [column2 [, …]] clause.

Referencing clause allows renaming referential records. However, it can be used only

for triggers, which are launched for each changed row. Thus, it must contain For Each Row

clause to express it. Two records can be recognized – the new record can be used

only for the Insert and Update statement operation (Delete statement naturally has the only

old image of the row). The old record can be used only for the Update and Delete statement.

The structure of the New and Old record is the same as the associated table or view schema

(e.g. when the trigger is associated with student table, the particular record has these elements

– student_id, personal_id, field_id, specialization_id, class, st_group, final_date, status,

and first_date). Using New and Old records can identify attribute changes with the Update

operation. Some specific conditions and checks can be done using them.

Notice that new or old values must be colon prefixed. However, in the When clause,

particular records New and Old are not prefixed by the colon (:).

:new.personal_id

:old.class

One of the essential parameters influencing how many times the trigger is launched

for a particular statement is based on using or not using For Each Row clause.

Let´s have the following example. Create log_table consisting of the username

(user_name) and the actual time of the command execution (exec_date):

Create table log_table(user_name varchar2(20), exec_date date);

Create a trigger (associated with the Update operation, it can be executed before as well

as after performing Update statements, whereas it deals with another table) with no For Each

Lab 10 – Triggers 309

Row clause (in that case, we can say that trigger type is Statement Trigger – executed only

once regardless the number of processed rows):

Create or replace trigger trig_log_ss

 after update on study_subjects

begin

 insert into log_table

 values(user, sysdate);

end;

/

Now, update multiple rows using only one Update statement:

update study_subjects

 set school_year = 2009

 where school_year = 2008;

As a result, five rows are updated.

5 rows updated.

However, how many rows have been inserted into log_table? Only one, whereas trigger

has been executed once for the whole statement.

COUNT(*)

1

Also, notice that in that case, New or Old records cannot be used at all.

If you want to execute it for each changed row, an additional clause For Each Row

has to be added. In that case, each row change is reflected by the log_table, and the trigger

is considered as Row Trigger. Moreover, in this case, it is also possible to get and store

historical value (using Old record) and actual record (using New record).

So, if the previous Update statement is executed once again (active transaction is rolled

back) and five rows are updated, also five rows are inserted into log_table:

rollback;

Create or replace trigger trig_log_ss

 after update on study_subjects

 FOR EACH ROW

begin

 insert into log_table

 values(user, sysdate);

end;

/

As evidence, update multiple rows using only one Update statement. What will happen?

update study_subjects

 set school_year = 2009

 where school_year = 2008;

5 rows updated.

In this case, the trigger is fired for each influenced row. Check the number of log records:

select count(*) from log_table;

310 Lab 10 – Triggers

COUNT(*)

5

So, now, let´s create another logging table (log_student) containing information

about the original and new attribute values:

Create table log_student

 (student_id integer,

 new_field integer,

 new_specialization integer,

 old_field integer,

 old_specialization integer,

 old_st_group integer,

 new_st_group integer,

 ...);

The original attribute value is stored in the particular attribute prefixed by “Old”,

new values are stored using “New” prefix of the attributes:

Create or replace trigger trig_st

 before update on student

 for each row

begin

 insert into log_student

 values(:new.student_id, :new.field_id, :new.specialization_id,

 :old.field_id, :old.specialization_id, ...);

end;

/

However, what data are stored in the individual records if the value does not change?

NULL or not? Let´s examine the following example. Create log_table to manage the status

of the student, associate it with the trigger and execute the Update statement:

Create table log_table(old_status char(1),

 new_status char(1),

 user_name varchar2(20),

 exec_date date);

Create or replace trigger trig_student_status

 before update on student

 for each row

begin

 insert into log_table

 values(:old.status, :new.status, user, sysdate);

end;

/

update student

 set final_date = sysdate

 where student_id = 550945;

1 rows updated.

What about the data in the log_table? Realize that the status of the student has not been

updated.

select old_status as "OLD", new_status as "NEW", user_name, exec_date

 from log_table;

Lab 10 – Triggers 311

OLD NEW USER_NAME EXEC_DATE

S S KVET_ENG 06.02.2017

Even though attribute value has not been changed, particular record elements store

the real values (new – after the operation, old – original values).

10.3 Restrictions for trigger definition
There are several restrictions to be highlighted dealing with the trigger definition and

management, namely:

• The trigger's body can contain data manipulation language (DML) statements,

but it cannot handle the same table. Select statements themselves must

be encapsulated by the cursors or should return only one row. In that case, the

Select Into type can be used.

• No TCL statements are allowed (Commit, Rollback, and Savepoint), whereas

processed data changes would become permanent, respectively, they would

be immediately abolished.

• DDL statements are not allowed inside the trigger body at all. Why? Naturally,

because of the transactions.

• Variables with data types Long and Long Raw cannot be used with Old and New

records.

• Moreover, these requirements also apply to methods, which are called inside the

body of the trigger.

10.4 Triggers turning on and off
The trigger can be associated with multiple operations and is fired automatically.

Database systems allow you to manage triggers with emphasis on their enabling or disabling.

In general, when the trigger definition is compiled, the particular trigger is turned on.

However, if it is necessary to suspend the trigger, two possibilities are proposed – using alter

trigger characteristics – it is used to disable the trigger temporarily.

ALTER TRIGGER [schema.]trigger {ENABLE | DISABLE};

To disable all triggers associated with the particular table, it is not necessary to do it

sequentially for each trigger, but all of them can be managed using one command:

ALTER TABLE [schema.]table_name {ENABLE | DISABLE} ALL TRIGGERS;

Another approach is to drop the trigger. However, after that, there will be no information

about the trigger's existence nor the body of the trigger.

To remove the trigger from the system, use the following command code:

DROP TRIGGER [schema.]trigger;

10.5 Changes monitoring
The trigger can provide a powerful solution for change monitoring over time. For these

purposes, a row trigger should be defined for accessing individual changes. If you want to add

only changed data to the log_table, the following solution can be introduced. However,

remember that NULL value, in this case, delimits no change. Even if NULL values have

312 Lab 10 – Triggers

special meaning in a given system, no conflict can occur because if the value is changed

in one record, it can be easily discovered (the original and new value would not be the same).

Let´s have the table personal_data from our labs. As we can see, the majority of attributes

can be NULL.

Which attributes will change their values? How often? Typically, the name is not changed

frequently (rarely). Another case, however, occurs with the surname. If the woman gets

married, in our region, she typically takes the surname of her husband. Thus, for men,

changes are not performed. For women – it is usually a question of one update. Sure, a few

exceptions are allowable. Vice versa, a person's address can be changed unlimited times.

Thus, individual attribute changes have a different granularity of the changes. Therefore,

NULL can mainly solve those granularity inconsistencies.

So, let´s demonstrate the situation. Let´s have the log_table and particular trigger

for managing changes. It will be associated with the Update statements.

Create table log_person

 (personal_id char(11),

 old_name varchar2(15),

 old_surname varchar2(15),

 old_street varchar2(20),

 old_town varchar2(50),

 old_zip char(5),

 old_nationality char(2),

 new_name varchar2(15),

 new_surname varchar2(15),

 new_street varchar2(20),

 new_town varchar2(50),

 new_zip char(5),

 new_nationality char(2));

The body of the trigger should evaluate individual attribute changes. Notice that you

cannot change New or Old record values because if so, the change will be reflected

in the database by the Update statement.

Thus, we will define a local variable for each attribute and evaluate the change between

Old and New record in the body:

create or replace trigger trig_person_change

 before update on personal_data

 for each row

declare

 v_personal_id personal_data.personal_id%type;

 -- old

 v_old_name personal_data.name%type;

 v_old_surname personal_data.surname%type;

 v_old_street personal_data.street%type;

 v_old_town personal_data.town%type;

 v_old_zip personal_data.zip%type;

 v_old_nationality personal_data.nationality%type;

 -- new

 v_new_personal_id personal_data.personal_id%type;

 v_new_name personal_data.name%type;

 v_new_surname personal_data.surname%type;

 v_new_street personal_data.street%type;

 v_new_town personal_data.town%type;

 v_new_zip personal_data.zip%type;

 v_new_nationality personal_data.nationality%type;

Lab 10 – Triggers 313

begin

 if :new.name <> :old_name then

 v_new_name := :new.name;

 v_old_name := :old.name;

 end if;

 if :new.surname <> :old_surname then

 v_new_surname := :new.surname;

 v_old_surname := :old.surname;

 end if;

 if :new.street <> :old_street then

 v_new_street := :new.street;

 v_old_street := :old.street;

 end if;

 if :new.town <> :old_town then

 v_new_town := :new.town;

 v_old_town := :old.town;

 end if;

 if :new.zip <> :old_zip then

 v_new_zip := :new.zip;

 v_old_zip := :old.zip;

 end if;

 if :new.nationality <> :old_nationality then

 v_new_nationality := :new.nationality;

 v_old_nationality := :old.nationality;

 end if;

 insert into log_person values(:new.personal_id,

 v_old_name, v_old_surname, v_old_street,

 v_old_town, v_old_zip, v_old_nationality,

 v_new_name, v_new_surname, v_new_street,

 v_new_town, v_new_zip,

 v_new_nationality);

end;

/

String variables are implicitly defined as NULL. If that is not so, we can initialize values

in the variable definition part or add the Else clause of the processing.

The following example is based on adding the Else clause.
 -- ...

 if :new.name <> :old_name then

 v_new_name := :new.name;

 v_old_name := :old.name;

 else

 v_new_name := NULL;

 v_old_name := NULL;

 end if;

 -- ...

Another solution is based on using the Initialization clause.

314 Lab 10 – Triggers

create or replace trigger trig_person_change

 before update on personal_data

 for each row

declare

 v_personal_id personal_data.personal_id%type;

 -- old

 v_old_name personal_data.name%type := NULL;

 v_old_surname personal_data.surname%type := NULL;

 -- ...

Be aware, an empty string is considered as the NULL:

declare

 v_str varchar2(10) := ''; -- there cannot be any character inside!

begin

 if v_str IS NULL then

 dbms_output.put_line('Variable is NULL');

 else

 dbms_output.put_line('Variable is empty, but NOT NULL');

 end if;

end;

/

When executing the defined block, the following result will be obtained:

Variable is NULL

 Question for thinking about – what is the limitation of the Row and Statement trigger?

Can they be directly replaced by each other?

10.6 Default values

Default values can be assigned to the table attribute in the definition. If no attribute value

is set, the value to be stored to be used is replaced by the default value. However, be aware

no value, in this case, does not equal NULL value, as it already shows the following

example:

create table TAB(id integer not null primary key, val integer DEFAULT 3);

insert into TAB values(1, 1);

insert into TAB values(2, null);

insert into TAB(id) values(3);

Data in the table are following:

select * from TAB;

ID ID2

1 1

2 (null)

3 3

Thus, as you can see, if a NULL value is written explicitly, the default value

will not be used at all.

To remove that limitation, the trigger for setting value can be defined. In that case,

it can also be extended for NULL values – if the NOT NULL value is required, the predefined

Lab 10 – Triggers 315

value will be used. However, it cannot be said, and it is the default value because

of the keyword of the database system. The following solution is prone to NULLs.

create table TAB2(id integer not null primary key, val integer);

Create or replace trigger trig_Tab2_default

 before insert on TAB2

 for each row

begin

 if :new.val IS NULL then

 :new.val := 3;

 end if;

end;

/

Perform three Insert statements and compare the results with the previous example.

insert into TAB2 values(1, 1);

insert into TAB2 values(2, null);

insert into TAB2(id) values(3);

select * from TAB2;

ID ID2

1 1

2 3

3 3

In Oracle 12c version, a new clause – default on null – was introduced. Thus, if the value

is undefined or not specified, it will be replaced by the default value. Consequently, a NULL

value is replaced, as well.

create table TAB3(id integer not null primary key,

 val integer DEFAULT ON NULL 3);

insert into TAB3 values(1, 1);

insert into TAB3 values(2, null);

insert into TAB3(id) values(3);

Data in the table are following:

select * from TAB3;

ID ID2

1 1

2 3

3 3

10.7 Conditions for trigger firing
Typically, some data portions can be made only by privileged people. Grant command

cannot be directed for particular table rows, only for the whole object (table). Thus, if you

Grant the user KMAT privilege to Update table Employee, in that case, KMAT can update

any attribute of the particular table. To highlight the problem and propose a solution, create

the table Employee, insert one row to it, end successfully transaction (Commit) and grant

316 Lab 10 – Triggers

privileges to KMAT. Consequently, his task will be to update the existing row

of the Employee table owned by KVET.

-- KVET

Create table employee(emp_id integer primary key,

 date_from date not null,

 date_to date,

 salary integer);

insert into employee values(1, sysdate, null, 1000);

commit;

grant update on employee to KMAT;

Notice that in the previous definition, there is no necessity to write the Commit command

explicitly. The reason is based on the Grant command definition, which is automatically

associated with Commit (when managing transactions, once again, never forget that all TCL,

DDL, and DCL always commands end transaction successfully (implicit Commit)).

select * from employee;

EMP_ID DATE_FROM DATE_TO SALARY

1 06.02.2017 (null) 1000

If the user KMAT performs an Update statement in the Employee table owned by KVET,

it will not be automatically visible to other sessions because of the transaction isolation

property. So, what must be done to do so?

-- KMAT

update kvet.employee set salary = 5000;

-- KVET

select * from employee;

EMP_ID DATE_FROM DATE_TO SALARY

1 06.02.2017 (null) 1000

-- KMAT

select * from kvet.employee;

EMP_ID DATE_FROM DATE_TO SALARY

1 06.02.2017 (null) 5000

Sure, to see the same results, began transaction of the KMAT user must be confirmed.

commit;

Now, also user KVET will see the same results as user KMAT.

-- KVET

select * from employee;

EMP_ID DATE_FROM DATE_TO SALARY

1 06.02.2017 (null) 5000

Lab 10 – Triggers 317

To prevent users from changing sensitive data, the trigger can be added limiting

a particular operation to a specific user or group based on defined conditions:

Create or replace trigger trig_emp

 before update of salary on employee

 for each row

 when (user not in 'KVET')

begin

 raise_application_error(-20000, 'Sorry, you cannot change salary.');

end;

/

Any attempt to update the Employee table except owner (KVET) will end with raising

an exception. Thus, no data will be updated.

-- KMAT

update kvet.employee set salary = 3000;

ORA-20000: Sorry, you cannot change salary.

ORA-06512: at "KVET.TRIG_EMP", line 2

ORA-04088: error during execution of trigger 'KVET.TRIG_EMP'

How does it work? When will the trigger be fired? What are the conditions?

When will be the When clause executed?

The trigger is fired only if the condition in When the clause is evaluated as True.

Thus, for user KVET, no trigger is fired.

-- KMAT

update kvet.employee set date_to = sysdate; -- trigger does not fire...

1 row updated.

However, an attempt to update also salary attribute will activate the trigger,

and an exception will be raised:

-- KMAT

update kvet.employee

 set date_to = sysdate+30, salary = 2000;

ERROR at line 1:

ORA-20000: Sorry, you cannot change salary.

ORA-06512: at "KVET_ENG.TRIG_EMP", line 2

Whereas exception has been raised, a particular statement (not the whole transaction)

is rolled back. Thus, the date_to attribute value is not updated, too.

What about the difference and performance consequences if the When clause is omitted,

respectively moved to the trigger's body? Will it be better, or not?

In the following example, the trigger will always be fired, and if the condition is met,

an exception will be raised. Thus, also for KMAT, as well as KVET, the trigger is fired.

318 Lab 10 – Triggers

Create or replace trigger trig_emp

 before update on employee

 for each row

begin

 if (user not in ('KVET') and :new.salary <> :old.salary) then

 raise_application_error(-20000, 'Sorry, you cannot change salary.');

 end if;

end;

/

The solution to using When clause looks like following:

Create or replace trigger trig_emp

 before update on employee

 for each row

 when (user not in ('KVET') and new.salary <> old.salary)

begin

 raise_application_error(-20000, 'Sorry, you cannot change salary.');

end;

/

Notice that using an update of the clause is more convenient and effective:

Create or replace trigger trig_emp

 before update of salary on employee

 for each row

 when (user not in 'KVET')

begin

 raise_application_error(-20000, 'Sorry, you cannot change salary.');

end;

/

10.8 One trigger – multiple operations

One trigger can be associated with multiple DML operations specified in the header

of a particular trigger. However, it can be associated only with one table or view. If you create

a trigger for logging, it will be necessary to distinguish also operation, which has been

performed. For these purposes, the condition IF INSERTING, IF UPDATING,

or IF DELETING can be used. Let´s create a table for logging performed operations

on the student table. If such a table exists in your system, you can drop or rename it.

Create table log_student

 (old_student_id integer,

 new_student_id integer,

 operation char(1),

 username varchar2(30),

 exec_date date);

We will define only one trigger for all destructive DML operations. In the body

of the trigger, conditions are used to distinguish between performed operations. Such

a solution aims to group and manage common code together. However, the same solution

would be obtained if you divide the solution into three separate triggers that call the same

stored procedure/function with emphasis on parameter values (differentiating the operation).

Lab 10 – Triggers 319

Create or replace trigger trig_log_st

 before insert or update or delete

 on student

 for each row

begin

 if inserting then

 insert into log_student

 values(null, :new.student_id, 'I', user, sysdate);

 end if;

 if updating then

 insert into log_student

 values(:old.student_id, :new.student_id, 'U', user, sysdate);

 end if;

 if deleting then

 insert into log_student

 values(:old.student_id, null, 'D', user, sysdate);

 end if;

end;

/

This trigger ensures that each performed destructive operation will be logged.

This information of activity will be stored:

• name of the user, who performed the operation,

• when the operation has been performed,

• which operation type has been executed.

In that case, any update operation will be logged. If you want to reduce individual

operations to be logged (e.g., only for status updating), a particular condition is extended

by the name IF UPDATING('attribute_name') like in the following example:

Create or replace trigger trig_log_st

 before insert or update or delete

 on student

 for each row

begin

 if inserting then

 insert into log_student

 values(null, :new.student_id, 'I', user, sysdate);

 end if;

 if updating('status') then

 insert into log_student

 values(:old.student_id, :new.student_id, 'U', user, sysdate);

 end if;

 if deleting then

 insert into log_student

 values(:old.student_id, null, 'D', user, sysdate);

 end if;

end;

/

Each update operation of the attribute status will be logged. However, what will happen,

if you update such attribute value with its original one? Will it be logged?

320 Lab 10 – Triggers

update student set status=status;

37 rows updated.

All rows in the student table will be updated. However, the new value will be the same

as the original. Thus, as a consequence, another 37 rows will be inserted into the log_student

table by the trigger. To overcome this deficiency, implemented conditions of the Update

statement are extended, as follows:

Create or replace trigger trig_log_st

 before insert or update or delete

 on student

 for each row

begin

 if inserting then

 insert into log_student

 values(null, :new.student_id,'I', user, sysdate);

 end if;

 if (updating('status') and :old.status<>:new.status) then

 insert into log_student

 values(:old.student_id, :new.student_id, 'U', user, sysdate);

 end if;

 if deleting then

 insert into log_student

 values(:old.student_id, null, 'D', user, sysdate);

 end if;

end;

/

10.9 Referential integrity management
The trigger can also be defined for referential integrity management. If you want

to remove a student from the system, particular references must be solved sooner

(information about studied subjects must be deleted sooner). The trigger can be defined

to provide the desired functionality to remove the necessity of explicit management of such

a situation.

Let´s have the following trigger to provide cascade operations – to delete registered

subject data before attempting to delete the student data themselves.

create or replace trigger trig_st_del_cascade

 before delete on student

 for each row

declare

 v_count integer;

begin

 select count(*) into v_count

 from study_subjects

 where student_id = :old.student_id;

 delete from study_subjects

 where student_id = :old.student_id;

 dbms_output.put_line(v_count ||

 ' rows have been deleted from the study_subjects table');

end;

/

Lab 10 – Triggers 321

To avoid querying table study_subjects twice (select and delete), a predefined function

for getting the RowCount of the last processed operation can be used:

create or replace trigger trig_st_del_cascade

 before delete on student

 for each row

begin

 delete from study_subjects

 where student_id = :old.student_id;

 dbms_output.put_line(SQL%ROWCOUNT ||

 ' rows have been deleted from the study_subjects table');

end;

/

A bit complicated situation can occur if you want to deal with the referential integrity

in cascade type for the table personal_data. If you want to remove a person from the system,

particular references must be solved sooner (student data must be deleted sooner). However,

when dealing with a student removal, information about studied subjects must be deleted.

The trigger can be defined to provide the desired functionality to remove the necessity

of explicit management of such a situation. However, how to get the identifier of the student?

Can the SELECT ... INTO statement type be used? Why not?

Let´s have the following trigger to provide cascade operations for deleting data

from the personal_data table. First, student identifier (student_id) for such a person

is obtained and processed using a cursor. For each student found, particular study subjects

are deleted, followed by the student delete himself. Then, the personal_data row is deleted

automatically (after execution of the trigger).

create or replace trigger trig_person_del_cascade

 before delete on personal_data

 for each row

declare

 cursor st_cur(p_person_id char) is select student_id

 from student

 where personal_id = p_person_id;

 v_count_st integer:=0;

 v_count_subj integer:=0;

begin

 for rec in st_cur(:old.personal_id) loop

 delete from study_subjects

 where student_id = rec.student_id;

 v_count_subj := v_count_subj+SQL%ROWCOUNT;

 delete from student

 where student_id = rec.student_id;

 v_count_subj := v_count_subj+1;

 end loop;

 dbms_output.put_line(v_count_st ||

 ' rows has been deleted from the student table');

 dbms_output.put_line(v_count_subj ||

 ' rows has been deleted from the study_subjects table');

end;

/

However, is it possible to simplify the previous code to avoid using cursors? If not, why?

322 Lab 10 – Triggers

The solution is based on using subqueries.

create or replace trigger trig_person_del_cascade

 before delete on person

 for each row

begin

 delete from study_subjects where student_id IN (select student_id

 from student

 where

 personal_id = :old.personal_id);

 dbms_output.put_line(SQL%ROWCOUNT ||

 ' rows has been deleted from the student table');

 delete from student where personal_id = :old.personal_id;

 dbms_output.put_line(SQL%ROWCOUNT ||

 ' rows has been deleted from the study_subjects table');

end;

/

10.10 Changing the value of the primary key

The problem can arise if there is a necessity to update the primary key value. If the primary

key consists of the value obtained by the sequence (chapter 10.11 Sequences and triggers),

there is no reason to update it. This is because it does not have a specific meaning. However,

what about our student model and table personal_data? The primary key of the table

personal_data is personal_id and reflects the birth_date and gender of the person. If there

is any mistake when adding a new person to the database, it is necessary to correct it later

(when the error is discovered).

Direct Update statement of the primary key of the table personal_data is not possible due

to referential integrity. Then, we will try to update the personal_id of the person Jack

Robinson from the value “791229/5431” to “790229/5431”. It would be possible

for a person who is not a student to execute it like this.

update personal_data

 set personal_id = '790229/5431'

 where personal_id = '791229/5431';

ORA-02292: integrity constraint (KVET_ENG.SYS_C00552853)

 violated - child record found

To solve the problem without using triggers, we have to perform multiple DML

operations (INSERT INTO PERSONAL_DATA, UPDATE STUDENT, DELETE FROM

PERSONAL_DATA), whereas the personal_id value is referenced in the student table.

The aim is to update the personal_id of the person Jack Robinson from the value

“791229/5431” to “790229/5431”. In the following example, the new value

of the personal_id attribute is written as constant in the Select statement forming Insert

operation.

insert into personal_data(personal_id, name, surname,

 street, zip, town, nationality)

 (select '790229/5431', name, surname, street, zip, town, nationality

 from personal_data

 where personal_id = '791229/5431');

Lab 10 – Triggers 323

update student

 set personal_id = '790229/5431'

 where personal_id = '791229/5431';

delete from personal_data

 where personal_id = '791229/5431';

A bit complicated, isn´t it? However, changing the primary key's value using a trigger,

the solution is more accessible, whereas integrity constraints are checked after the trigger

operation.

CREATE OR REPLACE TRIGGER trig_cascade_pid

 AFTER UPDATE OF personal_id ON person

 FOR EACH ROW

BEGIN

 UPDATE student SET personal_id = :new.personal_id

 WHERE personal_id = :old.personal_id;

END;

/

10.11 Sequences and triggers
A sequence is a database object mainly used for assigning a value to the attribute

(like autoincrement, which is not directly defined for Oracle DBS). Each sequence can be

identified by its unique name and can provide two methods:

• to get actual value – seq_name.currval

• to get the following value-based on definition – seq_name.nextval.

10.11.1 Sequence syntax

CREATE SEQUENCE [schema.]sequence_name

 [{INCREMENT BY | START WITH} integer]

 [{MAXVALUE integer | NOMAXVALUE}]

 [{MINVALUE integer | NOMINVALUE}]

 [{CYCLE | NOCYCLE}]

 [{CACHE integer | NOCACHE}]

 [{ORDER | NOORDER}];

All of the proposed clauses are self-explanatory. However, some principles will be

described using examples. Create the following sequence.

create sequence seq1

 start with 100

 increment by 10

 maxvalue 200

 cycle;

Such a defined sequence has the following parameters:

• starting value (start with) is 100,

• executing next_val function means adding the increment (value 10) to the actual

value,

• maximal value (maxvalue) for associating values is 200,

• if the maximal value is reached, the CYCLE keyword forces the sequence to be

restarted.

324 Lab 10 – Triggers

So, if the sequence is created, we can use it, e.g., in Select statements. However, to use

such a defined sequence, it must be at first initialized by calling its function – nextval. If not,

an exception will be raised:

select seq1.currval from dual;

ORA-08002: sequence SEQ1.CURRVAL is not yet defined in this session

Thus, the initialization is done by calling the nextval function.

select seq1.nextval from dual;

100

Recalling of the function nextval will provide value 110.

select seq1.nextval from dual;

110

The last value in the first round is 200. If the second round is started, what value

will be used? One hundred? Or one?

It is necessary to differentiate between starting value and minimal value (which is not set

using our defined sequence, so default value “1” will be used automatically). Thus, if there

is no minimum value set, the next value will be one. So, let´s assume that the actual value

of the sequence is 200. Calling the function nextval will provide the value 1.

select seq1.nextval from dual;

1

If you create another sequence with the minimal value, when reaching 200,

the new associated value will be 100.

create sequence seq2

 minvalue 100

 start with 100

 increment by 10

 maxvalue 200

 cycle;

See the demonstration of the solution, assume the actual value of the sequence – 200

(nextval function has been performed 11 times):

select seq2.nextval from dual;

200

select seq2.nextval from dual;

100

select seq2.nextval from dual;

110

Lab 10 – Triggers 325

If the NOCYCLE keyword is added and maximal value is reached, by calling the nextval

function, an exception will be raised:

create sequence seq3

 start with 100

 increment by 10

 maxvalue 200

 nocycle;

Once again, assume that the actual value of the sequence is 200. The exception will be

raised after trying to get the next value:

select seq3.nextval from dual;

200

select seq3.nextval from dual;

ORA-08004: sequence SEQ2.NEXTVAL exceeds MAXVALUE and cannot be

instantiated

Notice that all sequence properties can use default values (in a standard environment,

the default value for sequence property is “1”).

Adding the CACHE keyword makes it possible to store a predefined number

of consecutive values in memory.

Typically, sequences are associated with identifiers of the objects – the primary key.

A particular value from the sequence is then automatically assigned. Thanks to that,

no problem with the uniqueness of the primary key can occur (if no CYCLE keyword

is used). So, create a sequence and assign it to the primary key of the table student.

create sequence seq_st_id

 start with 1

 increment by 1;

However, is such start position (1) correct? Think that some data portions are already

stored in that table.

Existing sequence properties can be changed using Alter sequence command.

It is necessary to adjust starting, respectively actual sequence position (current value)

in our case. To get the value by which the sequence should be altered, use the following

command (whereas we will use the nextval method, the result should be lowered by 1):

select max_value - seq_st_id.nextval -1

 from (select max(student_id) as max_value

 from student);

550943

By using Alter Sequence command, we can change the actual position of the sequence

by using three steps (whereas there is no actual position, which can be set directly).

First of all, the current increment is changed to a previously obtained value. Then, the current

position is shifted to a consecutive one. Finally, the increment is changed to value “1”

and the sequence is ready to deal with new primary key values.

alter sequence seq_st_id increment by 550943;

Now, if you write a query to get the nextval of the sequence, the result will be correct:

550944.

326 Lab 10 – Triggers

select seq_st_id.nextval from dual;

550944

In the end, it is necessary to change the increment step to the value “1”.

alter sequence seq_st_id increment by 1;

Particular values can be associated with the primary key. The following code shows

the result of calling the nextval function of the sequence.

select seq_st_id.nextval from dual;

550945

select seq_st_id.nextval from dual;

550946

Altering sequence provides a powerful tool for influencing sequence characteristics.

All of the clauses of the definition can be updated. There are some examples of the Alter

Sequence operation:

alter sequence teacher_seq MAXVALUE 1500;

alter sequence teacher_seq NOCYCLE CACHE 5;

If the value of the sequence is set, we can create the trigger to set primary key values.
create or replace trigger trig_ins_st

 before insert on student

 for each row

begin

 :new.student_id := seq_st_id.nextval;

end;

/

Notice that since Oracle 12c, DBS allows you to create autoincrement column directly.

However, internally, it is managed using sequence and trigger.

Another example can be based on the management personal_id of the personal_data

table. If you want to add a new person to the system, the primary key must be set

before inserting. Therefore, there are two possibilities – generate it or use the explicitly

written, if possible. In that case, the condition inside the trigger body can look like this:

-- ...

 if :new.personal_id IS NULL then

 :new.personal_id := GeneratePID

 end if;

-- ...

As well as other objects, the sequence can also be dropped:

drop sequence seq_name;

10.11.2 Sequence and transaction correlation

As has been already mentioned, values of the sequences are often used for primary key

definitions. A transaction is a base unit of the database system management. It influences

Lab 10 – Triggers 327

processing. If the transaction is rolled back, all changes associated with the particular

transaction are removed. However, sequences are not affected by the transactions abort –

the assigned value of the sequence is not moved backward (lowered). It can be incremented

using the nextval function. The position can be exclusively changed using the Alter sequence

command described in the previous part.

Principles are described in the following example. Create a simple table (Table1)

containing only one attribute (val). Also create sequence (seq_val) and use it for inserting 3

rows into a defined table. Then, successfully end transaction using Commit command. Insert

another 3 rows. Then, rollback the transaction. Get the actual value of the sequence. Is it 3 or

6?

create table Table1 (val integer);

create sequence seq_val;

insert into Table1 values(seq_val.nextval);

insert into Table1 values(seq_val.nextval);

insert into Table1 values(seq_val.nextval);

commit;

insert into Table1 values(seq_val.nextval);

insert into Table1 values(seq_val.nextval);

insert into Table1 values(seq_val.nextval);

rollback;

select seq_val.currval from dual;

6

10.12 DDL triggers

Database systems also provide a technology for DDL triggers management. They are

associated with the data definition language (DDL – Create, Alter, Drop) statements.

If any of them is executed, the particular trigger is fired automatically.

CREATE [OR REPLACE] TRIGGER trigger_name

 BEFORE | AFTER

 [ddl_event1 [OR ddl_event2 OR ...]]

 ON DATABASE | SCHEMA

 trigger_body

Ddl_event can be Create, Alter, Drop. Moreover, the trigger is defined either for schema

or database:

• on database – trigger will be fired for all objects in any schema,

• on schema – trigger will be fired only for DDL operations on particular user

objects.

However, there is impossible to associate a specific operation with an exactly defined

object:

BEFORE DROP study_subjects

328 Lab 10 – Triggers

BEFORE DROP TABLE

To do that, a When clause must be used, associate it with the defined table name (a type

of the object must be “table”).

create or replace trigger ddl_trigger

 before drop on schema

 when ((ora_dict_obj_name = 'STUDY_RESULTS')

 and (ora_dict_obj_type = 'TABLE'))

begin

 raise_application_error(-20000, 'Such data table cannot be dropped!');

end;

/

So, if you try to drop table Study_Results, it will not be possible:

drop table study_results;

ORA-00604: error occurred at recursive SQL level 1

ORA-20000: Such data table cannot be dropped!

ORA-06512: at line 2

However, if you try to drop table st_program, there will be no problem:

drop table st_program;

Table dropped.

So let´s have the tricky example. Create a trigger, which will not allow the user to drop

any object:

create trigger trig_drop

 before drop on database

begin

 raise_application_error(-20001, 'No object cannot be dropped at all.');

end;

/

Trigger created.

Try to drop the defined sequence. Is it possible?

drop sequence seq3;

ERROR at line 1:

ORA-00604: error occurred at recursive SQL level 1

ORA-20001: No object cannot be dropped at all.

ORA-06512: at line 2

No, nor the table, even trigger cannot be dropped.

drop table TAB1;

ORA-00604: error occurred at recursive SQL level 1

ORA-20001: No object cannot be dropped at all.

ORA-06512: at line 2

So, as you can see, no object can be dropped at all. So, what to do now? How to solve

that problem? Is it even possible to drop any object? Sure, the question is positive.

Do you think that the database administrator (DBA) can do that? Sure, he can.

But it is coded safe, so the object owner can also drop the object (only that one!), although it

Lab 10 – Triggers 329

should be prohibited from the definition. For the object owner, in that case, the trigger will

not be fired.

Drop trigger trig_ins_st;

Trigger dropped.

10.13 Event triggers
The last category of the triggers is event trigger, which can be associated with special

events on the database server. Whereas such trigger fires only if the database is available,

there are some restrictions on firing time – either just before or after the event associated

or before finishing work of the DBS, signing in or out from the system.

Tab. 10.1: Triggering time & events

Event Triggering time Description

Startup After Instance starting

Shutdown Before Shutting down the instance

Servererror After Server error raising

Logon After Sign in of the user

Logoff Before Sign out of the user

Let´s have the following table (log_table) consisting information about the user, time

of event occurrence, IP address (IP address is obtained using sys_context('userenv',

'ip_address') function) and event. The table is created based on the Select statement and will

be empty, whereas there is a condition that cannot be True at all.

create table log_table

as

 select user user_name, sysdate occur_date,

 sys_context('userenv', 'ip_address') as ip,

 'xxxxxx' event

 from dual

 where user is null;

Let´s create triggers to monitor server activities. The first one monitors logons

on the database and stores login, actual time, and IP address. The second one watches logoffs.

create or replace trigger logon_trigger

 after logon on database

begin

 insert into log_table

 select user, sysdate, sys_context('userenv', 'ip_address'), 'logon'

 from dual;

end;

/

create or replace trigger logon_trigger

 before logoff on database

begin

 insert into log_table

 select user, sysdate, sys_context('userenv', 'ip_address'), 'logoff'

 from dual;

end;

/

330 Lab 10 – Triggers

Notice that it is impossible to put both triggers together into a single one because one

operation should be fired before, the second one should be fired after.

USER_NAME OCCUR_DATE IP EVENT

KVET_ENG 06.02.2017 158.193.138.18 logon

KVET1 06.02.2017 158.193.138.18 logon

MATIASKO 06.02.2017 192.200.193.1 logoff

SYSTEM 06.02.2017 158.193.138.12 logon

10.14 Practice
This practice aims to create triggers and verify developed functionality and correctness

of the results using Insert, Update and Delete statements. During the lab, focus on answering

the following questions:

• What should trigger type be defined? Row, statement, or it does not matter.

• What trigger event should be used? Before, after, or it does not matter.

• Which record can be used (if available)? New, old, both, or none.

Be aware once again. Never catch the exception in the body of the trigger.

1. Extend the study_subjects table using these two attributes – user and execution_date.

Then, create a trigger that stores information about the change to the defined

attributes (user, execution_date). Ensure that those data cannot be directly changed.

2. Create trigger functionality to ensure that no student can register the same subject

more than twice (operations Insert and Update). Verify the functionality. If it is ok,

drop the defined trigger.

3. Create a trigger for cascade changing of the student identifier (student_id).

4. Create a log table consisting of operations (Insert, Update, Delete) performed

in study_subjects tables. Information about the user, date, performed operation,

and information about the original row should be stored (except for Insert statement).

5. Create a trigger, which prohibits deleting any row from the study_results table.

Subsequentially, try to remove some data from that table.

6. Deactivate defined trigger. Try to remove data from the study_results table. Enable

defined trigger.

7. Drop trigger from the previous step.

8. Create a log table (log_table2) containing this information (name of the table, owner,

creator, and date of creation). Define trigger to provide such data if a particular

operation is executed. Use the following information:

• ora_sysevent – which operation has been performed (in our case, it will be

Create),

• ora_dict_obj_owner – the owner of the table,

• ora_dict_obj_name – the name of the defined table.

9. Map previous trigger solution also for dropping commands (use only one trigger

to provide desired functionality).

10. Rewrite the previous trigger. It should be fired only if the table is created or dropped

during the weekend.

Lab 11 – Relational integrity 331

Lab 11 – Relational integrity

Relational integrity is a core element of the validity and reliability of the database system

itself. Relational integrity is commonly associated with data consistency. Transaction shifts

the database from one consistent image to another, which is also consistent.

The reader of this book will get complex overview and the categorization of the relational

integrity – entity, referential, user, column, and domain. When dealing with the user integrity,

the focus is done on the whole hierarchy, from the superkey definition, through the primary

key candidate and alternative key up to the primary key itself, as one element of the primary

key candidate set. Related to the referential integrity, the reader will learn about the

referential integrity check protocols, which can be done as part of the statement itself or

moved to the end of the transaction. Shifted evaluation brings easier management of the

referential integrity (like cascaded update operations) or is used in cases where the

relationships between the tables form a reference cycle.

11.1 Introduction

Relational integrity in the area of databases is understood as a meaningfulness and data

consistency supported by security and often associated with confidentiality. The integrity

itself aims to provide data accuracy, correctness, and value for any changes in the database.

Errors or subsequent data inconsistencies may arise from data input, operator errors, program

errors, or deliberate damage to the database.

The concept of data consistency is closely related to the concept of integrity,

and these terms are often considered synonymous. This is especially true in situations if there

are changes in multiple database objects at the same time or when users in the multiuser

system manipulate the same data set in parallel, which could ultimately lead to incorrect

results. Therefore, the operator of the integrity definition is just a transactional management

system that guarantees the transition of a database from one consistent state to another

consistent state covered by the operations that manipulate the database's data.

Relational integrity is an inseparable part of the relational model and is currently

considered one of the most elaborate areas of relational database systems. Values stored

in the database must always represent reality modeled in the proposed system. Moreover,

particular values must be correct and meaningful. This implies the need to define integrity

rules that allow the DBS to work with real-system constraints.

11.2 Integrity constraints classification
Integrity constraints form design, implementation, and usage rules, which must be applied

to data stored in the database. They are based on the conceptual model, as well as, covered

by requirements for the modeled information system.

The following classification of integrity constraints represents relational integrity:

• Column integrity C

• User integrity U

• Referential integrity R

• Entity integrity E

• Domain integrity D

332 Lab 11 – Relational integrity

Some constraint definitions are optional and can evolve dynamically. However,

each database system management must ensure at least these requirements – entity

and referential integrity.

11.3 Entity integrity

Ensuring entity integrity is an essential requirement for database consistency.

This integrity constraint defines the property of the primary key in the sense that the primary

key must always have a defined value (each attribute forming the primary key must have

a defined value – NOT NULL). For these purposes, the principle of the primary key definition

and process of its selection is defined in the following section.

11.3.1 Primary key candidate

The primary key candidate (cpk, kpk) is a set of the attributes that meet these conditions:

• Uniqueness – there are no two or more data tuples with the same values

of the attributes forming the primary key candidate.

• Minimum (no redundancy) – no subset of the primary key candidate attributes

meets the requirement of uniqueness.

Fig. 11.1: Personal_data table

For that table, the following candidates can be identified:

CKP1: personal_id

CKP2: ICN (identification number of passport)

CKP3: name, surname – only in assumptions that the pair is unique.

Notice that the pair {personal_id, ICN} is unique but is not considered as a candidate

because of the minimum requirement.

The primary key itself is selected from the primary key candidate set to minimize storage

requirements or based on the application usage.

In the relational scheme, we designate the primary key with #.

11.3.2 Primary key

Primary key (PK) can also be understood as the set of attributes K = (A1, A2, ..., Aj)

of the R relation, selected from other such potential sets (primary key candidate set),

which values uniquely determine the row of the R relation. PK is minimal (non-redundant).

personal_id

ICN

name

surname

street

town

zip

nationality

personal_data

Lab 11 – Relational integrity 333

PK can directly distinguish individual rows. Attributes that are part of a PK are called the key.

Other attributes are called non-key.

Each table must be delimited just by only one primary key. Entities that have few

attributes and cannot create a primary key are called weak entities (the subordinate entity

is usually a weak entity, and then the primary key of the weak entity is defined as the primary

key of the strong entity + discriminator to distinguish weak entities). Entities that have

enough attributes are called strong entities. However, this problem needs to be addressed

when creating a conceptual model.

11.3.3 Alternative key

Alternative key (AK) is formed by the set of attributes, which are primary key candidates

but are not designated as the primary key.

11.3.4 Superkey

A super-key is a set of R relation attributes that contain a candidate for the primary key.

A super-key is a set of attributes that meet the condition of uniqueness but does not

necessarily fulfill the condition of minimalism.

11.4 Referential integrity
The second important and inevitable part of the consistency definition is referential

integrity, currently supported by DDL statements in most database systems. This constraint

describes the relationship between data of two relations. It is based on the foreign key

referencing the primary key –a connection between tables.

As already noted, the foreign key is an attribute (or group of attributes), which value

is either undefined (NULL) or must contain the value of the primary key (unique index)

of the referenced table. These tables are usually called master (parent, principal) and slave

(child, dependent). The primary key refers to the master. The foreign key is associated

with slave relation.

Referential integrity groups individual cardinality possibilities – 1:1, 1:N, M:N – see

Lab 4 – Data modeling. A particular case of the referential integrity and foreign key definition

is just self-relationship. In that case, the foreign key refers to the same table. Thus, just to

remind you, self-relationship must always be non-identifying.

11.4.1 Referential integrity rule

The foreign key can acquire the value of the primary key of the referenced table

or the undefined (NULL) value.

If we have two relations R1 and R2, where the attribute PK1 is the primary key

of the relation R1, and the FK attribute is in relation R2 that represents the connection

between relations R1 and R2, then the FK value is PK1 or NULL. If the FK is part

of the primary key in relation R2, then it is impossible to take an undefined value

because of the entity integrity constraint.

334 Lab 11 – Relational integrity

11.4.2 Referential integrity consequences

To ensure database consistency, it is necessary to consider which operations

(such as DELETE, UPDATE) should be rejected or accepted. There are two fundamental

questions:

What to do if we try to delete a row for which reference (foreign key in another table)

exists?

Let´s try to delete the subject that some students have enrolled in. The solution could

cover these three options:

• To allow such operation. In that case, it is necessary to ensure cascading

cancellation of all the rows that refer to the deleted row of the base (master) table.

• To reject such operation completely.

• There may be situations that we want to delete a row from the base table but to

keep all rows in the slave relation. How to do that? To comply with the referential

integrity, the particular foreign key value is replaced by the undefined value

(NULL).

A similar situation can occur if we attempt to change the value of the primary key,

to which reference exists in the slave table. In general, there are two possibilities:

• Refuse execution of such operation.

• Allow cascade change based on referential integrity requirements.

In SQL, you can use one of the following options for UPDATE and DELETE operations

to select an operating mode:

• RESTRICTED,

• CASCADE,

• NULLIFIED.

The RESTRICTED mode means that the operation will be rejected if there is at least one

row with an FK equal to the PK value of the modified (corrected) relation row in the slave

table.

If there is a reference path in the data model set in CASCADE mode for UPDATE

or DELETE operation, then database changes will be reflected in all relations defined

in the reference path.

NULLIFIED mode (in some literature, called only NULL) means that the operation

will be enabled, but the FK value will be changed to NULL.

11.4.3 Cascade option example

Cascade option changes values of the foreign key in each table, which reference particular

primary key value. It can be done directly using multiple DML statements (Insert, Update,

Delete) or by the trigger. The following code shows the principles of changing the student_id

value. It must also be reflected in the study_subjects table.

Based on referential integrity, the following operation will not work (it will be executed

successfully only if there is no registered subject for a particular student).

update student

 set student_id = 550021

 where student_id = 550020;

Lab 11 – Relational integrity 335

To solve the problem, a new row is inserted into the student table with the same values

(for a particular student), but the student_id value is replaced by a newer, corrected value:

insert into student

 (select 550021, personal_id, field_id, specialization_id,

 class, st_group, final_date, status, first_date

 from student

 where student_id = 550020);

Then a connection can be made for the study_subjects table – reference is changed

to the newly inserted student.

update study_subjects

 set student_id = 550021

 where student_id = 550020;

Finally, an original row in the student table is deleted.

delete from student

 where student_id = 550020;

A similar solution can be obtained by trigger definition.

create or replace trigger trig_upd_student_id

 before update on student

 for each row

begin

 update study_subjects

 set student_id = :new.student_id

 where student_id = :old.student_id;

end;

/

When dealing with the change of the primary key of the personal_data table, similar

principles are used. However, in that case, two tables must be managed based on referential

integrity – table contact and student. The straightforward solution will, therefore, require four

statements. The solution can look like the following:

insert into personal_data

 select '841108/3456', name, surname,

 street, town, zip, nationality

 from personal_data

 where personal_id = '841106/3456';

update contact

 set personal_id = '841108/3456'

 where personal_id = '841106/3456';

update student

 set personal_id = '841108/3456'

 where personal_id = '841106/3456';

delete from personal_data

 where personal_id = '841106/3456';

336 Lab 11 – Relational integrity

The trigger can provide an easier solution:

create or replace trigger trig_upd_personal_id

 before update on personal_data

 for each row

begin

 update contact

 set personal_id = :new.personal_id

 where personal_id = :old.personal_id;

 update student

 set personal_id = :new.personal_id

 where personal_id = :old.personal_id;

end;

/

11.4.4 Restricted option example

In this section, the Restricted option example is proposed. In that case, the Update

statement operation will be executed successfully only if no reference to the particular

primary key is used. We assume that Cascade operations have been executed,

thus, particular data exist.

Changing the value of the student_id can be done, if there are no registered subjects

for such student:

update student

 set student_id = 550020

 where student_id = 550021

 and student_id not in (select distinct student_id

 from study_subjects);

A similar situation is used for changing the value of the personal_id. However,

one more condition is used, whereas two table data must be checked.

update personal_data

 set personal_id = '841106/3456'

 where personal_id = '841108/3456'

 and personal_id not in (select distinct personal_id from contact)

 and personal_id not in (select distinct personal_id from student);

When defining a trigger, reference existence is checked and maintained.

create or replace trigger trig_restrict

 before delete on personal_data

 for each row

declare

 v_count integer;

begin

 select count(*) into v_count

 from contact

 where personal_id = :old.personal_id;

 if v_count <> 0 then

 RAISE_APPLICATION_ERROR(-20000,'Operation refused - contact table.');

 end if;

Lab 11 – Relational integrity 337

 select count(*) into v_count

 from student

 where personal_id = :old.personal_id;

 if v_count <> 0 then

 RAISE_APPLICATION_ERROR(-20000,'Operation refused - student table.');

 end if;

end;

/

11.4.5 Nullified option example

The nullified option replaces values of the foreign key with NULL values if the row

with the particular primary key is to be removed. Naturally, other constraints must allow such

activity – foreign key cannot be denoted as NOT NULL.

For exemplary purposes, prepare the following data tables:

Table subject2 is a copy of the subject table. Table teacher2 is a copy of the teacher

table. Moreover, attribute supervisor is added to the subject2 table as a reference

to the teacher. Corresponding values are loaded from the study_subjects table. Notice

that the supervisor attribute can hold NULL values.

Fig. 11.2: Subject2, Teacher2 table

create table subject2 as select * from subject;

create table teacher2 as select * from teacher;

alter table subject2 add supervisor char(5);

alter table subject2 add foreign key (supervisor)

 references teacher2(teacher_id);

update subject2 s2

 set supervisor = (select lecturer

 from study_subjects s

 where s.subject_id=s2.subject_id and rownum=1);

commit;

The direct approach is reflected by two operations – Update statement, which changes

foreign key values to NULL followed by the Delete statement (naturally, principles are same

also for Update statements):

update subject2

 set supervisor = null

 where supervisor in (select teacher_id

 from teacher

 where name = 'Rachel'

 and surname = 'Vargas');

delete from teacher2

 where name = 'Rachel' and surname = 'Vargas';

338 Lab 11 – Relational integrity

Solution with a trigger is following:

create or replace trigger trig_null

 before delete on teacher2

 for each row

begin

 update subject2 set supervisor = null

 where supervisor = :old.teacher_id;

end;

/

11.5 User integrity
User integrity allows defining integrity constraints that support application logic.

This kind of integrity constraint can be ensured either declaratively or procedurally.

A declarative way means that when the table is defined, check constraints of some attributes

are defined that extend the domain and column integrity options. Usually, it is necessary

to ensure user integrity procedurally because it involves multiple tables, and thus it is

impossible to provide such requirement in a declarative way. Some examples

of user integrity are following:

• The student must be older than 18 when registering to the university.

• A student cannot study more than 15 subjects a year.

• The discarded book cannot be lent anymore.

• The first date of the student registration must be lower than the final date, etc.

It is usually secured by the triggers.

create or replace trigger trig_age

 before insert or update on student

 for each row

begin

 if get_age(:new.personal_id) < 18 then

 RAISE_APPLICATION_ERROR('-20000','Too young person to be a student');

 end if;

end;

/

Notice that the get_age function is user-defined.

11.6 Column integrity
For each table attribute, it is possible to define additional column constraints besides the

domain integrity constraints.

Column integrity constraints are following:

1. Additional constraints for a range of values that are a subset of the domain,

2. NULL or NOT NULL,

3. DISTINCT or DUPLICATE.

For each attribute, it is possible to define further limitations of the range of allowable

values that domain integrity constraints have defined. Each column may or may not acquire

a NULL value (undefined value). Moreover, it is also possible to determine whether attribute

value should be unique or can hold duplicate value in the table scope.

Lab 11 – Relational integrity 339

The following example shows the constraint on the study_subjects table:

alter table study_subjects modify lecturer NULL;

11.7 Domain integrity

Domain integrity represents a set of integrity constraints that share all attribute values

associated with this domain.

Domain integrity restrictions are:

• data type,

• set of permissible values,

• sortability – whether the relational operator >,>=, <= or < can be used to compare

domain values.

Domain can be enhanced by the Check constraint discussed in chapter 4.

11.8 Integrity constraints controlling and processing

Because of the result correctness necessity, it is necessary to process integrity constraints

properly at each step of the processing. In relational databases, two stages

can be distinguished:

• Column – the integrity constraint is never checked later than at the end

of any relational type request processing. Typically, the request is part

of the application program or is interactively specified by the user. Thus, it is

managed automatically by the database manager.

• Transactional (multitable) – control mechanisms are launched at the end

of the transaction, which includes the request.

Individual integrity constraint definitions are part of the system tables, managed

automatically. The following algorithm is used:

1. At the beginning of the processing, the database manager determines which

constraints and types are related to the request.

2. Column constraints concerned with the one table are identified.

3. Before the processing completion, the database manager determines whether

the specified requirement matches defined column integrity constraints.

4. Database manager identifies and processes multitable constraints.

5. Before the change confirmation, such defined multitable constraints are checked.

11.9 Practice
1. Change the schema of the table study_subjects, that attribute lecturer can hold NULL

values. Which integrity type is covered by that functionality?

2. Change the schema of the table study_subjects, that attribute ects cannot hold NULL

values. Moreover, a particular value cannot be negative. Which integrity type

is covered by that functionality?

3. Ensure that the number of reached ects for the student of a particular subject

is the same as defined in the subject_year table (based on school_year

and subject_id) or zero if such person has already passed that subject successfully

during his previous study. Which integrity type is covered by that functionality?

4. Ensure that the student cannot register for the subject, which he passed sooner

successfully. Which integrity type is covered by that functionality?

340 Lab 11 – Relational integrity

5. Ensure that the value of the final_date attribute is higher than a first_date attribute

value. Which integrity type is covered by that functionality?

6. Ensure that the attribute status of the student can hold only these values – S, E, A,

and X.

• student.status:

o S = student (actual),

o E = ended successfully,

o A = aborted,

o X = fired due to disciplinary commission decision.

Which integrity type is covered by that functionality?

7. Change the value of the subject_id from “BI06” to “BX06” (notice that BX06 does

not exist). Is it possible to do it with only one Update statement? If not, why?

Which integrity constraint type has been raised?

8. Change the value of the subject_id from “BI06” to “BL06” (notice that BL06 exists).

Is it possible to do it with only one Update statement? If not, why? Which integrity

constraint type has been raised?

9. Solve the previous problem by trigger definition.

10. Try to insert a new person into the personal_data table without the personal_id value

(it will be denoted as NULL). Is it possible? If not, why? Which integrity constraint

type has been raised?

Lab 12 – Views 341

Lab 12 – Views

The view is a named Select statement, which can be referenced as a common table.

In this lab, the reader will get the syntax overview, usage in terms of producing only a subset

of the original data and triggers, which can be associated with the views. Generally, views

are complex and formed by multiple tables. Thus, INSTEAD OF trigger types are defined just

to replace the original view change operation into multiple operations respecting the

integrity.

By using views, it is, in principle, allowed to operate the data, which will not be visible

through the view. Therefore, the reader will be emphasized by the CHECK OPTION clause,

which checks the original and inherited Where clauses anytime the data are to be manipulated

(Insert, Update or Delete).

12.1 Introduction
The view is a logical data object associated with the Select statement (usually complex,

dealing with multiple tables and aggregations). The view itself does not contain any data.

Thus, when dealing with a view, it is automatically replaced by a defined Select statement

during the execution. Characteristics are stored in the data dictionary (Lab 14 – Data

dictionary views).

12.2 Syntax

CREATE [OR REPLACE] [FORCE | NOFORCE]

 VIEW [schema.]name [(column_alias1, [, ...])]

 AS select_statement

 [WITH [READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]]]

 |

CREATE [OR REPLACE] VIEW [schema.]name [(column_alias1, [, ...])]

 AS select_statement

 [WITH [CASCADED | LOCAL] CHECK OPTION]

SCHEMA – defines the name of the schema under which the view will be created.

If omitted, the current user schema is used.

OR REPLACE keyword forces the system to redefine view if existing. However, some

database systems do not support that keyword. In that case, it is necessary to drop the existing

view and create a new one. Notice that if the object has been created without this keyword,

it is impossible to replace it later. Therefore, to redefine it – it must be dropped (drop

command) and replaced by the new one (create command).

FORCE keyword allows you to create the view without raising errors during

the compilation, even if the SELECT statement encapsulated in it includes references

to objects (tables, views), which do not exist at that time, respectively the user has

no particular privileges.

NOFORCE is an implicit value (inverse option to Force). In that case, it is possible

to define view only if it passes all control mechanisms – used tables must exist and can be

directly queried by the particular user.

342 Lab 12 – Views

READ ONLY keyword ensures that no destructive DML statements (Insert, Update,

Delete) can be made using such a defined view.

CHECK OPTION – ensures passing conditions defined in the WHERE clause during

executing destructive DML statements. Using this keyword, you cannot change data values

that will not be visible using that view. Thus, it is impossible to manage not handled

(invisible) data for the defined view.

CONSTRAINT keyword allows you to name the constraint.

CASCADED – provides condition checking by derived views.

LOCAL – condition control mechanism is restricted only for actual limitations defined

in the view (regardless of the inherited conditions).

The following code shows a simple example – name and surname are selected

from the personal_data table.

create view v1

 as

 select name, surname

 from personal_data;

After its definition, it can be used as a standard table in the Select statement:

select * from v1;

The second example extends the view of the gender definition. Each attribute formed

by the function must have its alias – the new name of the column for referencing in the query.

create view v2

 as

 select name, surname,

 decode(substr(personal_id, 3, 1), 5, 'F', 6, 'F', 'M') as sex

 from personal_data;

If no alias is added, an exception will be raised, and no view will be created.

create view v2

 as

 select name, surname,

 decode(substr(personal_id, 3, 1), 5, 'F', 6, 'F', 'M')

 from personal_data;

ERROR at line 3:

ORA-00998: must name this expression with a column alias

Moreover, if keyword OR REPLACE is used, if no alias is defined, the original view will

remain valid.

12.3 Exceptions
Exception emphasis must be given to the functions, which can raise exceptions. Let´s

have a simple example. It creates a view consisting of three attributes – name, surname, and

date of birth.

Lab 12 – Views 343

create view v3

 as select name, surname,

 to_date(substr(personal_id, 1, 2)

 || mod(substr(personal_id, 3, 2), 50)

 || substr(personal_id, 5, 2), 'RRMMDD') as birth_date

 from personal_data;

Such a view will be naturally created. However, an exception will be raised if the query

based on this view will contain data that personal_id value cannot be transformed to date

of birth. The exception itself will depend on properties and the current situation (invalid

number, not a valid month, etc.).

Fig. 12.1: Exception – invalid number

Fig. 12.2: Exception – not a valid month

Now, we will highlight the problem of the invalid month. An exception can be raised.

The following example shows and highlights the consequences of the implicit conversions.

Zero values from the first positions are automatically removed if the day, month, and year

elements are treated as numbers. Thus, the input does not contain six digits. However,

how to convert it to the date subsequentially? In our example, the first and second digits

express year, the third and fourth characterize month (for the women, we have to subtract the

value 50). The last two digits represent the day. But as you can see in the following example,

the first zero value is removed (separately from the year, month, and day value).

Thus, the length of input values is not 6.

To see the problem, let´s create another view.

create view v4 as

 select name, surname,

 substr(personal_id, 1, 2)

 || mod(substr(personal_id, 3, 2), 50)

 || substr(personal_id, 5, 2) as birth

 from personal_data;

The query result is the following.

SQL > select * from v3;

select * from v3

ERROR at line 1:

ORA-01722: invalid number

SQL > select * from v3;

select * from v3

*

ERROR at line 1:

ORA-01843: not a valid month

344 Lab 12 – Views

NAME SURNAME BIRTH

Michael Smith 601224

Darl Peterson 601224

Peter Allison 74210

Paul Casey 550947

Peter Roger 781015

Jack Robinson 791229

Mark Bailey 80407

Thomas Hall 81101

To convert values to date data type, an exception will be raised. The consequence

of the raised exception in the query is the fact no data are provided (even though only one

row is “corrupted” and the rest are correct). Simply, an exception has been raised, resulting

in the query to rollback. Therefore, the question of thinking – how would you solve it? How

would avoid raising exceptions? Is it even possible? Sure, it is.

In principle, we have various possibilities how to solve that problem. All of them are

based on converting the value to the string format because they do not suffer such deficiency.

The next two examples show the solution principles. The first one is based on elements

of the date separation by characters (like dots, slashes, dashes, etc.). It prevents the possibility

of automatic conversion to a numeric format. Another solution is to define conversion

explicitly by calling the to_char method with two parameters – input_value to be converted

and the format itself (see chapter Conversion functions - TO_CHAR):

to_char(input_value, [format])

Value “99” as format forces the system to use two digits in output format (number of “9”

expresses the number of digits in the result set).

create view v5

 as select name, surname,

 to_date(to_char(substr(personal_id, 1, 2), 99) ||

 to_char(mod(substr(personal_id, 3, 2), 50), 99) ||

 to_char(substr(personal_id, 5, 2), 99),

 'RRMMDD') as birth_date

 from personal_data;

A similar solution will be obtained, if managing input date elements as strings by using

character delimiters (in the following case, character “.” is used):

create view v5

 as select name, surname,

 to_date(substr(personal_id, 1, 2) || '.' ||

 mod(substr(personal_id, 3, 2), 50) || '.' ||

 substr(personal_id, 5, 2), 'RR.MM.DD') as birth_date

 from personal_data;

12.4 Managing data in views
Let´s have the following simple example:

create view v1

 as select name, surname

 from personal_data;

Lab 12 – Views 345

What will happen if you update data using a view? Will the table/view be updated?

Of course.

update v1

 set name = 'Philippe'

 where name = 'Thomas' and surname = 'Hall';

1 row updated.

However, to be sure, check the values by querying view v1.

select * from v1 where surname = 'Hall';

NAME SURNAME

Philippe Hall

However, what about the table data? Will they be the same, or original value (“Thomas”)

will be present? Why?

select name, surname

 from personal_data

 where surname = 'Hall';

NAME SURNAME

Philippe Hall

Sure, they must always be the same, whereas view itself is the only representation

of the stored Select statement.

What will happen if you delete a row using a view? The principle is the same

as the Update statement.

On the other hand, what about executing the Insert statement? Is it even possible? Why?

Why not? Under what conditions is it possible? Remember the prerequisites for the Insert

statements.

Solution – it is possible to add new data only if all constraints are met. Let´s have

a practical example. Use the previously defined view (v1) based on the name and surname

attributes of the personal_data table.

create view v1

 as select name, surname

 from personal_data;

Try to Insert a new row into the table using such a view. Is it possible? No, at all…

insert into v1 values('Michael', 'Flower');

ERROR at line 1:

ORA-01400: cannot insert NULL into

 ("KVET_ENG"."PERSONAL_DATA"."PERSONAL_ID")

However, if you define a view consisting of the personal_id attribute, the Insert statement

can be executed without raising an exception (if entity and domain integrity constraints

are passed).

Notice that the view must be dropped before redefinition, whereas it has not been created

with the Or Replace keyword, nor it will not help us if we write Create Or Replace now.

Simply, if there is no Replace keyword in the beginning, the only solution is to drop

the object and create a new one.

346 Lab 12 – Views

drop view v1;

create view v1

 as select personal_id, name, surname

 from personal_data;

insert into v1 values('601224/6526', 'Mark', 'Flower');

1 row created.

Naturally, it is possible to add new data into a personal_data table using the defined view.

Values for attribute personal_id, name, and surname are listed. The rest of the attribute values

(street, town, zip, nationality) will hold NULL values, whereas they are not defined

in the Insert statement. Notice that for attributes name, surname, street, town, zip,

and nationality, NULL values are applicable).

insert into v1(personal_id) values('601224/6537');

1 row created.

As evidence, this is the control Select statement:

select personal_id, name, surname

 from v1

 where personal_id like '601224/%';

And the provided results:

PERSONAL_ID NAME SURNAME

601224/6526 Mark Flower

601224/6537 (null) (null)

Another critical question is whether it is possible to insert new data into the table

using a defined view if it does not contain all NOT NULL attributes. The answer

is undoubtedly positive. However, how would you do it?

Let's have the view consisting of actual students (status of the student is “S”). Such view

will be based on personal_id, field_id, and specialization_id attributes.

create or replace view v_student

 as select personal_id, field_id, specialization_id

 from student

 where status = 'S';

Using this view, it is impossible to add new data to the student table. Why? Because

the value of the primary key is not provided. However, we can define a trigger, which will

replace the value student_id automatically. Thanks to that, the Insert statement will pass.

See the following example. We will create a sequence for providing a new student

identifier (maximal number of the student_id is 550945, therefore, it will start

with the consecutive value) and associate it with the trigger to automatize operation.

create sequence seq_student

 start with 550946;

Lab 12 – Views 347

create or replace trigger trig_st

 before insert on student

 for each row

begin

 :new.student_id := seq_student.nextval;

end;

/

insert into v_student values('740210/6525', 200, 2);

What about the real data in the student table? Student_id will be provided using

the sequence and trigger. However, be aware, although a view has been created based

on actual student condition (status='S'), such condition IS NOT copied to the new row image.

STUDENT_ID PERSONAL_ID FIELD_ID SPECIALIZATION_ID CLASS ST_GROUP FINAL_DATE STATUS FIRST_DATE

550947 740210/6525 200 2 (null) (null) (null) (null) (null)

12.5 Attribute name redefinition in views

As it has been partially mentioned, each attribute must have its name, by which it can

be identified in queries. If the attribute is function-dependent, it must have its alias.

Moreover, such defined views should be READ ONLY – you cannot change the output value

of the function, can you? Definitely no.

However, it is possible to rename the column in the view definition using the same way

as for function. Thus, it is possible to rename any attribute name.

create view v2

 as select name, surname as last_name, personal_id as pid,

 decode(substr(personal_id, 3, 1),'5', 'female',

 '6', 'female',

 'male') as sex

 from personal_data;

Another solution is a bit syntactically different. In that case, new attribute names

are placed before the Select definition itself.

create view v2(name, last_name, pid, sex)

 as select name, surname, personal_id,

 decode(substr(personal_id, 3, 1),'5', 'female',

 '6', 'female',

 'male')

 from personal_data;

12.6 Check option clause
Let´s have the following view:

create view v3

 as select name, surname, personal_id

 from personal_data

 where surname like 'S%';

Is it possible to add new data to the table using this view? Sure, it is if it passes

personal_id constraint checking (it is the primary key, so it should be unique

348 Lab 12 – Views

and NOT NULL). However, this view lists only persons with a surname passing the format:

‘S%’.

So, try it, insert these two rows. What will happen? Data will be inserted successfully.

insert into v3 values('Simone', 'Smith', '845210/6525');

insert into v3 values('John', 'Bush', '860412/6536');

However, what about Select statements? Will inserted rows be visible using a defined

view? Whereas the view is an only predefined Select statement, the answer is NO. But data

will be present in the table:

select name, surname, personal_id

 from v3

 where personal_id like '860412%';

no rows selected

select name, surname, personal_id

 from personal_data

 where personal_id like '860412%';

NAME SURNAME PERSONAL_ID

John Bush 860412/6536

To prevent adding (or changing) “invisible” data of the table using view, it is possible

to add keyword WITH CHECK OPTION to the view definition, ensuring managing only

data, which pass conditions also after data changes:

create view v4 as select personal_id, name, surname

 from personal_data

 where surname like 'S%'

 WITH CHECK OPTION;

It is possible to add a new person, whose surname starts with letter “S”:

insert into v3(personal_id, name, surname)

 values('930930/7426', 'Frederico', 'Smith');

1 row created.

However, it is not possible to add a person whose surname is ‘Ducato’. It would raise

the following exception: ORA-01402: view WITH CHECK OPTION where-clause

violation.

insert into v3(personal_id, name, surname)

 values('860712/6475', 'Frederico', 'Ducato');

Let´s have another example.

The first view will consist of name, surname, and personal_id of the people,

whose surname starts with “S”:

create view view_person1

 as select name, surname, personal_id

 from personal_data

 where surname like 'S%';

Lab 12 – Views 349

Using this view, any data respecting primary key constraint can be added. Thus, the

surname can start with any letter:

insert into view_person1

 values('Carol', 'Matiasko', '770724/2227');

1 row created.

Then, create a new view derived from the defined one (by using WITH CHECK OPTION

keyword):

create view view_person2

 as select * from view_person1

 where personal_id like '75%'

 WITH CHECK OPTION;

New data cannot be added if they do not meet specified conditions using a previously

defined view. Specifically, there is one direct condition (personal_id like '75%'),

and the second one is derived (surname like 'S%'). All of them must be passed to allow

the user to add new data (a similar principle is also for Update statements).

Let´s have the following examples, think, whether it is possible to Insert or not (solution

is always above the statement).

insert into view_person2

 values('Carol', 'Matiasko', '790501/2227');

Such a row cannot be added because it does not reflect the first (surname) nor the second

condition (year of birth).

insert into view_person2

 values('Carol', 'Smith', '770501/2227');

It will not be executed successfully due to personal_id restrictions.

insert into view_person2

 values('Carol', 'Smith', '750501/2229');

These data will be inserted. No error will be raised.

Thus, remember that WITH CHECK OPTION clause controls also derived conditions.

12.7 Read only view

This keyword ensures, that no data can be changed using such a defined view. No Insert,

Update and Delete statements execution is allowed:

create view v5 as select personal_id, name, surname

 from personal_data

 where surname like 'S%'

 WITH READ ONLY;

Any attempt for destructive DML operation will fail:

insert into v5 values('900101/0095', 'Simone', 'Bris');

ERROR at line 1:

ORA-42399: cannot perform a DML operation on a read-only view

350 Lab 12 – Views

12.8 View based on multiple tables and triggers
The view can be based on data from multiple tables. However, is it possible to Insert new

data using such a defined view?

Let´s have the following example.

create or replace view view_student

 as select name, surname, personal_id, student_id, field_id,

 specialization_id

 from personal_data join student using(personal_id);

insert into view_student

 values('George', 'Smith', '440922/9220', 552312, 202, 0);

An exception has been raised because of dealing with multiple tables using one Insert

statement. As we have described sooner, each destructive DML statement can manage

only one table, thus, it is not possible. On the other hand, specialized tools can also be defined

to provide desired functionality and cover that problem.

12.9 Triggers associated with views

Trigger is a specific functionality associated with the change data operations. It can also

be correlated with the view replacing the original written statement. As stated, individual

Insert, Update or Delete statements must deal just with one table, which is not common in

complex views. Thus, original statement (referencing the view) is divided into multiple

operation respecting the table structure, as well as referential integrity. Trigger associated

with the view is replacing the original statement, therefore the firing option is delimited by

the Instead Of keyword.

create or replace trigger trig_st_view_ins

 INSTEAD OF INSERT on view_student

begin

 insert into personal_data(name, surname, personal_id)

 values(:new.name, :new.surname, :new.personal_id);

 insert into student(student_id, personal_id, field_id,

 specialization_id)

 values(:new.student_id, :new.personal_id, :new.field_id,

 :new.specialization_id);

end;

/

Integrity control mechanisms are launched after the trigger execution. Thus the order

of operations is essential; reference for the personal_data table must be inserted

after the value of the corresponding primary key in the personal_data table. Keyword

INSTEAD OF reflects the replacement of real operation with the trigger body.

Similar to the previous example, also Delete statement based on more than one table must

be replaced using trigger functionality:

create or replace view view_student

 as select name, surname, personal_id,

 student_id, field_id, specialization_id

 from personal_data join student using(personal_id);

The solution is based on physically replacing the original statement with two physically

executed Delete statements – from the table student and from the table personal_data

Lab 12 – Views 351

(the order of operations is also significant). Referencing to actual row is provided

by the :old.personal_id value.

Notice that there is no FOR EACH ROW keyword, but it works correctly. The reason is

that each trigger firing instead of operation on view is automatically reflected as FOR EACH

ROW, so it is not necessary to define it explicitly (but you can if you wish).

create or replace trigger trig_st_view_del

 INSTEAD OF DELETE on view_student

begin

 delete from student

 where personal_id = :old.personal_id;

 delete from personal_data

 where personal_id = :old.personal_id;

end;

/

delete from view_student

 where personal_id = '440922/9220';

12.10 Summary

• If the Select statement forming the view contains the primary key and all NOT

NULL attributes of the table, then Insert statement to the particular table can be

executed successfully. Naturally, it must be based on only one table, otherwise, the

trigger must be defined.

• If the view is defined as READ ONLY, no Insert, Update and Delete statements

can be performed.

• If the view is defined using WITH CHECK OPTION keyword, then the particular

data must meet all defined (and also derived) conditions (in the Where clause).

• If the Select statement forming the view consists of multiple tables, destructive

operations must be replaced by several operations performed by the trigger type

INSTEAD OF.

12.11 Practice
1. Define the view view_st containing the name, surname, study group, and the actual

age of the students.

2. Define the view view_tch containing the name list (name, surname) of the teachers

who taught some subject in the school year 2007. Try to add a new teacher and some

lectured subject using a defined view, which passes the defined condition of the view.

3. Define the view view_teacher based on attributes name, surname. Is it possible

to Insert new data into the particular table using that defined view? If not,

restructuralize that view.

4. Define the view view_person based on name, surname, and personal_id attributes.

Use only personal_data table.

5. Choose one of the students (whatever), remember his name, surname, personal_id,

and student_id. Next, remove his student data (emphasizing all reflected tables

to ensure consistency). Next, remove his data using the view view_person.

What happened? What information about him can be found and where?

6. Define the view view_student based on name, surname, personal_id, and student_id

attributes.

352 Lab 12 – Views

7. Choose a random student, remember his student_id, name, surname,

and personal_id. Then, remove all his studied subjects. Then, delete his data using

the view based on the student_id attribute. What happened? Check his data using

the view and by querying the particular table.

8. Choose a random student, remember his student_id, name, surname,

and personal_id. Delete all his studied subjects. Then, delete his data using the view

based on the personal_id attribute. What happened? Check his data using the view

and by querying the direct table.

9. Create a trigger to ensure consistent data removal from the view view_student.

Then, check the correctness of the results.

10. Define the view view_bachelor_subj – list of subjects for the bachelor study

(use the table subject, the first letter of the bachelor subject is “B”). Do not use

keyword WITH CHECK OPTION.

11. Try to add a new subject using defined view – XX01 – Database architectures.

Is it possible? Will defined data be visible using the view?

12. Define the view view_bachelor_subj2 – list of subjects for the bachelor study

(use the table subject, the first letter of the bachelor subject is “B”). Use keyword

WITH CHECK OPTION.

13. Try to add a new subject using defined view view_bachelor_subj2 – BX01 –

Database architectures. Is it possible? Will defined data be visible using the view?

14. Try to add a new subject using defined view view_bachelor_subj2 – XX02 –

Database architectures. Is it possible? Will defined data be visible using the view?

Lab 13 – Date and Time value management 353

Lab 13 – Date and Time value management

The final part related to the Select statement is covered by this lab introducing the Date

and Time management complexity. It focuses on the Date and time data types and available

existing functions, focusing on the limitations. After studying this lab, the reader will

understand the complexity of Date and Time management, covered by the time zone

management, regions, and NLS parameters. There is also discussion about the duration

management, operated by two values or interval data types. The definitions are covered by

really many examples focusing on individual problems related to Date and Time management.

Database Systems (DBS) currently offer comprehensive support for working with time

in the form of data types and methods. In this chapter, we will describe the possibilities

of the Oracle database system, which is most often used due to its complexity and offers

of sophisticated solutions, by keeping SQL standards. We also highlight the main mistakes

when dealing with Date attribute values. Notice that corresponding data types and methods

may vary in other database systems, especially in performance, but the principles remain

the same.

Generally, database systems provide four categories of data types – Date, Timestamp,

Time (PostgreSQL), and Interval. Data type Interval represents the duration itself

with no specific image at a time (we cannot determine the start point of the validity,

only duration itself is maintained).

Data types Date, Time, and Timestamp are similar. However, they differ in the way

of storing data and granularity. In comparison with other database systems, the data type Date

in DBS Oracle includes not only the date itself but also the time up to the level of seconds.

Thus, value consists of a component of the year, month, day, hour, minute, and second: YYYY-

MM-DD HH:MI:SS. Other DBS have a specific data type for date and time (elements are

separated). Notice that result of two Date values subtraction is the number of days between

them (see chapter 13.9 Get the difference between Date values).

The timestamp data type can work with finer granularity – specifically with the second

part (fraction) up to the level of nine decimal places. The optional parameter n in

the declaration of an attribute or a variable of type timestamp(n) defines the scope and

precision by a number of decimal places (fraction). If the value parameter is not specified,

DBS automatically uses a parameter with a value of 6 (six decimal places for the second

part), so data type Timestamp and data type Timestamp(6) are identical. The timestamp data

type is stored as the time elapsed from a defined period – 1.1.1970 and therefore allows

the definition of variable size.

It is also possible to define time zones, either as a timestamp(n) with local time zone

or timestamp(n) with time zone. The differences are described in the following example.

Let´s have 2 sessions (S1 and S2). In one of them, set the time zone to "-7: 0". Then,

create a simple table (T1) characterized by a single attribute – sequentially: Timestamp,

Timestamp(n) with local time, and Timestamp (n) with time zone. Let´s insert to such table

the current value of the systimestamp from both sessions. Note the differences by executing

the Select statement from both sessions. The order or individual commands to be executed is

important.

354 Lab 13 – Date and Time value management

-- session 1

alter session

set nls_date_format='DD.MM.YYYY

 HH24:MI:SS';

alter session

 set nls_timestamp_format=

 'DD.MM.YYYY HH24:MI:SS.FF';

select sysdate from dual;

 SYSDATE

 15.03.2021 13:16:09

create table T1 (val timestamp);

insert into T1

 values(systimestamp);

commit;

-- session 2

alter session

set nls_date_format='DD.MM.YYYY

 HH24:MI:SS';

alter session

set nls_timestamp_format=

 'DD.MM.YYYY HH24:MI:SS.FF';

alter session

 set time_zone='7:0';

insert into T1

 values(systimestamp);

commit;

By executing the Select statements, the following values are obtained – values are the

same:

-- session 1

VAL

15.03.2021 13:16:09.185371

15.03.2021 13:17:43.964973

-- session 2

VAL

15.03.2021 13:16:09.185371

15.03.2021 13:17:43.964973

Now, repeat the previous example, but replace the data type Timestamp and use

Timestamp with time zone. Before the processing, the previously defined table is dropped.

Lab 13 – Date and Time value management 355

-- session 1

alter session

 set nls_date_format=

 'DD-MM-YY HH24:MI:SS';

alter session

 set nls_timestamp_format=

 'DD-MM-YY

 HH24:MI:SS.FF';

create table T1

(val timestamp

 with time zone);

insert into T1

 values(systimestamp);

commit;

-- session 1

VAL

15-MAR-21 13:24:32.840097 +01:00

15-MAR-21 13:24:37.913932 +01:00

-- session 2

alter session

 set nls_date_format=

'DD-MM-YY HH24:MI:SS';

alter session

 set nls_timestamp_format=

 'DD-MM-YY

 HH24:MI:SS.FF';

alter session

set time_zone='7:0';

insert into T1

 values(systimestamp);

commit;

-- session 2

VAL

15-MAR-21 13:24:32.840097 +01:00

15-MAR-21 13:24:37.913932 +01:00

Compared to the previous example, the time zone value is obtained with emphasis on time

zone parameter settings. As you can see, if the time zone on the session is changed,

the particular obtained value (time zone) is still the same.

By modifying the data type to Timestamp with local time zone, local session values

are transformed using the time zone.

356 Lab 13 – Date and Time value management

-- session 1

alter session

 set nls_date_format=

 'DD.MM.YYYY HH24:MI:SS';

alter session

 set nls_timestamp_format=

 'DD.MM.YYYY

 HH24:MI:SS.FF';

create table T1

(val timestamp

 with local time zone);

insert into T1

 values(systimestamp);

commit;

-- session 1

VAL

15.03.2021 13:41:30.882184

15.03.2021 13:41:39.668943

-- session 2

alter session

 set nls_date_format=

 'DD.MM.YYYY HH24:MI:SS';

alter session

 set nls_timestamp_format=

 'DD.MM.YYYY

 HH24:MI:SS.FF';

alter session

set time_zone='7:0';

insert into T1

 values(systimestamp);

commit;

-- session 2

VAL

15.03.2021 19:41:30.882184

15.03.2021 19:41:39.668943

In this case, provided values reflect the local time zone. Thus, if changed, particular

values are recalculated to current settings on the client-side.

The above examples show that the data type Timestamp with local time zone should

be used if calendar data must be synchronized with different time zones. Suppose you are

planning some consultations with people from other regions. In that case, such an attribute

can ensure that everyone will get the correct result transformed using his defined time zone

regarding the local time used by all of them.

As already mentioned, data types Date and Timestamp are similar and directly

transformable by implicit conversion methods.

The result of the sysdate (or by calling current_date) function execution is the value

of the Date data type.

create table t1 as select sysdate val from dual;

desc t1;

 Name Null Type

 --

 VAL DATE

If you want to create the table based on the Select statement using functions, do not forget

to define column alias (for consecutive naming). Otherwise, an exception will be raised.

The output data type of the systimestamp or current_timestamp function is Timestamp.

Lab 13 – Date and Time value management 357

create table t1 as select current_timestamp val from dual;

desc t1;

 Name Null Type

 --

 VAL TIMESTAMP(6) WITH TIME ZONE

If the current_timestamp function is used in the Select statement, the value will also be

extended by the time zone spectrum.

select current_timestamp from dual;

VAL

16.03.2017 04:34:15.669952 +02:00

Vice versa, if we want to get local value, the localtimestamp function should be used

(value will be normalized base on client timezone settings.

select current_timestamp from dual;

VAL

16.03.2017 06:34:15.669952

Timestamp attributes can be transformed each other also in tables by changing

the granularity and precision of the value. However, it can be done only if a particular table

is empty or does not contain any NOT NULL value.

alter table t1 modify val timestamp(8);

Otherwise, one of these exceptions will be raised (based on performed activity).

SQL Error: ORA-01439: column to be modified must be empty to change the

datatype

01439. 00000 - "column to be modified must be empty to change datatype"

SQL Error: ORA-30082: datetime/interval column to be modified must be

 empty to decrease fractional second or leading field precision

30082. 00000 - "datetime/interval column to be modified must be empty to

 decrease fractional second or leading field precision"

*Cause: datetime/interval column with existing data is being modified

 to decrease fractional second or leading field precisions.

*Action: Such columns are only allowed to increase the precisions.

Data types Date and Timestamp are similar, which means that the database system uses

automatic conversion between them by increasing, respectively decreasing the granularity

and format. Therefore, all these following cases will work correctly. The results of the first

Select statement are formatted using the method to_char based on the granularity of seconds

(limitation of the data type Date definition). The difference occurs when viewing the results

based on the second part (fraction).

Create table T1 (val date);

Insert into T1 values(sysdate);

Select to_char(val, 'DD.MM.YYYY HH24:MI:SS') from t1;

16.03.2017 04:55:12

358 Lab 13 – Date and Time value management

Insert into T1 values(systimestamp);

Select to_char(val, 'DD.MM.YYYY HH24:MI:SS') from t1;

16.03.2017 04:55:17

Create table T1 (val timestamp);

Insert into T1 values(sysdate);

Select to_char(val, 'DD.MM.YYYY HH24:MI:SS:FF') from t1;

16.03.2017 04:55:12.000000

Insert into T1 values(systimestamp);

Select to_char(val, 'DD.MM.YYYY HH24:MI:SS:FF') from t1;

16.03.2017 04:55:17.285000

13.1 NLS parameters & session format
NLS parameters define National Language Support and locale for server and also client

environment determining format and language of the result set. There are four ways how NLS

parameter values can be specified and set:

• Setting initialization parameters in the parameter file (spfile, pfile) specifying

the default session NLS environment. These settings do not affect the client-side;

they control the server's behavior and are the default for the client.

• Setting environment variables on the client-side influencing behavior of the client.

It can override used default values for the session.

• ALTER SESSION parameters, which are used for changing session NLS

parameters. It can override the initialization parameters as well as environment

variables.

• SQL function parameters – NLS parameter values can be explicitly coded in the

SQL function invocation to determine the provided result set format.

The following diagram shows the priorities and properties of overriding.

Fig. 13.1: Properties level priority

Session configuration and actual settings can be obtained using the following Select

statement. Notice that the nls_session_parameters view consists of two attributes –

parameter and value.

desc nls_session_parameters

Name Null? Type

--------- ----- ------------

PARAMETER VARCHAR2(30)

VALUE VARCHAR2(64)

Lab 13 – Date and Time value management 359

Offered language support parameters are following:

select * from nls_session_parameters;

NLS_LANGUAGE= 'AMERICAN';

NLS_TERRITORY= 'AMERICA';

NLS_CURRENCY= '$';

NLS_ISO_CURRENCY= 'AMERICA';

NLS_NUMERIC_CHARACTERS= '.,';

NLS_CALENDAR= 'GREGORIAN';

NLS_DATE_FORMAT= 'DD-MON-RR';

NLS_DATE_LANGUAGE= 'AMERICAN';

NLS_SORT= 'BINARY';

NLS_TIME_FORMAT= 'HH.MI.SSXFF AM';

NLS_TIMESTAMP_FORMAT= 'DD-MON-RR HH.MI.SSXFF AM';

NLS_TIME_TZ_FORMAT= 'HH.MI.SSXFF AM TZR';

NLS_TIMESTAMP_TZ_FORMAT= 'DD-MON-RR HH.MI.SSXFF AM TZR';

NLS_DUAL_CURRENCY= '$';

NLS_COMP= 'BINARY';

NLS_LENGTH_SEMANTICS= 'BYTE';

NLS_NCHAR_CONV_EXCP= 'FALSE';

The following sections will describe the main parameters for dealing with Date

and Timestamp values. The complete specification can be found in the documentation

(https://docs.oracle.com/cd/A84870_01/doc/server.816/a76966/ch2.htm#92653).

13.1.1 NLS_Language

NLS_Language specifies the default conventions for the following session characteristics:

• language for server messages,

• language for day and month names and their abbreviations (specified in the SQL

functions TO_CHAR and TO_DATE),

• symbols for equivalents of AM, PM, AD, and BC,

• default sorting sequence for character data when ORDER BY is specified

(GROUP BY uses a binary sort, unless ORDER BY is specified).

The value specified for NLS_Language in the initialization file is the default

for all sessions in that instance.

The following example shows the text information reflecting the execution

based on defined language. Database systems response is in selected language:

alter session set nls_language = 'Slovak';

relacia zmenena

drop table tab_non_existing;

ERROR v riadku 1:

ORA-00942: tabuľka alebo pohľad neexistuje

alter session set nls_language = 'English';

session altered.

drop table tab_non_existing;

ERROR at line 1:

ORA-00942: table or view does not exist

https://docs.oracle.com/cd/A84870_01/doc/server.816/a76966/ch2.htm#92653

360 Lab 13 – Date and Time value management

13.1.2 NLS_Territory

NLS_Territory specifies conventions for these date and numeric formatting

characteristics:

• date format,

• decimal character and group separator,

• local currency symbol,

• ISO currency symbol,

• dual currency symbol,

• week start day,

• credit and debit symbol,

• ISO week flag,

• list separator.

Characteristics and limitations will be described later.

13.1.3 NLS_Date_Language

This parameter defines the language for the Date attribute value text format – spelling

of the day and month names for the functions To_char and To_date by overriding

NLS_Language parameter value. NLS_Date_Language has the same syntax

as an NLS_Language parameter and can hold the value of any supported language.

Tab. 13.1: NLS_Date_Language

Parameter type: String

Parameter scope:
Initialization parameter, Environment variable,

and ALTER SESSION

Default value: Derived from NLS_Language

Range of values: Any valid language name

Let's have the following example. If the NLS_Date_Language parameter is changed,

different values of the day and month in text format will be obtained.

alter session set nls_date_language = 'Slovak';

select to_char(sysdate, 'DD') as Day_num,

 to_char(sysdate, 'Day') as Day_text,

 to_char(sysdate, 'MM') as Month_num,

 to_char(sysdate, 'Month') as Month_text,

 to_char(sysdate, 'Mon') as Month_abr

 from dual;

DAY_NUM DAY_TEXT MONTH_NUM MONTH_TEXT MONTH_ABR

 03 Streda 05 Máj Máj

alter session set nls_date_language = 'English';

select to_char(sysdate, 'DD') as Day_num,

 to_char(sysdate, 'Day') as Day_text,

 to_char(sysdate, 'MM') as Month_num,

 to_char(sysdate, 'Month') as Month_text,

 to_char(sysdate, 'Mon') as Month_abr

 from dual;

Lab 13 – Date and Time value management 361

DAY_NUM DAY_TEXT MONTH_NUM MONTH_TEXT MONTH_ABR

 03 Wednesday 05 May May

13.1.4 NLS_Date_format

NLS_Date_format defines the default format of the Date value used by calling implicit

To_char and To_date functions. NLS_Territory determines the default value

of this parameter. Any format mask can determine the definition. Moreover, if the constant

string is added, such value must be enclosed with double-quotes.

Tab. 13.2: NLS_Date_Format

Parameter type: String

Parameter scope:
Initialization parameter, Environment variable,

and ALTER SESSION

Default value: The default format for a particular territory

Range of values: Any valid date format mask

alter session set nls_date_format='"Current date:"

 DD.MM.YYYY ", " HH24:MI';

select sysdate as formatted_string from dual;

FORMATTED_STRING

Current date: 17.03.2017, 13:36

13.2 Transformation of the personal_id into the date of

birth

Transformation of the personal_id attribute value to the date of birth (in Date data type)

can be generally done in two ways. Both are based on Select statements. The first one is based

on direct transformation in the Select statement. In this case, the input personal_id value must

be separated into individual elements – day, month, and year. It cannot be done directly

as the whole part, due to adding value 50 to the month definition for women. So, it is solved

by executing a substr function for each element, managing the month definition,

and consequently, by forming the string for Date value conversion using concatenation

and to_date function. This approach is unhealthy due to no exception resistance. If any value

cannot be transformed into a Date value due to an incorrect value (like month outside

the range <1;12>), the whole operation is rolled back, resulting in providing no data result.

Imagine that there can be thousands of people, and only one of them has incorrect personal_id

value caused by typos.

Therefore, another solution should be introduced, isolating exceptions to the separate

layer. Thanks to that, problems can be solved without raising exceptions externally.

Therefore, for the next examples and definitions, reflect the following function code for

personal_id transformation. If it is impossible to transform parameter value, an exception is

raised, consequently returning the virtual date of birth. Thanks to that, incorrect data (typos

of the personal_id values) can be evaluated and found easily.

For illustration purposes, a local variable is defined and loaded step by step using day,

month, and year elements.

362 Lab 13 – Date and Time value management

create or replace function PIDtoBirthDate(pid varchar2)

 -- VARCHAR WITHOUT SIZE ELEMENT

 return date

is

 v_str varchar2(10);

begin

 v_str := substr(pid, 5, 2) || '-'; -- DAY

 if (substr(pid, 3, 1) = 5 OR substr(pid, 3, 1) = 0) then

 v_str := v_str || '0' || substr(pid, 4, 1);

 else

 v_str := v_str || '1' || substr(pid, 4, 1);

 end if;

 -- MONTH, attention for female PID definition!

 v_str := v_str || '-19' || substr(pid, 1, 2); -- YEAR

 return to_date(v_str, 'dd-mm-yyyy');

 -- If the PID is not correct - cannot be transformed

 -- into date of birth, exception will be raised.

 -- In that case, virtual date of birth will be returned.

 EXCEPTION WHEN OTHERS THEN

 return to_date('01-01-0001', 'dd-mm-yyyy');

end;

/

In a real environment, it would be done in one step. Even local variables can be omitted

and directly transformed into Date data type values.

create or replace function PIDtoBirthDate(pid varchar2)

 return date

is

 v_str varchar2(10);

begin

 v_str := substr(pid, 5, 2) || '-' || mod(substr(pid, 3, 2), 50) ||

 '-19' || substr(pid, 1, 2);

 return to_date(v_str, 'dd-mm-yyyy');

 -- If the PID is not correct - cannot be transformed into

 -- date of birth, exception will be raised.

 -- In that case, virtual date of birth will be returned.

 EXCEPTION WHEN OTHERS THEN

 return to_date('01-01-0001', 'dd-mm-yyyy');

end;

/

13.3 Get the list of persons who celebrate a birthday today

Managing and comparing Date values is often a problem and source of errors. The aim

is to get the list of the persons, who celebrate a birthday today. The previously defined

function can be used.

We will list typical mistakes made by students or programmers, which leads to processing

incorrect data if some data portions are returned.

Let´s evaluate the following code. What about the results? Is there any problem?

select name, surname

 from personal_data

 where PIDtoBirthDate(personal_id) = sysdate;

Lab 13 – Date and Time value management 363

Syntactically not, but no data will be returned. Can you explain the reason? Reflect

on the following example. A simple table is created with only one attribute. The current value

of the date is inserted and consequently selected based on the sysdate function. No data will

be returned because of the time spectrum of the Date attribute.

Thus, the previous example managing date of birth would list only persons born today

during midnight (00:00:00).

select name, surname, PIDtoBirthDate(personal_id)

 from personal_data;

 NAME SURNAME PIDTOBIRTHDATE(PERSONAL_ID)

1 Michael Pearce 06.11.1984 00:00:00

2 Jack Smith 12.03.1984 00:00:00

3 John Young 07.09.1986 00:00:00

To move to the next step, remove the time spectrum when comparing. What about

the result? Are they correct?

select name, surname

 from personal_data

 where PIDtoBirthDate(personal_id) = trunc(sysdate);

No, at all. The result set consists of the people born today (during this day regardless

of the time). The correct solution is based on comparing only day and month elements:

select name, surname

 from personal_data

 where to_char(PIDtoBirthDate(personal_id), 'DD.MM')

 = to_char(sysdate,'DD.MM');

13.4 Get the list of students who passed the exam this month
This section points out the facts of the month evaluation with regards to the current date.

Several solutions will be listed with false solutions to achieve the correct answer at the end.

The aim is to list the students who passed the exam this month (similar to the last 30 days).

Many times, only the month element itself is evaluated, which is, of course, incorrect.

select name, surname, student_id

 from study_subjects join student using(student_id)

 join personal_data using(personal_id)

 where to_char(exam_date, 'MM') = to_char(sysdate, 'MM');

NAME SURNAME STUDENT_ID

Carol Pearce 550545

Peter Roger 550020

Jack Robinson 501103

Tom Moore 501201

Tom Moore 501201

Peter Murphy 500427

Milan Clarke 500426

Milan Clarke 500426

Let´s see the whole exam_date attribute value with Date elements (day, month, and year).

364 Lab 13 – Date and Time value management

select name, surname, student_id,

 to_char(exam_date, 'DD.MM.YYYY')

 from study_subjects join student using(student_id)

 join personal_data using(personal_id)

 where to_char(exam_date, 'MM') = to_char(sysdate, 'MM');

NAME SURNAME STUDENT_ID TO_CHAR(EXAM_DATE,'DD.MM.YYYY')

Carol Pearce 550545 12.06.2009

Peter Roger 550020 20.06.2002

Jack Robinson 501103 23.06.2003

Tom Moore 501201 26.06.2001

Tom Moore 501201 10.06.2003

Peter Murphy 500427 06.06.2006

Milan Clarke 500426 01.06.2006

Milan Clarke 500426 05.06.2006

Thus, to get correct results, also year must be evaluated. Both following solutions are

right.

select name, surname, student_id,

 to_char(exam_date, 'DD.MM.YYYY')

 from study_subjects join student using(student_id)

 join personal_data using(personal_id)

 where to_char(exam_date, 'MMYYYY') = to_char(sysdate, 'MMYYYY');

select name, surname, student_id,

 to_char(exam_date, 'DD.MM.YYYY')

 from study_subjects join student using(student_id)

 join personal_data using(personal_id)

 where to_char(exam_date, 'MM') = to_char(sysdate, 'MM')

 and to_char(exam_date, 'YYYY') = to_char(sysdate, 'YYYY');

NAME SURNAME STUDENT_ID EXAM_DATE

Mark Bailey 501402 25.06.2017

Jack Robinson 501103 25.06.2017

Jack Robinson 501103 25.06.2017

John Young 550127 25.06.2017

13.5 Get the list of students who passed the exam previous

last month
However, think of getting the list of students who passed the exam last month.

The solution described in chapter 13.4 Get the list of students who passed the exam this

month does not provide sufficient power because individual date elements (month, year) are

compared separately. Let´s have the following solution. Is it correct? What about the

provided limitations?

select name, surname, student_id,

 to_char(exam_date, 'DD.MM.YYYY')

 from study_subjects join student using(student_id)

 join personal_data using(personal_id)

 where to_char(exam_date, 'MM') - 1 = to_char(sysdate, 'MM')

 and to_char(exam_date, 'YYYY') = to_char(sysdate, 'YYYY');

Lab 13 – Date and Time value management 365

Naturally, it cannot manage transitions over the years. So, a natural question arises,

how to get data correctly? How to solve that definition? First of all, it is necessary to observe

that it is impossible to evaluate month and year elements separately. Thus, to provide

a suitable solution giving correct results, several opportunities are available to be covered

by provided functions of the DBS.

The first two solutions are based on the month_between function, which checks the range

of the value inside the range <1; 2>. In this case, last month is delimited by subtracting one

month from a current date. The following figure shows the execution principle followed

by the Select statement definitions. We assume that the current date is 17.3.2017.

Fig. 13.2: Validity interval definition

select name, surname, student_id,

 to_char(exam_date, 'DD.MM.YYYY')

 from study_subjects join student using(student_id)

 join personal_data using(personal_id)

 where months_between(sysdate, exam_date) between 0 and 1;

Another solution is based on a combination of multiple provided functions – trunc

and last_day encapsulating the function add_month. In this case, last month definition

is limited by the first and last date of the month.

The following figure shows the principle followed by the Select statement definition.

Compare the principle with the previous solution. Different reflections and meanings

of the term “last month” should be noticed. We assume that the current date is 17.3.2017.

Fig. 13.3: Validity interval definition

select name, surname, student_id,

 to_char(exam_date, 'DD.MM.YYYY')

 from study_subjects join student using(student_id)

 join personal_data using(personal_id)

 where exam_date BETWEEN TRUNC(ADD_MONTHS(sysdate, -1), 'MM')

 AND LAST_DAY(ADD_MONTHS(sysdate, -1));

If the whole time spectrum (also time) should be evaluated, it must be extracted

from the current date and put together with used functions.

366 Lab 13 – Date and Time value management

13.6 Get the list of the persons, who will celebrate their

birthday next Sunday
Date value evaluating and shifting based on the day definition can be done using multiple

ways. We will use the explicit definition by invoking the to_char method. In the following

code of the function, we will highlight the limitation of usage based on server or session

settings. It is often impossible to alter the system or even the session itself, whereas it can be

connected to the rest part of the application assuming a specific Date or Time format.

Moreover, it would end the transaction! Therefore, we will show the problems and propose

solutions based on the following example. The aim is to get the Date value of the nearest

Sunday based on the current date (sysdate). The first solution of the function definition

can look like the following. Subsequently, a number of days is added to the current date

by checking whether the result Date value is Sunday or not.

create or replace function GetNearestSunday return date

is

 v_day varchar2(10);

begin

 for i IN 1..7 loop

 select to_char(sysdate + i, 'DAY') into v_day from dual;

 if v_day like 'SUNDAY%' THEN

 return sysdate + i;

 end if;

 end loop;

 return null;

end;

/

As we can see, the solution is not very effective due to the cycle inside. Thus, the defined

Select statement is performed at least once (which is naturally ok) but can even be executed

7 times, which is unnecessary. Therefore, there is also a better solution. Text format

of the day is extracted and evaluated with the list of days in the case command.

As a consequence, the Select statement is executed only once. The return value

of the function is provided using the Case function.

create or replace function GetNearestSunday return date

is

 v_day varchar2(10);

begin

 select to_char(sysdate, 'DAY') into v_day from dual;

 case trim(v_day)

 when 'MONDAY' then return sysdate + 6;

 when 'TUESDAY' then return sysdate + 5;

 when 'WEDNESDAY' then return sysdate + 4;

 when 'THURSDAY' then return sysdate + 3;

 when 'FRIDAY' then return sysdate + 2;

 when 'SATURDAY' then return sysdate + 1;

 when 'SUNDAY' then return sysdate + 7;

 else return null;

 end case;

end;

/

It is far more effective. However, is it also robust? Unfortunately, not. Let´s evaluate

the following conditions. The result of the proposed method is strictly delimited by the server

Lab 13 – Date and Time value management 367

or session format definition, causing problems in scalability and deployability. It namely

provides a correct solution only if the English branch of the language is used. If the language

is changed, the defined function will return a NULL value.

select sysdate, TO_CHAR(sysdate, 'DAY') as day from dual;

SYSDATE DAY

17.03.2017 FRIDAY

alter session set nls_date_language='English';

select GetNearestSunday from dual;

GETNEARESTSUNDAY

19.03.2017

alter session set nls_date_language='Slovak';

select GetNearestSunday from dual;

GETNEARESTSUNDAY

(null)

There is a significant problem, isn´t it? However, once again, it is not suitable to change

the format of the session's language. Thankfully, a solution exists without influencing server

or session format by shifting the evaluation to the command level. The to_char function

generally uses two parameters – date_val and format_mask. However, the syntax

of the method to_char allows you to use also the third parameter – nls_language, by which

the language settings can be influenced, but only for such method invocation. Thus, no other

systems are affected.

select to_char(date_val [, format_mask] [, nls_language]) from dual;

Setting Date format to American inside the to_char function invocation, a robust solution

is provided regardless the current set language. Thanks to that, no problem with function

result can occur. A complex solution of the GetNearestSunday function definition will look

like following:

create or replace function GetNearestSunday return date

is

 v_day varchar2(10);

begin

 select to_char(sysdate, 'DAY', 'American') into v_day from dual;

 case trim(v_day)

 when 'MONDAY' then return sysdate + 6;

 when 'TUESDAY' then return sysdate + 5;

 when 'WEDNESDAY' then return sysdate + 4;

 when 'THURSDAY' then return sysdate + 3;

 when 'FRIDAY' then return sysdate + 2;

 when 'SATURDAY' then return sysdate + 1;

 when 'SUNDAY' then return sysdate + 7;

 else return null;

 end case;

end;

/

368 Lab 13 – Date and Time value management

And provided results:

alter session set nls_date_language='English';

select GetNearestSunday from dual;

GETNEARESTSUNDAY

19.03.2017

alter session set nls_date_language='Slovak';

select GetNearestSunday from dual;

GETNEARESTSUNDAY

19.03.2017

A similar problem with Date format and location definition can occur when the order

of days in the week should be provided. As we know, some countries consider the first day

of the week as Sunday, and the rest reflect Monday. Therefore, the fundamental question

is how to solve it. The nls_territory parameter definition namely influences such behavior.

Let´s notice the examples:

alter session set nls_territory='Slovakia';

select to_char(sysdate, 'D') from dual;

TO_CHAR(SYSDATE,'D')

 5

alter session set nls_territory='America';

select to_char(sysdate, 'D') from dual;

TO_CHAR(SYSDATE,'D')

 6

Remember that execution of the to_char method cannot be influenced by the nls_territory

parameter. The only nls_language can be used, if necessary. Robust solution irrespective

of the nls_territory parameter value is based on transforming the text value of the day into

a desired numerical value regarding the nls_language parameter of the to_char function.

Thus, the following Select statement will always reflect Mondays as the first day of the week.

select decode(trim(to_char(sysdate,'DAY','nls_date_language=American')),

 'MONDAY', 1,

 'TUESDAY', 2,

 'WEDNESDAY', 3,

 'THURSDAY', 4,

 'FRIDAY', 5,

 'SATURDAY', 6,

 'SUNDAY', 7)

 from dual;

Notice that parameter “DAY” of the function to_char provides an uppercase result,

whereas using “Day” would offer a lowercase result (the first letter is uppercase).

13.7 Get the Date of the second Sunday of the month

Database maintenance operation planning should be selected precisely to be executed

during the specific period (during low workload). Therefore, it is necessary to get desired

time borders based on defined requirements. Let´s assume that update operations and

Lab 13 – Date and Time value management 369

statistics evaluation refreshing management should be done once a month, namely every

second Sunday of the month. Whereas it should be planned automatically, it is necessary

to evaluate the Date value dynamically. In principle, how to get the required Date value based

on provided input date? We will describe the solution step by step:

1. Get the Date of the first day of the month and check for the week of the day.

2. If it reflects the Sunday, add 7 days and end the processing. If not, continue

with step 3.

3. Find the first Sunday of the month.

4. Add 7 days.

The complete solution can look like following:

select case

 when to_char(first_day, 'D') = 1 then

 -- first day = Sunday

 to_char(first_day + 7, 'DD.MM.YYYY')

 else

 -- first day is not Sunday

 to_char(next_day(first_day, 1) + 7, 'DD.MM.YYYY')

 end as second_sunday

from

 (select trunc(sysdate, 'MM') as first_day from dual);

Notice that the solution is nls_territory dependent – try to create a robust solution based

on it.

13.8 Get the list of the persons, who will celebrate their

birthday next week
Listing the persons who will celebrate a birthday next week requires two parts

to be handled.

Left limitation reflects the first day of the following week (Monday). The right limitation

is the Sunday of the next week. Thus, these values can be obtained like this:

The first day of the next week – result of the function next_day is used.

select next_day(sysdate, 'MONDAY') from dual;

Last day of the next week – processing must be shifted to Sunday of the actual week

or even any day (except Sunday) of the next week. Thus, the value of 6 days is added

to the current date value. Then, the next_day function is used.

select next_day(sysdate + 6, 'SUNDAY') from dual;

Result:

select name, surname, to_char(PIDtoBirthDate(personal_id), 'DD.MM')

 from personal_data

 where to_char(PIDtoBirthDate(personal_id), 'MMDD')

 between to_char(next_day(sysdate, 'Monday'), 'MMDD')

 and to_char(next_day(sysdate + 6, 'Sunday'), 'MMDD');

The main disadvantage of the previously defined solution is language dependency.

If the English language branch is used, no problem can occur. However, other languages

will not provide data for the next_day function result definition – the condition would not be

370 Lab 13 – Date and Time value management

able to be evaluated. For the robust and immune solution, a special trick can be used. It is

based on the knowledge that the 1.1.1900 was Monday. From that information, the text form

of the day value can be provided concerning actual language settings. Then, invoking

the next_day function will get desirable results, whereas format value is delimited

by obtained day text format value from the Date – 1.1.1900. Consider the following example

for getting the Date value of the next Monday.

declare

 v_monday_text varchar2(50) := to_char(to_date('19000101', 'yyyymmdd'),

 'Day');

 v_result date;

begin

 v_result := next_day(sysdate, v_monday_text);

 dbms_output.put_line(v_result);

end;

/

The database administrator cannot change the nls_date_format parameter value during

the execution, whereas such parameter is static and would require a server restart.

So, the complex and immune solution is provided. Naturally, for use in a real environment,

it would be encapsulated by the function definition.

13.9 Get the difference between Date values
The result of the two Date values subtracting is the number of days between. Let´s

consider the result of the following example. The result is 9 days, decimal part (0.08333)

reflects two hours (2/24).

select

 to_date('21.3.2017 12:00:00', 'DD.MM.YYYY HH24:MI:SS')

 - to_date('12.3.2017 10:00:00', 'DD.MM.YYYY HH24:MI:SS')

 from dual;

If you want to get the result in another form (like hours, minutes, …), the result set value

must be processed into the required format. Chapter 13.10 Get the difference between Date

values – a sophisticated solution describes the complex approach highlighting multiple

granularity levels.

13.10 Get the difference between Date values –

a sophisticated solution

Think of another solution, which will list the difference more sophistically, reflecting

a number of years, months, days and hours, minutes and seconds between two Date values.

Such a function does not exist automatically. Therefore, we will show how to code it.

In the following part, we will use two parameters of the function – p_date1, p_date2

and assume that p_date1 <= p_date2 (it can be tested inside the function values can be

interchanged, if necessary).

The optimal solution for getting years between two Date values provides function

months_between divided to 12 (number of months delimiting the whole year). Whereas

Lab 13 – Date and Time value management 371

the decimal part of the result is treated with lower granularity (months, days, …),

only truncated value for the year between definitions will be used:

year_count := trunc(months_between(v_date2, v_date1) / 12);

From the rest part, the month component is extracted. Original values are processed using

the month_between function subtracted by the number of years (multiplied by value 12).

v_months_count :=

 trunc(months_between(v_date2, v_date1) – 12 * v_year_count;

To get a number of the days, the auxiliary variable will be used (v_temp_date)

for the illustration purposes. It will store the value of the lower parameter value (v_date1)

with the added year (multiplied by value 12) and month spectrum (evaluated

by the add_month function result):

v_temp_date := add_months(v_date1,12 * v_year_count + v_months_count);

The number of days between these two values can be obtained by subtracting the original

value (v_date2) and defined auxiliary variable (v_temp_date). If the result set should also

contain a time spectrum, the number of days is truncated.

 v_day_count := trunc(v_date2 - v_temp_date);

Complete solution and example of the received results are following:

create or replace function Get_difference_date

 (p_date1 date, p_date2 date)

 -- must be p_date1 <= p_date2

 return varchar2

is

 v_date1 date;

 v_date2 date;

 -- for changing, if the parameter order is not suitable

 -- v_temp double precision;

 v_temp_date date;

 v_temp integer;

 -- YYYY, MM, DD

 v_year_count integer;

 v_months_count integer;

 v_day_count number;

begin

 if p_date1 > p_date2 then

 v_date1 := p_date2;

 v_date2 := p_date1;

 else

 v_date1 := p_date1;

 v_date2 := p_date2;

 end if;

 -- get the number of months between two dates

 v_temp := months_between(v_date2, v_date1);

 -- year count is calculated as truncated value

 -- division of number of months between divided by 12

 v_year_count := trunc(v_temp / 12);

 -- the rest part expresses

 -- the number of months in the year

 v_temp := v_temp – 12 * v_year_count;

372 Lab 13 – Date and Time value management

 -- value is truncated,

 -- the rest part expresses the number of days

 v_months_count := trunc(v_temp);

 -- to get number of days

 -- (with regards on obtained number of years and months)

 -- processed elements(year, months) are substracted

 -- from higher parameter value (v_date2)

 v_temp_date := add_months(v_date1, 12 * v_year_count + v_months_count);

 v_temp := v_date2 - v_temp_date;

 -- if time elements are not processed,

 -- particular day value is rounded, otherwise truncated.

 v_day_count := round(v_temp, 2);

 return v_year_count || ' years, ' || v_months_count || ' months, ' ||

 v_day_count || ' days.';

end;

/

select GET_DIFFERENCE_DATE(

 to_date('21.3.2017 15:10:22', 'DD.MM.YYYY HH24:MI:SS'),

 to_date('6.2.2013 11:00:11', 'DD.MM.YYYY HH24:MI:SS'))

 as difference

 from dual;

4 years, 1 months, 15 days.

A similar approach can also be defined for the time spectrum itself.

13.11 YY vs. RR
In chapter 2.3.4 Conversion functions, the format of the YYYY, RRRR, and YY, RR has

been introduced for getting the year element from the Date value. Transformation of the

string value to Date using the to_date method is significant. If four value format of the year

is used, results are the same regardless of using format YYYY, respectively RRRR. However,

for Insert and Update statement execution, there is a significant difference if the century of

the year value is omitted – only two values for the year representation are used. YY value

always represents the current century, so the value is always larger (or equal) than the

millennium 2000. RR value works differently. The provided result depends on the value of

the year (two values). In principle, if the value is covered by the range <0 ; 49>, 21st century

is used. In other cases (<50 ; 99>), reflection is made to the 20th century.

Let´s create a simple table T1 consisting of only one attribute (val) using Date type.

Then, insert these two Date values using YY format. Afterward, get the full Date format

(at least the whole year element). What about the provided data? Both of them reflect

the current century (21st century). For each executed Insert statement, we assume

that rollback is executed after evaluation by the Select statement.

create table TAB1(val date);

insert into TAB1 values(to_date('1-1-15', 'DD-MM-YY'));

select to_char(datum, 'DD-MM-YYYY') from TAB1;

01-01-2015

select to_char(datum, 'DD-MM-RRRR') from TAB1;

01-01-2015

Lab 13 – Date and Time value management 373

insert into TAB1 values(to_date('1-1-60', 'DD-MM-YY'));

select to_char(datum, 'DD-MM-YYYY') from TAB1;

01-01-2060

select to_char(datum, 'DD-MM-RRRR') from TAB1;

01-01-2060

Repeat the same commands. However, now, use the RR format. As you can see

from the year element part, the first one will reflect the current century (21st century),

but the second solution refers to the 20th century. Be familiar with it.

insert into TAB1 values(to_date('1-1-15', 'DD-MM-RR'));

select to_char(datum, 'DD-MM-YYYY') from TAB1;

01-01-2015

select to_char(datum, 'DD-MM-RRRR') from TAB1;

01-01-2015

insert into TAB1 values(to_date('1-1-60', 'DD-MM-RR'));

select to_char(datum, 'DD-MM-YYYY') from TAB1;

01-01-1960

select to_char(datum, 'DD-MM-RRRR') from TAB1;

01-01-1960

Notice, Select statement is not influenced. The value stored in the database is essential.

13.12 Actual employees
An employment contract is a relation of the person (defined by the personal_id value

in our case) and employer covered by the employer_id as the primary key. Moreover, it must

also be delimited by the time range (date_from, date_to). Therefore, the primary key

of the table employee is composite and consists of three attributes – personal_id,

employer_id, and date_from.

Fig. 13.4: An employment model

The aim is to get a list of actual employees. In principle, two situations can occur

regarding time elements:

1. Fixed-term employment – attribute date_to > sysdate

2. Employment for an indefinite period – date_to IS NULL

374 Lab 13 – Date and Time value management

Moreover, also date_from value should be evaluated and must hold the following

expression value: date_from <= sysdate. The reason is that contracts, which will start

in the future, can be inserted into the database sooner than the validity point starts.

The solution can, therefore, look like the following:

select name, surname

 from personal_data JOIN employee using(personal_id)

 where date_from <= sysdate

 and (date_to >= sysdate OR date_to IS NULL);

The second condition group (date_to >= sysdate OR date_to IS NULL) evaluating

expiration date (date_to) can be together, forming only one condition. In that case,

an undefined value is replaced using the NVL function.

select name, surname

 from personal_data JOIN employee using(personal_id)

 where date_from <= sysdate

 and (NVL(date_to, sysdate) >= sysdate);

13.13 Period models and Allen relationships

The validity of the contract, respectively time interval modeled by two attributes

(characterizing left and right border), can use four structural types. Definition and approach

must be determined during the table creation, respectively, before the first Insert to that table.

In the past, there were several attempts for modeling time duration using period data type

expressing begin and end point of the validity. Unfortunately, such an approach has not been

approved as a standard resulting in the complete abolition of this concept in 2001.

Therefore, explicit modeling must be used highlighting these representations:

• Closed – closed,

• Closed – open,

• Open – open,

• Open – closed.

These representations determine whether the border Date (or Timestamp based on used

granularity) belongs to the interval or not. In principle, only the closed type of the left border

(begin point) is used in practice because of the necessity for strict limitation of the beginning

point of the validity interval. Therefore, two approaches are used to represent the end point

of the validity – either open or closed.

Undefined state management is easier to be distinguished by the Closed – open

representation. Moreover, such a solution is robust, immune to the changing granularity

(nowadays, the granularity of the processing is moving to fine precision grade

more and more). Closed – open representation is modeled in the following table consisting

of four attributes:

• ID – identifier of the object itself, part of the primary key,

• BD, ED – attributes characterizing validity, part of the primary key,

• Data – attribute values themselves are modeled by using a common naming “data”

for illustration simplicity.

Lab 13 – Date and Time value management 375

Tab. 13.3: Closed-open model

ID BD ED Data

1 September 2012 July 2013 123

2 January 2013 December 2014 555

1 October 2013 January 2014 456

The undefined state is characterized by situations where ED does not meet consecutive

BD in time.

Fig. 13.5: Closed-open model

Individual period representations can be transformed by each other. The following table

shows the mapping for such solution transformation.

Fig. 13.6: Time definition model transformation; source: Tom Johnston, Randall Weis: Managing

Time in Relational Databases: How to Design, Update and Query Temporal Data

Allen relationships describe all possible positional relationships between two time periods

along the common timeline. There are 13 Allen relationships in total. One of them

does not have an inverse relationship.

Names of relationships are standardized, defined in 1983. They are part of the ordinary

and query language, so when we refer to the technical language, we will write their names

separated by parentheses.

In general, the two-time intervals on a common axis can be either separated ([exclude])

or may have at least one common point in time ([intersect]). Namely, it can be a relationship

[fills] or [overlaps]. If one interval is in relation [fills] with another, any of its subintervals

are correlated [fills] to the second interval. However, it is not necessarily true conversely.

In the case of overlapping intervals [overlaps], each has at least one common point in time

and at least one that the second does not contain.

Relationship [exclude] indicates that the intervals do not have any common point. We can

define two types. If there is at least one point in time between them, we use the relationship

[before]. Otherwise, we define the relationship [meets] – one interval is immediately

following the second.

376 Lab 13 – Date and Time value management

If one interval fills (relationship [fills]) the second, two situations can occur. They are

both identical – [equals]. Thus, there is no time point belonging to one, which does not belong

to the second interval. The second situation occurs when the first interval is a subset of the

second interval. In this case, we are speaking about the relationship [occupies]. Again, the

opposite relationship does not apply. The general relationship [occupies] can be divided into

the relationship [aligns] and [during]. The relation's name [aligns] defines its properties –

two intervals have the common beginning or end time of the interval (exclusively – only one

of them is true). In this case, we are talking about the relationship [starts], where intervals

have a common beginning. Otherwise, we use the relationship [finishes]. However,

if the intervals have a common beginning and end point of the interval, it represents

the relationship [equals]).

If the relationship is defined as [occupies] and the intervals do not have a common

beginning and end time of the interval, the relationship [during] is defined – beginning

of the first period occurs later than the start of the second, end of the first period occurs before

the end of the second interval. The following figure shows the positional relationships based

on the relationship [fills].

Fig. 13.7: Allen relationships (submodel)

A particular case is a time interval containing precisely one point in time. There are two

possibilities in comparison with other time intervals (including at least two points in time).

The first case – the time point is part of the second interval [intersects]. In this case,

the relationship is defined as [fills] and [occupies]. If the time point is also an extreme point

of the interval, it is the relationship [starts] or the relationship [finishes]. In other cases,

the point is inside the interval and is defined by the relationship [during]. The second case

compared to the time point, and the interval is when the point is not included in the second

interval. In this case, the relationship between the intervals is called [excludes]. If there

is no time between defined time intervals – it is a relationship [meets]. Otherwise,

it is a relationship [before] – we assume that the time point precedes the second interval.

The latest case is the comparison of intervals, which contain just one element-time point.

The first type is that the values are equal – relationship [equals]. If the values are not identical,

Lab 13 – Date and Time value management 377

it is important whether there is a time point (or more) between them or not. If so,

then it is a relationship [meets]. Otherwise, we talk about the relationship [before].

As we mentioned in the previous section, these relationships are essential elements

for processing and comparison. The area of temporal databases focuses mainly on these three

interval relations:

1. Relationship [intersects] is vital for the transactions that add new records

to the database. Time interval defining the validity of the record must be disjoint with

all already defined intervals of a given object. There cannot be valid two or

more versions (episodes) at the same time. Update and Delete transactions again use

this method to find the record, the validity of which contains a user-specified time.

2. Relationship [before] is used to distinguish and sort the individual episodes.

3. The basis for versions comparison and unification is the relationship [meets].

Fig. 13.8: Allen relationships1; source: Tom Johnston, Randall Weis: Managing Time

in Relational Databases: How to Design, Update and Query Temporal Data

13.14 Unlimited validity definition

Undefined values are usually modeled using the NULL values. For the Date attribute

management, MaxValueTime notation has been introduced, which is modeled by the latest

date, that can be stored in current database systems. Naturally, it can be used only for the end

date of the validity. The meaning is “later than now”. Although we do not know the exact

time of the end border, it is evident that such a moment has not come yet. Undefined values

modeled by the NULL characteristics are commonly used for unknown data, but in this case,

some time position (future) can be defined, although not strict. It is one of the main reasons

why not to use NULL values for the time definition.

Moreover, previously explained Allen relationships for time interval comparison would

not be possible to be used at all due to no NULL value comparison opportunities. Last

but not least aspect is just the performance. Database system consists of multiple

performance enhancers – index structures. The main stream forming the index approaches

of the current database systems is the B+ tree index type, which cannot, however, deal

378 Lab 13 – Date and Time value management

with NULL values at all. The real representation of MaxValueTime notation used is

31.12.9999 (DD.MM.YYYY).

13.15 Data type Interval management
Consequently, since the data type period was not accepted as the norm, the need

for modeling time in some other way became significant. As we already mentioned,

one possibility is based on interval limitation by two values characterizing begin and end date

of the validity with regards to representation (CC, CO, OO, OC). In principle, another data

type category can be defined by characterizing the duration – data type Interval Year To

Month and Interval Day To Second. Be aware. They indicate only time duration,

not the position in the time sphere (there is no information about the start, nor end position,

only the duration itself). Thus, mapping the interval representation by two Date values

(or Timestamp values based on granularity) can be shifted to only one Date value

(or Timestamp value based on granularity) followed by another attribute defining duration –

data type Interval.

13.15.1 Interval Year to Month data type

This data type can hold the value in the range of months and years. It uses the following

syntax model:

Fig. 13.9: Interval year to month

The value in the parentheses expresses the precision (maximal number of numeric places

for year definition). The default value is 2. Then, the keyword is listed, characterizing

the meaning of the proposed value.

Tab. 13.4: Interval

Form of Interval Literal Interpretation

INTERVAL '123-2' YEAR(3)

TO MONTH

An interval of 123 years, 2 months. You must specify

the leading field precision if it is greater

than the default of 2 digits.

INTERVAL '123' YEAR(3) An interval of 123 years 0 months.

INTERVAL '300' MONTH(3) An interval of 300 months.

INTERVAL '4' YEAR
Maps to INTERVAL '4-0' YEAR TO MONTH

and indicates 4 years.

INTERVAL '50' MONTH
Maps to INTERVAL '4-2' YEAR TO MONTH

and indicates 50 months or 4 years 2 months.

INTERVAL '123' YEAR
Returns an error because the default precision is 2,

and '123' has 3 digits.

Lab 13 – Date and Time value management 379

13.15.2 Interval Day to Second data type

This data type can hold the value in the range of days up to the finest granularity –

seconds. It uses the following syntax model:

Fig. 13.10: Interval day to second

Principles are similar to the previously defined Interval type of the data structure type.

In that case, the value in the parentheses also expresses the precision based on the specific

element.

Tab. 13.5: Interval

Form of Interval Literal Interpretation

INTERVAL '4 5:12:10.222' DAY

TO SECOND(3)

4 days, 5 hours, 12 minutes, 10 seconds,

and 222 thousandths of a second.

INTERVAL '4 5:12' DAY TO MINUTE 4 days, 5 hours, and 12 minutes.

INTERVAL '400 5' DAY(3) TO HOUR 400 days 5 hours.

INTERVAL '400' DAY(3) 400 days.

INTERVAL '11:12:10.2222222'

HOUR TO SECOND(7)

11 hours, 12 minutes, and 10.2222222

seconds.

INTERVAL '11:20' HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL '10' HOUR 10 hours.

INTERVAL '10:22' MINUTE

TO SECOND
10 minutes 22 seconds.

INTERVAL '10' MINUTE 10 minutes.

INTERVAL '4' DAY 4 days.

INTERVAL '25' HOUR 25 hours.

INTERVAL '40' MINUTE 40 minutes.

INTERVAL '120' HOUR(3) 120 hours.

INTERVAL '30.12345' SECOND(2, 4)

30.1235 seconds. The fractional second

'12345' is rounded to '1235' because

the precision is 4.

380 Lab 13 – Date and Time value management

13.15.3 Examples – Interval data types

Let´s have the following example of the INTERVAL YEAR TO MONTH mapping.

Expression '14' month reflects one year and 2 months.

select interval '14' month from dual;

If the current date was 17.3.2017, the output would be 17.5.2018 (also with time

spectrum). So notice the automatic mapping possibilities of the Interval to a Date value.

select sysdate + interval '1-2' year(3) to month from dual;

A similar situation occurs if INTERVAL DAY TO SECOND data type value is used.

In that case, also fractions can be processed. Therefore, the mapping example

will be associated with the Timestamp value in our case (it can also be associated with Date

values based on automatic conversion methods. In that case, however, the fraction part

will be removed).

INTERVAL '4 5:12:10.222' DAY TO SECOND(3)

-- 4 days, 5 hours, 12 minutes, 10 seconds and 222 thousands of seconds.

select systimestamp + INTERVAL '4 5:12:10.222' DAY TO SECOND(3)

 from dual;

SYSTIMESTAMP SYSTIMESTAMP+INTERVAL'45:12:10.222'DAYTOSECOND(3)

17.03.17 10:19:13, 945000000 +01:00 21.03.17 15:31:24, 167000000 +01:00

13.15.4 Update validity definition based on Interval data value

Validity modeled using two attributes defining begin and end point can be transformed

to Interval definition and vice versa. In this section, we will describe the principles and show

one example. The aim is to update date_to attribute value for employees of “ZU”.

Limit the employment contract to 3 years for all actual employees. Add the condition

that if the value of the date_to would be in the past, the reflected output value should be set

to the current date (sysdate).

To get the correct results, several steps must be done by creating conditions and set

the correct value of the date_to attribute. Thus, first of all, define the condition characterizing

the employees, whose employer name is ZU. It can be done using an inner Select statement

from the employer table:

employer_id IN (select employer_id

 from employer

 where name = 'ZU')

Then, date_to value to be processed must also be limited only to the actual employees

(see chapter 13.12 Actual employees):

date_to IS NULL or date_to > sysdate

So now, the conditions are defined. However, how to set the correct value of the date_to

attribute? The employment contract should last 3 years. Comparison with the current date

Lab 13 – Date and Time value management 381

must be highlighted. Therefore, if the value to be set is lower than the sysdate value, it should

be replaced by the current date. Conditional processing can be done using Case:

date_to = case when (date_from + interval '36' month) < sysdate

 then sysdate else (date_from + interval '36' month) end

The complete solution can, therefore, look like following:

update employee

 set date_to = case when (date_from + interval '36' month) < sysdate

 then sysdate else (date_from + interval '36' month) end

 where (date_to IS NULL or (date_to > sysdate and

 date_to > date_from + interval '36' month)

) and employer_id IN (select employer_id

 from employer

 where name = 'ZU');

Lab 14 – Data dictionary views 383

Lab 14 – Data dictionary views

When dealing with the database systems, it is not only about the data, but also overall

architecture, structures, and privileges must be highlighted. All such metadata describing the

objects are stored in the system tables and are available through the data dictionary views in

a user-friendly format. In this lab, the reader will learn the categorization of the system tables

focusing on object owners and accessibility. Querying data dictionary section highlights the

most significant structures – list of tables, their structure (attributes with data types), primary

key definition and foreign key reference, associated table triggers, method headers, and

sequences.

By studying this lab, the reader will get a complex overview on data dictionary views by

understanding the formats and available data. Thanks to that, any additional structural

information can be obtained easily.

14.1 Introduction
Database system resources are continuously monitored, and individual changes are stored

in the specific data structures. In Central Europe, these data structures are called “System

tables”, and the actual state is obtained by querying “System tables”, however, to be honest,

representation refers to views, not the tables. Never mind, such structures can be divided

into two groups based on their characteristics and way of saving and updating. The first group

is formed by Dynamic Performance Views (also referred to as “Vee dollar”). In general,

there are more than 300 dynamic performance views, and they characterize the status

of the instance and the database covering actual settings and approaches. They also cover

some information, which can be found in the data dictionary, as well (described later). These

views are created at the startup, updated according to settings, and dropped at the shutdown.

Some essential views for parameter settings and tuning at the instance level are

V$INSTANCE (status of the instance), V$SGA (summary information about the shared

memory structures and size), V$SYSSTAT (instance statistics). The physical database is

covered by e.g., V$DATABASE or V$DATAFILE. The interim layer between instance and

database is just tablespace, which can be queried using the V$TABLESPACE view.

The session is also characterized by multiple dynamic performance views.

As a representative, V$SESSION can be mentioned listing current session information.

All views consist of multiple attributes, which can be listed using the already described DESC

command. Further information can be found in Oracle documentation, or feel free to ask

the teacher.

This lab focuses on the second group defined by Data Dictionary Views (DDV),

which refers to the metadata – data about data. They describe the database and its contents.

User definitions, security information, integrity constraints, and performance monitoring

information (from release 10g onward) are part of the data dictionary views.

They characterize all data objects defined in the database. As the naming notation implies,

they deal with views defined on internal data structures (Internal Tables; Base Tables).

Such Internal Tables are generated during the database creation process, management

and loading are provided automatically.

384 Lab 14 – Data dictionary views

14.2 Data dictionary – structure
Data Dictionary (abbreviation of the Data Dictionary Views) is one of the essential

components of the database. It is read-only and provides information about the structure,

objects, type, and much other helpful information for database management. In general,

it provides the following data:

• all schema object definitions (tables, views, indexes, clusters, synonyms,

sequences, procedures, functions, packages, triggers, etc.),

• allocated and free space for the particular object,

• integrity constraint definition information,

• users and their settings and properties,

• granted privileges and roles,

• audit information,

• other general database information.

As mentioned, it references Internal Tables, which contain all information. However,

they are often encrypted and stored in specific data structures due to normalization, and it is

complicated to get required data from them. Thus, the data dictionary can be considered as

the middle layer between physical representation and users and provide desired data in user-

friendly form. However, also Internal Tables can be queried directly.

The user SYS user owns Internal Tables.

Be aware, never try to change any data using a data dictionary or internal table (although

it is possible, it is always a license breach). Only Oracle can do it automatically. Moreover,

such activity can compromise data integrity and completely destroy the database.

Nowadays, granted privileges Insert Any Table, Update Any Table and Delete Any Table

allows the user to manage “any” table in the system. In the past, these privileges also covered

Internal Tables, so granted user would be able to irretrievably damage the structure, which

was a significant security risk. Fortunately, current DBS versions do not allow it.

Thus, nowadays, these privileges do not cover and allow destructive operations in Internal

Tables.

When any query is provided, the data dictionary is also used for database systems

activities, such as finding information about the user, schema objects, and physical data

storage. Another example provides execution of any DDL command – all information about

the performed activity is visible and accessible via these structures. For a fast approach,

a significant data amount from the data dictionary is cached in the memory.

The data dictionary can be divided into three groups depending on what data are

accessible or to whom they are available. They can be easily distinguished thanks to the same

category of the prefix:

• User – view associated with the particular user, it contains information about

objects owned by the particular user.

• All – these views extend the user views category by objects accessible

to the particular user (which have been granted to the particular user).

• Dba – these views consist of information about all user schemas (so this view

is extended by the Owner attribute). Moreover, some DBA views have additional

columns containing valuable information to the administrator.

Let´s have the following example.

Lab 14 – Data dictionary views 385

User KVET creates new table TAB1 (assuming that he does not have any table

in his schema for better illustration):

-- KVET

create table TAB1(id integer);

To get a list of all tables owned by user KVET, a view with the prefix USER can be used.

It contains a wide range of attributes. However, for illustration purposes, we will use only

some of them:

SQL> desc user_tables

Name Null? Type

TABLE_NAME NOT NULL VARCHAR2(30)

TABLESPACE_NAME VARCHAR2(30)

CLUSTER_NAME VARCHAR2(30)

IOT_NAME VARCHAR2(30)

STATUS VARCHAR2(8)

....

All attributes can be obtained by executing the description (DESC) command.

Tables owned by the currently logged user can be found in the user_tables data dictionary

view.

select table_name from user_tables;

TABLE_NAME

TAB1

List of tables, which the particular user does not own, but they have been granted access

to him, is accessible via all_tables data dictionary view. Let´s grant Select privilege of

the table Tab1 owned by Kvet to Kmat. The owner of the table is stored in the owner attribute

of the data dictionary view.

-- KVET

grant select on TAB1 to KMAT;

-- KMAT

select table_name from all_tables

 where owner like 'KVET';

TABLE_NAME

TAB1

Such information is not accessible using the User data dictionary view type,

whereas Kmat is not the owner of the table:

select table_name from user_tables

 where table_name like 'TAB1';

no rows selected

When using a data dictionary, always remember that all values are UPPERCASE

because of querying system (internal, base) tables!

386 Lab 14 – Data dictionary views

See the following example executed by user Kvet highlighting the mentioned problem:

select table_name

 from user_tables

 where table_name like 'TAB1';

TABLE_NAME

TAB1

select table_name

 from user_tables

 where table_name like 'tab1';

no rows selected

select table_name

 from user_tables

 where lower(table_name) like 'tab1';

TABLE_NAME

TAB1

As mentioned, data dictionary views contain multiple views, which are formed

by various attributes. Their names can be obtained using the description (DESC) function.

The important factor is just the meaning and values, which can hold. These characteristics

can be found either in documentation (docs.oracle.com), but also data dictionary can provide

them. For these purposes, use the dict_columns data dictionary view. Realize,

it is not prefixed by the user / all / dba, because it describes the meaning and comments

of the attributes of data dictionary views. Table, which will be described, is delimited

in the Where clause defining table_name (it reflects the name of the data dictionary view,

although the name refers to the table).

select column_name, comments

 from dict_columns

 where table_name = 'USER_TABLES';

 COLUMN_NAME COMMENTS

1 TABLE_NAME Name of the table

2 TABLESPACE_NAME Name of the tablespace containing the table

3 CLUSTER_NAME Name of the cluster, if any, to which the table belongs

4 IOT_NAME Name of the index-only table, if any, to which the overflow or mapping table entry belongs

5 STATUS
Status of the table will be UNUSABLE if a previous DROP TABLE operation failed,

VALID otherwise

 …

If you want to get all views (including also dynamic performance views), which are part

of the data dictionary, you can query Dictionary view, which consists of two attributes –

table_name and comments.

desc dictionary

Name Null? Type

--

TABLE_NAME VARCHAR2(30)

COMMENTS VARCHAR2(4000)

Lab 14 – Data dictionary views 387

There are almost 2 000 data dictionary views and 600 dynamic performance views.

14.3 Querying data dictionary

This chapter will describe the essential data dictionary views and queries to obtain desired

data about data modeling.

14.3.1 List of tables owned actual user

Either user_tables or all_tables delimited by the actual user (where owner = user)

can be used. In general, DBA can also use the dba_tables view.

select table_name

 from user_tables;

select table_name

 from all_tables

 where owner = user;

14.3.2 List of table attributes

To get attributes of the table, the Desc command can be used. However, another approach

is to query the User_Tab_Cols data dictionary view:

select column_name

 from user_tab_cols

 where table_name = 'STUDY_SUBJECTS';

 COLUMN_NAME

1 SCHOOL_YEAR

2 STUDENT_ID

3 SUBJECT_ID

4 LECTURER

5 RESULT

6 EXAM_DATE

7 SIGN_DATE

8 ECTS

14.3.3 Get attribute data type and characteristics

To get the attribute's data type, the previous query based on User_Tab_Cols

can be extended by the data_type attribute. Such a result, however, does not contain the size

of the attribute, if applicable (e.g., only information about data type Varchar2 is provided

with no size element (Varchar2(30)).

select column_name, data_type

 from user_tab_cols

 where table_name = 'STUDY_SUBJECTS';

 COLUMN_NAME DATA_TYPE

1 SCHOOL_YEAR NUMBER

2 STUDENT_ID NUMBER

3 SUBJECT_ID VARCHAR2

4 LECTURER CHAR

388 Lab 14 – Data dictionary views

 COLUMN_NAME DATA_TYPE

5 RESULT VARCHAR2

6 EXAM_DATE DATE

7 SIGN_DATE DATE

8 ECTS NUMBER

To get information about the precision and length of the particular attribute,

use the following attributes of the User_Tab_Cols data dictionary:

• Data_Length – the length of the column (in bytes).

• Data_Precision – decimal precision for Number data type; binary precision

for Float data type, NULL for all other data types.

• Char_Length – displays the length of the column in characters. This value can

be relevant to Char and Varchar data types.

select column_name, data_type, data_length, data_precision,

 decode(nvl(char_length, 0), 0, ' ', char_length) as ch_length,

 nullable

 from user_tab_cols

 where table_name = 'STUDY_SUBJECTS';

 COLUMN_NAME DATA_TYPE DATA_LENGTH DATA_PRECISION CH_LENGTH NULLABLE

1 SCHOOL_YEAR NUMBER 22 4 (null) No

2 STUDENT_ID NUMBER 22 6 (null) No

3 SUBJECT_ID VARCHAR2 30 (null) 30 No

4 LECTURER CHAR 5 (null) 5 No

5 RESULT VARCHAR2 1 (null) 1 Yes

6 EXAM_DATE DATE 7 (null) (null) Yes

7 SIGN_DATE DATE 7 (null) (null) Yes

8 ECTS NUMBER 22 2 (null) Yes

Value of the attribute Nullable specifies whether a column can hold NULL values or not.

Value is N if there is a NOT NULL constraint on the column. Remember that it

is also applicable for the primary key, which cannot also hold NULL values. Otherwise,

the value is Y.

To get data type information similarly as provided using Desc functionality, the query

will be a bit more complicated. One character string for the Nullable sign is replaced

by the text format. However, when dealing with the data type, two attributes must

be evaluated to get correct results (char_length, data_precision). First of all, char_length

is evaluated. Such values are, however, applicable only for string data types. Otherwise, value

“0” is obtained – in that case, the second attribute – data_precision is evaluated,

which can reflect the real value or NULL (for Date attributes). If a NULL value is provided,

it is replaced by an empty string. In all other cases, the numerical output value is transformed

Lab 14 – Data dictionary views 389

into a string (to_char method) and surrounded by parentheses. The query to get the solution

can look like this:

select column_name,

 decode(nullable, 'Y', ' ', 'N', 'NOT NULL') as "NULL",

 data_type || decode(char_length, 0,

 decode(to_char(data_precision), null, ' ',

 '(' || to_char(data_precision) || ')'),

 '(' || to_char(char_length) || ')') as "Type"

 from user_tab_cols

 where table_name = 'STUDY_SUBJECTS';

The result will look like this:

 COLUMN_VALUE NULL TYPE

1 SCHOOL_YEAR NOT NULL NUMBER(4)

2 STUDENT_ID NOT NULL NUMBER(6)

3 SUBJECT_ID NOT NULL VARCHAR2(30)

4 LECTURER NOT NULL CHAR(5)

5 RESULT VARCHAR2(1)

6 EXAM_DATE DATE

7 SIGN_DATE DATE

8 ECTS NUMBER(2)

It provides the same results as the Desc function:

Name NULL TYPE

------------------ -------------- --------------

SCHOOL_YEAR NOT NULL NUMBER(4)

STUDENT_ID NOT NULL NUMBER(6)

SUBJECT_ID NOT NULL VARCHAR2(30)

LECTURER NOT NULL CHAR(5)

RESULT VARCHAR2(1)

EXAM_DATE DATE

SIGN_DATE DATE

ECTS NUMBER(2)

14.3.4 Get system identifier and definition of the primary key

To get the system identifier of the primary key, use the following query based

on the User_Constraints data dictionary view. Constraint_Type value “P” refers

to the primary key of the table. An example is based on the Study_Subjects table.

select constraint_name

 from user_constraints

 where table_name = 'STUDY_SUBJECTS'

 and constraint_type = 'P';

Two data dictionary views must be joined if you want to get attributes consisting

of a primary key. User_Constraints contains constraint_name and references

to the particular table_name. The attribute list itself is reached from User_Cons_Columns.

However, such a data dictionary view does not include table name information. In this case,

also the order (attribute position) of the attributes is significant because it influences

the associated index.

390 Lab 14 – Data dictionary views

select ucc.column_name, ucc.position

 from user_cons_columns ucc

 join user_constraints uc using(constraint_name)

 where ucc.table_name = uc.table_name

 and uc.constraint_type = 'P'

 and uc.table_name = UPPER('study_subjects');

COLUMN_NAME POSITION

SCHOOL_YEAR 1

STUDENT_ID 2

SUBJECT_ID 3

So, the primary key of the Study_Subjects table is composite covering school_year,

student_id, and subject_id (in this order).

Think about the consequences of changing the order of the attributes in the primary key

definition.

14.3.5 Get system identifier and definition of the foreign key

In the Study_subjects table, we also have 3 references, three foreign keys – pointers

to tables teacher, student, and subject. To get the information about foreign keys,

use the previous query. For now, constraint_type attribute should contain value “R”

(reference):

select constraint_name

 from user_constraints

 where table_name = 'STUDY_SUBJECTS' and constraint_type = 'R';

This is the structure of the output result set. For you, it should contain 3 rows. However,

the values themselves will differ, whereas they are system generated based on actual server

conditions.

CONSTRAINT_NAME

SYS_C007231

SYS_C007232

SYS_C007233

However, by using the previous query, you do not know the original table,

which is referenced. To get references, use the following query. We will now use data

dictionary views prefixed by the All and join with the On clause for demonstration purposes.

We will use two data dictionary views, each of them will be used twice (thus, they must

be aliased). The constraint information and table determination are stored in All_constraints,

whereas the attributes defining the relationship are in All_Cons_Columns. Join operation

between All_Cons_Columns and All_constraints is provided by composition – owner

and constraint_name (if prefix User would be used, Join operation would reflect only

constraint_name attribute). Where clauses conditions ensure that we deal with references

(c_fk.constraint_type = 'R') and the processed table is Study_Subjects (a_c_fk.table_name

= 'STUDY_SUBJECTS'). The result set contains these attributes (in the left-right order):

1. Column name of the attribute in the table with a primary key.

2. Column name of the attribute in the table with a foreign key (Study_Subjects).

3. Name of the primary key constraint.

4. Name of the foreign key constraint.

Lab 14 – Data dictionary views 391

5. Owner of the referenced table (referenced table is referenced by foreign key).

6. Name of the reference table.

select a_c_pk.column_name column_name_pk,

 a_c_fk.column_name column_name_fk,

 a_c_fk.constraint_name constraint_name_pk,

 c_pk.constraint_name constraint_name_fk,

 c_fk.r_owner owner_pk,

 c_pk.table_name table_name_pk

from all_cons_columns a_c_fk

 JOIN all_constraints c_fk ON a_c_fk.owner = c_fk.owner

 AND a_c_fk.constraint_name = c_fk.constraint_name

 JOIN all_constraints c_pk ON c_fk.r_owner = c_pk.owner

 AND c_fk.r_constraint_name = c_pk.constraint_name

 JOIN all_cons_columns a_c_pk ON a_c_pk.owner = c_fk.owner

 AND a_c_pk.constraint_name = c_fk.r_constraint_name

 WHERE c_fk.constraint_type = 'R'

 AND a_c_fk.table_name = 'STUDY_SUBJECTS';

COLUMN_NAME_PK COLUMN_NAME_FK CONSTRAINT_NAME_PK CONSTRAINT_NAME_FK OWNER_PK TABLE_NAME_PK

TEACHER_ID LECTURER SYS_C007231 SYS_C007212 STUDENT_ENG TEACHER

SUBJECT_ID SUBJECT_ID SYS_C007232 SYS_C007209 STUDENT_ENG SUBJECT

STUDENT_ID STUDENT_ID SYS_C007233 SYS_C007196 STUDENT_ENG STUDENT

Let´s separate the previously defined statement into two parts – primary key and foreign

key management.

In the following example, a list of system identifiers of the foreign key is obtained.

Constraint_name attribute expresses foreign key, r_constraint_name refers to the primary

key when joining. Example deals with Study_subjects table. The highlighted name

is the system identifier of the primary key in the Student table.

select uc.r_constraint_name

 from user_constraints uc

 join user_cons_columns ucc

 on (uc.r_constraint_name = ucc.constraint_name)

 where uc.constraint_type = 'R'

 and uc.table_name = 'STUDY_SUBJECTS'

 order by uc.table_name, uc.r_constraint_name,

 ucc.table_name, ucc.column_name;

R_CONSTRAINT_NAME

SYS_C007196

SYS_C007209

SYS_C007212

To check it, list the system identifier of the primary key in Student table:

select constraint_name

 from user_constraints

 where table_name = 'STUDENT' and constraint_type = 'P';

CONSTRAINT_NAME

SYS_C007196

392 Lab 14 – Data dictionary views

14.3.6 Listing triggers for a particular table

Before getting the list of the triggers associated with the particular table, create a new one

for dealing with the new value of the attribute student_id of the student table. Then, create

a new one controlling the correctness of the first_date attribute value – it must express

the actual date of the new row insert and cannot be changed later (review of the Lab 10 –

Triggers). Subsequently, list the names of the developed triggers? How many triggers

are created? What about their structure and characteristics?

The correct answer is 2 or 3 depending on developing methods, one is Update trigger,

and 2 triggers can be created for Insert (which can also be grouped, whereas the condition

of firing is the same).

Significant attributes of the data dictionary are the following:

• Trigger_name.

• Trigger_type – defines the time of firing – BEFORE / AFTER

and STATEMENT / ROW.

• Triggering_event – statement that will fire the trigger – INSERT, UPDATE and/or

DELETE.

• Table_name – the name of the table that defined trigger is associated with.

• Column_name – the name of the column on which the trigger is defined.

A special attribute influencing firing is just the status. If the trigger is Disabled,

the particular trigger is not fired at all.

select trigger_name, trigger_type, triggering_event,

 table_name, column_name, status

 from user_triggers

 where table_name = 'STUDENT';

14.3.7 Listing developed methods (procedures, functions)

Developed methods are grouped, forming User_objects data dictionary views. Method

type is delimited by the Object_type attribute values – Procedure, Function. Any developed

object information can be obtained, like Sequence, Table, Index, View, Package, Package

Body, etc., using such a view. However, for simplicity, we will highlight only methods.

The query for listing objects owned by the particular user is following:

select object_name, object_type, created

 from user_objects

 where object_type in ('FUNCTION', 'PROCEDURE');

OBJECT_NAME OBJECT_TYPE CREATED

DROP_JOB_PROC PROCEDURE 10.09.2013

DYN_CUR PROCEDURE 25.03.2013

DYN_CUR_PR PROCEDURE 25.03.2013

FUNCONTAINS FUNCTION 28.03.2013

FUNC_DV FUNCTION 22.10.2015

For clarity, it is helpful to describe also the differences between three-time attributes

of the User_objects data dictionary views. Attribute Created reflects the timestamp

of the object creation, whereas attribute Last_DDL_time expresses timestamp for the last

DDL or DCL change. The last attribute name is Timestamp and delimits the timestamp

of the object specification.

Lab 14 – Data dictionary views 393

Each object is internally represented by the Object_ID, part of the User_objects data

dictionary view.

Let´s create a simple function, which will return the gender of the person using

the personal_id attribute. The solution can look like this (try to develop it alone).

create or replace function Func_gender(p_id char)

 return char

is

begin

 case

 when substr(p_id, 3, 1) in (5, 6) then return 'female';

 when substr(p_id, 3, 1) in (0, 1) then return 'male';

 else return 'unknown';

 end case;

end func_gender;

/

Notice that the developed method should cover all cases. Therefore, do not forget to deal

with incorrect data, which can be present in the table. If no Else clause is added, the following

exception would be raised. Moreover, do not forget that string parameters do not contain

the size definition in the method header.

Error at line 1:

ORA-06592: CASE not found while executing CASE statement

ORA-06512: at “KVET.FUNC_GENDER”, at line 5

Parameters and properties of the developed method can be obtained using multiple ways.

If you want to get the structure – parameters and return data type of the function – command

Description, respectively Desc can be used resulting in the following output:

desc func_gender

Argument Name Type In/Out Default

-------------- ---- ------ -------

<return value> CHAR OUT unknown

P_ID CHAR IN unknown

P_NAME CHAR OUT unknown

P_SURNAME CHAR OUT unknown

How does it work? Where are the parameters stored? Naturally, in the data dictionary –

User_Arguments view.

There are several attributes. The most important are:

• Object_name.

• Argument_name – the name of the parameter.

• Position – the order of the parameters in the definition.

• Data_type – information about the data type characteristic of the parameter.

select object_name, argument_name,position,

 data_type, data_length

 from user_arguments

 where object_name = 'FUNC_GENDER';

OBJECT_NAME ARGUMENT_NAME POSITION DATA_TYPE DATA_LENGTH

FUNC_GENDER (null) 0 CHAR (null)

FUNC_GENDER P_ID 1 CHAR (null)

394 Lab 14 – Data dictionary views

When dealing with functions, the first position (value of the position attribute is 1) reflects

the first parameter of the function defined by its name and data type, etc. The return data type

is expressed using position = 0, which does not have the argument name (argument_name

is NULL).

For a clear explanation, create a function that is more complex by changing the previously

defined function. Extend it by the name and surname of the person as output parameters.

In this case, the Select statement must be used inside the function. Therefore, do not forget

to check whether the defined parameter value exists if the Select-Into statement is used.

The solution can look like the following (two solutions are mentioned). The gender

of the person is obtained from the personal_id value using the decode and substr function.

If the value cannot be obtained, the particular Select statement will return no data.

The exception handler is used to solve the situation by returning “unknown” data.

The first solution uses an exception handler. The second solution checks the number

before the processing itself.

create or replace function Func_gender(p_id char,

 p_name out char,

 p_surname out char)

 return char

is

 v_gender varchar2(7);

begin

 select decode(substr(p_id, 3, 1), 5, 'female', 6, 'female',

 0, 'male', 1, 'male',

 'unknown'),

 name, surname into v_gender, p_name, p_surname

 from personal_data;

 return v_gender;

exception

 when no_data_found then

 p_name := 'unknown';

 p_surname := 'unknown';

 v_gender := 'unknown';

end;

/

Lab 14 – Data dictionary views 395

create or replace function Func_gender(p_id char,

 p_name out char,

 p_surname out char)

 return char

is

 v_gender varchar2(7);

 v_count integer;

begin

 select count(*) into v_count

 from personal_data

 where personal_id = p_id;

 if v_count = 0 then

 p_name := 'unknown';

 p_surname := 'unknown';

 v_gender := 'unknown';

 else

 select decode(substr(p_id, 3, 1), 5, 'female', 6, 'female',

 0, 'male', 1, 'male',

 'unknown'),

 name, surname into v_gender, p_name, p_surname

 from personal_data;

 end if;

 return v_gender;

end;

/

Which of the previous solutions will be more effective and less time demanding? Explain

why?

The result of the previous User_arguments query will be the following (it has been

extended by attribute IN_OUT characterizing the mode of the parameters). So now, we get

complex information about parameters.

select object_name, argument_name, position,

 data_type, data_length, IN_OUT

 from user_arguments

 where object_name = 'FUNC_GENDER';

OBJECT_NAME ARGUMENT_NAME POSITION DATA_TYPE DATA_LENGTH IN_OUT

FUNC_GENDER (null) 0 CHAR (null) OUT

FUNC_GENDER P_ID 1 CHAR (null) IN

FUNC_GENDER P_NAME 2 CHAR (null) OUT

FUNC_GENDER P_SURNAME 3 CHAR (null) OUT

The second solution is the result of the Description command (parameters are ordered

based on the position attribute of User_arguments data dictionary view).

ARGUMENT_NAME TYPE IN/OUT DEFAULT

------------------ ------- ------ --------------

<return_value> CHAR OUT unknown

P_ID CHAR IN unknown

P_NAME CHAR OUT unknown

P_SURNAME CHAR OUT unknown

Procedures cannot return value using the Return command (only OUT parameters

are available). Therefore, there is no row with position = 0. Procedure Proc_sex functionality

is the same, but the gender is returned by the OUT parameter (header is listed).

396 Lab 14 – Data dictionary views

create or replace procedure proc_sex(p_id char, p_name out char,

 p_surname out char, p_sex out char)

...

OBJECT_NAME ARGUMENT_NAME POSITION IN_OUT DATA_LENGTH

PROC_SEX P_SEX 4 OUT (null)

PROC_SEX P_SURNAME 3 OUT (null)

PROC_SEX P_NAME 2 OUT (null)

PROC_SEX P_ID 1 IN (null)

14.3.8 Managing sequences

Information about the sequence status can be obtained using the User_Sequences data

dictionary view. It contains the following attributes (all possibilities of the definition):

Tab. 14.1: User_sequences

Column Datatype NULL Description

SEQUENCE_OWNER VARCHAR2(30)
NOT

NULL
Name of the owner of the sequence.

SEQUENCE_NAME VARCHAR2(30)
NOT

NULL
Sequence name.

MIN_VALUE NUMBER The minimum value of the sequence.

MAX_VALUE NUMBER The maximum value of the sequence.

INCREMENT_BY NUMBER
NOT

NULL

Value by which sequence

is incremented.

CYCLE_FLAG VARCHAR2(1)
Does sequence wrap around on reaching

the limit?

ORDER_FLAG VARCHAR2(1)
Are sequence numbers generated in

order?

CACHE_SIZE NUMBER
NOT

NULL
Number of sequence numbers to cache.

LAST_NUMBER NUMBER
NOT

NULL

Last sequence number written to disk. If

a sequence uses caching, the number

written to the disk is the last number

placed in the sequence cache. This

number is likely to be greater than the last

sequence number that was used.

For principle demonstration, create the following sequence:

create sequence seq_id

 start with 1000

 increment by 1

 minvalue 1000

 maxvalue 2000

 cache 10;

For getting actual state of the sequence, User_sequences data dictionary view will be

used:

select sequence_name, min_value, max_value,

 increment_by, cycle_flag, cache_size, last_number

 from user_sequences

 where sequence_name = 'SEQ_ID';

Lab 14 – Data dictionary views 397

SEQUENCE_NAME MIN_VALUE MAX_VALUE INCREMENT_BY CYCLE_FLAG CACHE_SIZE LAST_NUMBER

SEQ_ID 1000 2000 1 N 10 1000

If you get the next value of the sequence, the last_number attribute value will be

incremented by 10.

SEQUENCE_NAME MIN_VALUE MAX_VALUE INCREMENT_BY CYCLE_FLAG CACHE_SIZE LAST_NUMBER

SEQ_ID 1000 2000 1 N 10 1010

14.4 Practice

Fig. 14.1: Student submodel – practice

Consider the provided figure (fig. 14.1). For the next practice, try to get all information

from the data dictionary, use the listed figure only for checking the correctness of the result.

1. Get the list of attributes, data types, and NULL flags for the table STUDENT.

2. Get the list of attributes, data types, and NULL flags for the table PERSONAL_DATA.

3. Get the system identifier of the primary key of the table STUDENT.

4. Get the attributes forming the primary key in the table STUDENT.

5. Get the attributes forming the primary key in the table STUDY_SUBJECTS.

6. Get the constraint name in the table STUDENT referencing PERSONAL_DATA table.

7. Drop the primary key in the table PERSONAL_DATA. Consider the prerequisites

for dropping based on referential integrity.

8. Create the primary key again with the non-system-generated name.

9. Check the provided name for the primary key.

10. Interconnect table PERSONAL_DATA and STUDENT once again with the non-

system generated name.

11. Get the constraint name for the reference between table PERSONAL_DATA

and STUDENT.

12. List all procedures and functions owned by you.

13. List all procedures and functions, which are accessible to you, but not owned by you.

14. Create a sequence for getting the STUDENT_ID attribute value. Set the actual

sequence position to the correct value.

15. Create a trigger for setting the STUDENT_ID attribute automatically.

16. Add the cache (5 values) for the defined sequence.

17. Get the information about the sequence (like increment, cycle, actual position, ...)

and trigger from the data dictionary. What about the triggering event?

Lab 15 – Reports 399

Lab 15 – Reports

The output of the Select statement is commonly “table” formatted. In this lab, we will

expand the technology by the reports providing various output layouts and formats. By this

lab, the reader will be able to present results in the table, graph or correlated report styles.

He will understand how to configure reports, providing the outputs in PDF documents, HTML

formats or XML. He will also be able to export the reports into Excel, CSV, general delimited

format, textual or XML types.

Remember that it is not enough to have the data and know how to get the required outputs.

The design and the presentation of the results are crucial.

15.1 Overview
The report is an output of the developing tool based on data stored in the database.

In our case, we will deal with the Report extension of the SQL developer tool. Defined report

outputs can be sent to the printer directly or saved in many formats:

• HTML

• PDF

• XML

• CSV

• Microsoft Excel formats (XLS, XLSX)

• …

In principle, the report can be considered the user-friendly formatted output of the Select

statement in the form of a table, graph, binding child tables, and export (e.g., input

for SQL Loader). Thus, the report forms the layer between data stored in the database

and presentations for the management of the company. Whereas each report is currently

evaluated Select statement, each data change is automatically reflected. Therefore, report can

be considered as dynamic performance output. Looking at the history, two report

management streams can be perceived. The first system was based on a report generated

in the SQL console. Report presentation could be done only in the text form, either

as formatted text or XML. Although the result might be saved (e.g., using SPOOL

commands), subsequent processing, export, and publishing were too complicated due to

editing layout necessity and design problems. Fig. 15.1 shows the example of the report

generated in the console using TITLE, COLUMN, COMPUTE and BREAK ON commands

encapsulating the Select statement itself. Notice that the following report has been developed

by only one Select statement. Whereas console solutions are not used anymore,

a more sophisticated approach has been proposed.

400 Lab 15 – Reports

Fig. 15.1: Report in a console environment

For this lab and consecutive presentations and publishing on the web, we will use the SQL

Developer tool. Individual reports will be managed locally on the client-side but based

on server data (cloud, localhost or on-premise).

15.2 Environment settings, background
To allow using Oracle reports, it is necessary to enable its processing in the SQL

developer tool by clicking on the View tab and selecting Reports.

Fig. 15.2: Report navigation in SQL developer

Lab 15 – Reports 401

Individual report characteristics with the name of created ones are visible in the separate

window.

Fig. 15.3: Reports window in SQL developer

There are some pre-prepared reports available for you to highlight the opportunities

and power of the reports. There are many categories, and we will deal with only some of them

because our focus is mostly on user report definition creation. The layer Data Dictionary

Reports consists of reports based on the database system characteristics and defined objects

like constraints, indexes, triggers, tables, etc. Let's see the information about the tables

defined by the connected user in the SQL developer session. These data are accessible using

Data Dictionary Reports => Table => User_tables view.

402 Lab 15 – Reports

Fig. 15.4: Report tree in SQL developer

Each table is physically located in the defined tablespace (if not written explicitly, default

tablespace for user objects will be used).

The defined report also consists of the name of all tables created by the particular user,

many characteristics, and associated statistics (e.g., num_rows, blocks, empty_blocks, …).

Statistics themselves provide a really powerful apparatus used by the optimizer to make

decisions about data access. In the past, Analyze functionality has been used. However,

nowadays, it is supported only for backward compatibility. It has been replaced

by the DBMS_STATS package, which can be launched either manually or automatically

during the maintenance window. DBMS_STATS package is characterized by these methods:

 DBMS_STATS.GATHER_INDEX_STATS

 -- Index statistics

 DBMS_STATS.GATHER_TABLE_STATS

 -- Table, column, and index statistics

 DBMS_STATS.GATHER_SCHEMA_STATS

 -- For all objects in a schema

 DBMS_STATS.GATHER_DATABASE_STATS

 -- For all objects in a database

 DBMS_STATS.GATHER_SYSTEM_STATS

 -- CPU and I/O statistics for the system

Lab 15 – Reports 403

Obtaining statistics for the whole schema can be done using the following code. Kvet_eng

is the name of the schema (user). “Cascade => true” option forces the database to collect

statistics for all indexes on table/schema.

 execute DBMS_STATS.GATHER_SCHEMA_STATS('KVET_ENG', cascade => true);

Obtaining statistics only for one table is reflected by the following code. Person delimits

the table name to be evaluated (tab_name). Parameter ownname characterizes the owner

of the table.

execute DBMS_STATS.GATHER_TABLE_STATS(ownname => 'KVET_ENG',

 tabname => 'PERSON',

 cascade => true);

Actual statistics are stored in the data dictionary views (see Lab 14 – Data dictionary

views), like DBA_TABLES, DBA_TAB_COLUMNS, DBA_TAB_STATISTICS,

DBA_TAB_COL_STATISTICS, DBA_TAB_MODIFICATIONS, etc.

Generated statistics include the following information:

• Table statistics

o Number of rows

o Number of blocks

o Average row length

• Column statistics

o Number of distinct values (NDV) in column

o Number of NULL values in column

o Data distribution (histogram)

• Index statistics

o Number of leaf blocks

o Levels

o Clustering factor

• System statistics

o I/O performance and utilization

o CPU performance and utilization

Auxiliary statistics (e.g., extended histograms) specific to a SQL statement can be

obtained using an SQL profile.

It is important to emphasize that the data are based on statistics, which are evaluated

periodically, so the change in the table will be reflected only after the new statistics

processing, not immediately. It will also be imaged using the following example.

Let´s have the table study_subjects. The cardinality of it is 485 (your results can vary

based on executed data operations).

Fig. 15.5: Cardinality of the table Study_subjects (real value)

404 Lab 15 – Reports

If you delete all the data from the table and end the transaction, the cardinality of such

a table will be 0.

delete from study_subjects;

commit;

However, existing (original) statistics are still used, so the amount of data in the table

is still 484 (after the statistics collecting, one more row has been inserted. Afterwards, all data

have been deleted. If statistics have not been recollected, they store original values –

cardinality: 484). Consequently, the optimizer will get incorrect data for decision-making.

Therefore, if many changes are performed, it is useful and recommended to set up new

statistics to reflect significant data changes. So, without reconstructing statistics, we will still

get old data, optimizer decisions can be inappropriate.

Tab. 15.1: Table report

TABLE_NAME
TABLESPACE

_NAME

NUM

_ROWS
BLOCKS

DATE_LAST

_ANALYZED

LAST

_ANALYZED …

STUDY_SUBJECT
S

USERS 484 %
21.03.2022
14:50:55

2.21 days ago …

Fig. 15.6: Table report

Notice that reports are dynamic. Thus, after obtaining new statistics, particular data are

automatically replaced also in reports.

To focus, evidence rebuild statistics for the current user by executing the

gather_schema_stats procedure of the dbms_stats package. Explanation of the package

methods and parameters is out of the scope of this subject.

exec dbms_stats.gather_schema_stats(

 ownname => '&ownername',

 estimate_percent => 20,

 method_opt => 'for all columns size auto',

 options => 'Gather',

 cascade => true,

 degree => 4);

Lab 15 – Reports 405

When executing a previous procedure, you will be prompted to get the username

for who statistics should be recollected. It is based on parameters defined after the & symbol.

In this case, your username should be written to substitute &ownername parameter

with a real value.

Fig. 15.7: Parameter substitution

Then, when looking at the generated report, data will be updated automatically

and will express correct values.

Tab. 15.2: Table report

TABLE_NAME
TABLESPACE

_NAME

NUM

_ROWS
BLOCKS

EMPTY

_BLOCKS

AVERAGE

_ROW

_LENGTH

STUDY_SUBJECTS USERS 0 5 0 0

When you double-click on the table in the report, you can get the schema of such table

(it is provided by the binding techniques, which will be described later).

Fig. 15.8: Report

To get the statement, which forms the report, click on the SQL button to run the report

in SQLWorksheet.

COLUMN_NAME DATA_TYPE NULLABLE DATA_DEFAULT COLUMN_ID COMMENTS

1 SCHOOL_YEAR NUMBER(4,0) No (null) 1 (null)

2 STUDENT_ID NUMBER(6,0) No (null) 2 (null)

3 SUBJECT_ID VARCHAR2 (30 BYTE) No (null) 3 (null)

4 LECTURER CHAR (5 BYTE) No (null) 4 (null)

5 RESULT VARCHAR2 (1 BYTE) Yes (null) 5 (null)

6 EXAM_DATE DATE Yes (null) 6 (null)

7 SIGN_DATE DATE Yes (null) 7 (null)

8 ECTS NUMBER(2,0) Yes (null) 8 (null)

406 Lab 15 – Reports

Fig. 15.9: Getting query forming report

15.3 Filtering, sorting

Let´s go back to the main topic of this lab – user-defined reports. They are managed

by the User Defined Reports part at the end of the Reports segment. The new report is

defined after right-clicking on the item and choosing New Report.

Fig. 15.10: New report

The window for the report definition consists of these parts, which are described:

• Name – each report must have a unique name, by which you can find and reference

it in the system.

• Style – table, chart, gauge, code, script, PL/SQL DBMS Output. For this lab, we

will deal with the tables and chart reports. Now, select the Table option.

• Description – optional, description of the provided functionality.

• SQL statement forming the input data for the report.

Lab 15 – Reports 407

So, let´s create the first simple table report, which will consist of personal and student

data using the following Select statement.

select personal_id, name, surname, student_id, class, status

 from personal_data JOIN student using(personal_id);

Fig. 15.11: Report definition

After settings confirmation, a new report will be created, which is visible in the Report

section.

The output of such report is in table form:

Fig. 15.12: Report output

Data can be user-managed in the grid, so they can be sorted by choosing attribute names

for sorting criteria definition (ascending, descending). The symbol in the Surname expresses

the selected sorting criterion based on that column.

Fig. 15.13: Data sorting in report

Disadvantage if such sorting criteria definition, only one attribute be used. Thus,

if you select another attribute (e.g., name), it will be sorted by name, not the combination

of the surname and name. That opportunity can be provided by right-clicking on the header

and by choosing the Sort option. In that case, a complex sort criterion can be defined

PERSONAL_ID NAME SURNAME STUDENT_ID CLASS STATUS

1 781015/4431 Peter Roger 550020 3 S

2 791229/5431 Jack Robinson 501333 1 S

3 791229/5431 Jack Robinson 501103 0 K

4 791229/5431 Jack Robinson 501096 0 V

5 800407/3522 Mark Bailey 501402 2 S

6 800407/3522 Mark Bailey 501555 1 S

PERSONAL_ID NAME SURNAME STUDENT_ID CLASS STATUS
A
Z

408 Lab 15 – Reports

(in the first example, it is sorted by two attributes – surname and name, all values are sorted

ascendant. Vice versa, the second example sorts the result set based on personal_id (desc)

and student_id (asc)).

Fig. 15.14: Data sorting in report

Fig. 15.15: Data sorting in report

Lab 15 – Reports 409

Fig. 15.16: Data sorting in report

Moreover, you can filter the result set and search for particular data. It can be done

by clicking on a particular column header. Then, choose the Filter Column item.

Fig. 15.17: Filtering (1)

In the input box, write conditions based on equality or wildcard. Let´s the filter form

the students in the class = 2.

Fig. 15.18: Filtering (2)

1
PERSON… NAME SURNAME 2

STUDEN… CLASS STATUS

921225/7452 Sim Eas 501559 2 S

911001/3623 Mark Vox 501448 1 S

901130/4454 Jack Clever 501003 2 S

900913/3326 Jacob Murgas 550945 0 S

896123/5471 Suzanne Walker 550123 1 S

890608/4543 Jacob Homm 550807 2 S

890310/2145 Arnas Mitchell 501345 2 S

871203/5472 Tom Moore 501201 3 A

870913/3326 Jacob Murgas 501381 2 S

860907/1259 John Young 501414 2 S

860103/2238 John Young 550127 1 S

855122/8569 John Pearce 550698 2 S

850130/3695 Carol Pearce 550545 1 A

841106/3456 Michael Pearce 501512 3 S

840821/8027 Hugo Davis 500425 2 S

840410/6777 Milan Clarke 500426 2 K

Z
A

2
1

1

PERSON… NAME SURNAME 2
STUDEN… CLASS STATUS

1 921225/7452 Sim Eas 501559 2 S

2 911001/3623 Mark Vox 501448 1 S

3 901130/4454 Jack Clever 501003 2 S

4 900913/3326 Jacob Murgas 550945 0 S

5 896123/5471 Suzanne Walker 550123 1 S

6 890608/4543 Jacob Homm 550807 2 S

7 890310/2145 Arnas Mitchell 501345 2 S

8 871203/5472 Tom Moore 501201 3 A

9 870913/3326 Jacob Murgas 501381 2 S

10 860907/1259 John Young 501414 2 S

Z
A

2
1

Auto-fit All Columns

Auto-fit Selected Column

Columns...

Sort...

Delete Persisted Settings...

Copy Selected Column Header(s)

Filter Column...

2

Filter:CLASS

2

X

410 Lab 15 – Reports

Another filter can be based on status = ’S’.

Fig. 15.19: Filtering (3)

In that case, the result set will be based only on actual students of the second class.

The funnels express defined filters.

Fig. 15.20: Report output (1)

String values can also be filtered based on a wildcard, e.g., to get only the actual second

class student list, whose first name starts with the “J” letter, another filter can be added.

In this case – wildcard type is used. The condition would be following:

where name like 'J%'

Therefore, in the input box, the right part of the condition is written – like 'J%'

Fig. 15.21: Filtering (4)

The solution looks like this:

Fig. 15.22: Report output (2)

 = 'S'

Filter:STATUS

S

X

1

PERSON… NAME SURNAME 2
STUDEN… … ST…

1 921225/7452 Sim Eas 501559 2 S

2 901130/4454 Jack Clever 501003 2 S

3 890608/4543 Jacob Hoom 550807 2 S

4 890310/2145 Arnas Mitchell 501345 2 S

5 870913/3326 Jacob Murgas 501381 2 S

6 860907/1259 John Young 501414 2 S

7 855122/8569 John Pearce 550698 2 S

8 840821/8027 Hugo Davis 500425 2 S

9 840312/7845 Jack Smith 501469 2 S

10 830703/7486 Charlie Lewis 500429 2 2

11 830514/5341 Wiliam Whitel 501319 2 S

12 800407/3522 Mark Bailey 501402 2 S

Z
A

2
1

like 'J%

Filter:CLASS X

 1
PERSON… N… SURNAME 2

STUDEN… … ST…

1 901130/4454 Jack Clever 501003 2 S

2 890608/4543 Jacob Hoom 550807 2 S

3 870913/3326 Jacob Murgas 501381 2 S

4 860907/1259 John Young 501414 2 S

5 855122/8569 John Pearce 550698 2 S

6 840312/7845 Jack Smith 501469 2 S

Z
A

2
1

Lab 15 – Reports 411

Individual filters can be removed at once (right-click on the header and choose Remove

All Filters) or individually based on the header of the particular column (right click

of the particular column header and choose Filter column...):

Fig. 15.23: Removing filtering option

If only one filter is removed, other ones will continue to be defined so that the result set

will consist of actual (status = ‘S’) second-class students:

Fig. 15.24: Report output

Dealing with NULL values in the filter and sorting criteria is another characteristic,

which can, however, cause some problems. Therefore, we will explain it using the example.

In the previous text, a report has been based on INNER JOIN between personal_data

and student table. Thus, if the person is not referenced in the student table, such person will

not be part of the result set at all. To remove this restriction, create a new report

based on OUTER JOIN – all personal_data should be listed regardless of the row existence

in the student table.

Remove (like 'J%')

Filter:CLASS X

 1
PERSON… NAME SURNAME 2

STUDEN… … ST…

1 921225/7452 Sim Eas 501559 2 S

2 901130/4454 Jack Clever 501003 2 S

3 890608/4543 Jacob Hoom 550807 2 S

4 890310/2145 Arnas Mitchell 501345 2 S

5 870913/3326 Jacob Murgas 501381 2 S

6 860907/1259 John Young 501414 2 S

7 855122/8569 John Pearce 550698 2 S

8 840821/8027 Hugo Davis 500425 2 S

9 840312/7845 Jack Smith 501469 2 S

10 830703/7486 Charlie Lewis 500429 2 S

11 830514/5341 Wiliam Whitel 501319 2 S

12 800407/3522 Mark Bailey 501402 2 S

Z
A

2
1

412 Lab 15 – Reports

Fig. 15.25: Report definition

The result set consists of all personal data (used attributes – personal_id, name,

surname), and if possible, it will also contain student data. Thus, if the interconnection cannot

be done, it will have NULL values in the student part.

Fig. 15.26: Report output – managing NULL values

However, how to sort such data with NULL values? Remember that such NULL values

cannot be compared directly, so they must be handled separately. In that case, it is possible

to choose whether NULL values are processed at the beginning or just at the end. Selection

is made using radio buttons in the sorting definition area (in the application, it is modeled

by the checkboxes, but the functionality is the same as radio button functionality, so no more

than one option can be selected). By default, NULL values data are processed at the end

of the list for ascending sorting.

PERSONAL_ID NAME SURNAME STUDENT_ID CLASS STATUS

1 601224/6526 Michael Flower (null) (null) (null)

2 601224/6537 (null) (null) (null) (null) (null)

3 740210/6525 Carol Matiasko (null) (null) (null)

4 740210/6536 Michael Flower (null) (null) (null)

5 781015/4431 Peter Roger 550020 3 S

6 791229/5431 Jack Robinson 501333 1 S

7 791229/5431 Jack Robinson 501103 0 K

8 791229/5431 Jack Robinson 501096 0 V

Lab 15 – Reports 413

Fig. 15.27: Managing NULL values

15.4 Hidden columns
The report is associated with the data provided by the Select statement. We can define

table columns aliases, which will be reflected as the name of the attributes in the result set:

select personal_id as pid, name, surname, student_id, class, status

 from personal_data JOIN student using(personal_id);

Fig. 15.28: Report output

We recommend you use aliases for used functions. However, for reports,

it is not necessary.

Hidden columns are part of the Select statement associated with the report but are

not displayed in the result set. They can be used for output formatting or binding to another

report. Columns to be hidden can be removed from the result set by clicking on the data grid

header and choosing the Columns… option.

PID NAME SURNAME STUDENT_ID CLASS STATUS

1 781015/4431 Peter Roger 550020 3 S

2 791229/5431 Jack Robinson 501333 1 S

3 791229/5431 Jack Robinson 501103 0 K

4 791229/5431 Jack Robinson 501096 0 V

414 Lab 15 – Reports

Fig. 15.29: Hidden column definition

By this choice, you can manage the order of columns in the result set (left part)

and determine attributes to be hidden (right part). Notice that using this option does not

influence the original Select statement at all. So, in the following example, the personal_id

attribute will be hidden.

Fig. 15.30: Hidden column definition

15.5 Binding multiple reports – Master – Child
As partially mentioned, hidden columns are used for binding results to another report

or its part (child). Let´s have the following task. One report should contain personal data.

The second one should collect information about the student if the person has already been

part of the student data. In this case, the second report is called the child, whereas the results

are dependent on the actual choice (actual selection) in the first report, which is called master.

How does it work? You should create a master report and its child report, which will

be interconnected by the bindings:

Master report – let´s create a person_binding report consisting of name, surname,

and personal_id attributes.

1

PERSON… NAME SURNAME 2
STUDEN… CLASS STATUS

1 921225/7452 Sim Eas 501559 2 S

2 911001/3623 Mark Vox 501448 1 S

3 901130/4454 Jack Clever 501003 2 S

4 900913/3326 Jacob Murgas 550945 0 S

5 896123/5471 Suzanne Walker 550123 1 S

6 890608/4543 Jacob Homm 550807 2 S

7 890310/2145 Arnas Mitchell 501345 2 S

8 871203/5472 Tom Moore 501201 3 A

9 870913/3326 Jacob Murgas 501381 2 S

10 860907/1259 John Young 501414 2 S

Z
A

2
1

Auto-fit All Columns

Auto-fit Selected Column

Sort...

Delete Persisted Settings...

Copy Selected Column Header(s)

Filter Column...

Columns...

Lab 15 – Reports 415

Fig. 15.31: Master report

Now, you can Edit it and add a child report to that defined – right-click on the defined

report and choose the Edit... option.

Fig. 15.32: Master report – edit option

416 Lab 15 – Reports

Fig. 15.33: Master report – edit option

In this window, you can edit the individual setting of the report. The defined Select

statement can be found in the SQL Query option of the Master report branch. However, now,

we will mainly highlight the Child Reports option.

Fig. 15.34: Child report

Child report must also have a unique name (student_binding) and will consist of student

data in our case. Whereas it is associated with the master one, performance should be

dynamic. Thus, if the selection in the master report is changed, it must be automatically

reflected and synchronized with the child report.

Fig. 15.35: Naming child report

Lab 15 – Reports 417

Thus, the child report Select statement definition will look like this:

select student_id, class, status, first_date

 from student

 where personal_id = :PERSONAL_ID;

In this case, the referential integrity provides binding, so the binding is ensured

by the :PERSONAL_ID, defined in the master report. Notice that the binding variable

is prefixed by the colon.

Select statement definition for the child report can be set in this branch direction: Master

report => Child reports => name_of_the_child_report => SQL Query.

Fig. 15.36: Child report query

The child report definition window will then look like this:

Fig. 15.37: Child report query

When the definition is applied, and you choose some cell in the master report, particular

data based on bindings will be shown in the child report.

418 Lab 15 – Reports

Fig. 15.38: Report binding

In the previous example, person William Whittel has been studied twice (with student_id

= 501567 and 501319). On the other hand, when we choose e.g., person Milan Clarke,

he has studied only once.

Fig. 15.39: Report binding

The evaluation is done automatically.

Just in the binding, we see the significant importance of the hidden column definition.

Indeed, attribute personal_id must be provided by the master Select statement but does not

need to be visible in the result set.

The Hidden column can provide sufficient power. It will be part of the Select statement

but not displayed in the master report result set. Master SQL query will, therefore, contain

personal_id attribute values. However, such an attribute will be invisible to the user report.

SURNAME PERSONAL_ID

1 Pearce 841106/3456

2 Smith 840312/7845

3 Young 860907/1259

4 Pearce 850130/3695

5 Pearce 841201/1248

6 Whittel 830514/5341

7 Roger 781015/4431

student_binding

Refresh: 0

CLASS STATUS FIRST_DATE

1 0 E 31.08.06

2 2 S (null)

NAME

Michael

Jack

John

Carol

Carol

Wiliam

Peter

STUDENT_ID

501567

501319

SURNAME PERSONAL_ID

17 Murgas 870913/3326

18 Hoom 890608/4543

19 Young 860103/2238

20 Walker 896123/5471

21 Pearce 855122/8569

22 Murphy 830914/7748

23 Milan Clarke 840410/6777

student_binding

Refresh: 0

CLASS STATUS FIRST_DATE

1 2 K 12.06.08

NAME

STUDENT_ID

500426

Jacob

Jacob

John

Suzanne

John

Peter

Lab 15 – Reports 419

Fig. 15.40: Report binding

Fig. 15.41: Managing report

So, the result set (master report) will not contain the primary key of the personal_data

table. However, the binding will be correct.

420 Lab 15 – Reports

Fig. 15.42: Managing binding

Be aware, no warning nor exception will be raised to inform the user that binding cannot

be done. However, child report will always be empty as a consequence of impossible binding.

Fig. 15.43: Managing binding

It is possible to define multiple child reports. However, they must be associated

with the same master report – it is impossible to chain multiple child reports (associate child

report to another child report cannot be done).

Let´s have the master report consisting of teacher information. One child report can

contain information about lectured subjects of a particular teacher. The second one can deal

with guaranteed subjects.

The master report will be based on the following Select statement:

select teacher_id, name, surname, department from teacher;

The first report (lecturer_report) will be created using this Select statement:

select distinct school_year, subject_id, name

 from study_subjects join subject using(subject_id)

 where lecturer = :TEACHER_ID;

SURNAME

1 Pearce

2 Smith

3 Young

4 Pearce

5 Pearce

6 Whittel

7 Roger

student_binding

Refresh: 0

CLASS STATUS FIRST_DATE

1 3 S

Wiliam

Peter

STUDENT_ID

501512

Carol

NAME

Michael

Jack

John

Carol

 SURNAME

1 Pearce

2 Smith

3 Young

4 Pearce

5 Pearce

6 Whittel

7 Roger

student_binding

Refresh: 0

 CLASS STATUS FIRST_DATE

Peter

 STUDENT_ID

Michael

Jack

John

Carol

Carol

Wiliam

 NAME

Lab 15 – Reports 421

The second report (guarantee_report) will be created using this Select statement:

select distinct school_year, subject_id, name

 from subject_year join subject using(subject_id)

 where guarantee = :TEACHER_ID;

Fig. 15.44: Multiple child reports

The selection on the master report will be synchronized in the child reports.

Lecturer:

Fig. 15.45: Lecturer report

NAME SURNAME DEPARTMENT

10 Rachel Vargas DI

11 Mathias Fortin DI

12 Jacob Demers DTK

13 Bill Rosario KTN

14 Suzanne Perreault DTK

15 Owen Boudreau DTK

16 Edie St-Pierre DMT

17 Michael Rosario KTN

18 John St-Pierre DMME

19 Peter Frank EX

20 Mathias Ouellet DIN

lecturer_report guarantee_report

Refresh: 0

1

2

3

4

5

6

BI30

BI06

 NAME

Java

Operation systems

Database systems - administration

Graphs theory

Language C++

Database systems - the best subject :)

SUBJECT_ID

BI10

BS01

II03

BA12

EX001

KIS01

SCHOOL_YEAR

2006

KI005

KTKO2

KDS04

KTKO3

KMME1

2002

2002

2006

2002

2001

TEACHER_ID

KI003

KTKO4

KMT01

KDS03

422 Lab 15 – Reports

Guarantee:

Fig. 15.46: Guarantee report

15.6 Graph reports

In the previous section, we have been dealing with reports in the table form. However,

SQL developer can also provide services to form graphical output using various chart types,

like a bar, pie, line, area, bubble, stock, ...

The following sections contain several examples as the most effective way for modeling

and describing principles. It also expresses the possibilities offered by the SQL Developer

Reports tool. Therefore, create a new report, including records defining the number of times

a person has been a student. For simplicity, we will now work only with Inner Join.

When creating a new report, select the Chart option from the combo box Style.

Fig. 15.47: Graph report definition

We will use, Bar chart type. Therefore, the Select statement should define three attributes,

which will be reflected in the graph. The first attribute defines the expression in the x-axis

NAME SURNAME DEPARTMENT

10 Rachel Vargas DI

11 Mathias Fortin DI

12 Jacob Demers DTK

13 Bill Rosario KTN

14 Suzanne Perreault DTK

15 Owen Boudreau DTK

16 Edie St-Pierre DMT

17 Michael Rosario KTN

18 John St-Pierre DMME

19 Peter Frank EX

20 Mathias Ouellet DIN

lecturer_report guarantee_report

Refresh: 0

1

2

3

4

5

6 2009 IPA1 Internet of things 2

7 2002 BI10 Java

8 2001 BI30 Language C++

2009 IT12 Database and knowledge discovery

2005 BS15 Intranet aplications

2005 II03 Database systems - administration

2009 IPA2 Internet of things 3

SCHOOL_YEAR SUBJECT_ID NAME

2009 BS11 Unix

KIS01

TEACHER_ID

KI003

KI005

KTKO2

KDS04

KTKO3

KTKO4

KMT01

KDS03

KMME1

EX001

Lab 15 – Reports 423

(if multiple attribute values should be written in the x-axis, they must be formed to the one

string using concatenations), the second attribute denotes the graph legend (it should

be a constant character string). The last attribute of the defined Select statement delimits

the value in the y-axis. Thus, the Select statement will look like this:

select personal_id || '-' || name || '-' || surname,

 'number of times, person has been student yet',

 count(student_id)

 from personal_data left join student using(personal_id)

 group by personal_id, name, surname;

First of all, let´s see the results in the table form:

Fig. 15.48: Table report output

If you choose the Chart option of the Style in the definition, the graph will be created.

In the left part (tree structure), the Property option can be listed with several attributes

and parameters influencing the design of the graph. It consists of these five parts: Data,

Titles, Plot Area, X-Axis, and Y-Axis.

Fig. 15.49: Report properties

 PERSONAL_ID||'-'||NAME||'-'||SURNAME NUMBEROFTIMES,PERSONHASBEENSTUDENTYET COUNT(*)

1 830703/7486-Charlie-Lewis number of times, person has been student yet 1

2 840307/7485-Mathias-Thiss number of times, person has been student yet 1

3 841106/3456-Michael-Pearce number of times, person has been student yet 1

4 860907/1259-John-Young number of times, person has been student yet 1

5 820101/8452-Thomas-Simson number of times, person has been student yet 1

6 871124/3578-Lucas-Austin number of times, person has been student yet 1

7 871203/5472-Tom-Moore number of times, person has been student yet 1

424 Lab 15 – Reports

In the Titles sub-branch, it is possible to format the information to be shown together

with the graph properties themselves – title, subtitle, graph, … In this part, we can

also define the font style:

Fig. 15.50: Titles property sub-branch

Plot Area delimits the graphic style of the graph – e.g., colors and borders.

Fig. 15.51: Plot area property sub-branch

X-Axis, Y-Axis allow the user to set the scale of axes and design of the line characteristics.

Lab 15 – Reports 425

Fig. 15.52: Y-axis property sub-branch

The following figure shows the output of the defined report.

Fig. 15.53: Graph report

As mentioned, such defined reports are dynamic, which can be reflected by the following

schema.

Delete the data about the student with student_id = 501469 from the database. In standard

conditions, it must also be deleted from the study_subjects table. However, that person has

not registered any subjects yet. Consequently, such a person will also be naturally deleted

from the report.

426 Lab 15 – Reports

It should be emphasized that Outer Joins are not reflected in this report, and thus, there

will be no data about the people without student information, although such people exist:

select personal_id

 from personal_data

 where personal_id NOT IN (select personal_id from student);

Fig. 15.54: Select statement result set

15.7 Pie graph type reports

Another chart type often used is Pie. In this case, output values projected by the Select

statements are normalized to the 100% range.

Let´s create the report, which will contain proportion characteristics of the students

in the particular study fields (field_id) and specializations (specialization_id). Accordingly,

the defined Select statement should have three attributes. However, compared to the bar

graph type, the order is a bit different. The first attribute specifies the name of the graph

(header description), the second attribute defines the legend, and the last attribute delimits

the number to be modeled inside the graph – count, which will be normalized and expressed

in percentages.

select 'Pie proportion graph of the number of students in

 particular fields and specializations',

 field_name ||', '|| spec_name,

 count(*)

 from student JOIN st_field using(field_id, specialization_id)

 group by field_name, spec_name, field_id, specialization_id;

In the Property option of the Master Report tree branch, the proposed property allows

you to define and change graph structure. In this case, choose Pie in the Chart Type combo

box.

 PERSONAL_ID

1 601224/6537

2 880329/1233

3 871124/3578

4 601224/6526

5 841201/1248

6 740210/6536

7 740210/6525

Lab 15 – Reports 427

Fig. 15.55: Graph report

In the previous example, the 3D effect has been applied, which can be checked

in Property definition:

Fig. 15.56: Setting 3D effect

Be strictly aware when defining Select statement forming report. During the definition,

there is no automatic syntax and semantics check. Consequently, the report will be invalid,

and data output will be shown (e.g., the chart will be empty).

Let's have the simple example based on the previous example, but the From keyword

is missing in the definition.

select 'Pie proportion graph of number of students in

 particular fields and specializations',

 field_name || ', ' || spec_name,

 count(*)

 from student JOIN st_field using(field_id, specialization_id)

 group by field_name, spec_name, field_id, specialization_id;

428 Lab 15 – Reports

The result will be an empty graph because no data have been found for evaluation.

Fig. 15.57: Result of incorrectly defined Graph report

15.8 Line type reports
Line graph type is mainly used for changes and progress monitoring over time. Therefore,

for the needs of observations, we will define a new table with random values.

The sensor_table table will consist of two attributes – value and time (time

of occurrence). For the simplicity, value attribute will be an integer:

create table sensor_table(value integer, time date);

desc sensor_table

 Name Null? Type

 --

 VALUE NUMBER(38)

 TIME DATE

Data values will be generated, provided by the anonymous block. We will generate 100

rows. Inside the block, the dbms_random package is referenced, which has several methods

to be used:

Tab. 15.3: dbms_random methods

Method Description

Random
Returns a random integer greater or equal to -power(2,31) and less

than power(2,31).

String

Generates random string based on the parameters:

• opt – specifies what the returning string looks like:

o 'u', 'U' - returning string in uppercase alpha characters.

o 'l', 'L' - returning string in lowercase alpha characters.

o 'a', 'A' - returning string in mixed case alpha characters.

o 'x', 'X' - returning string in uppercase alpha-numeric

characters.

o 'p', 'P' - returning string in any printable characters.

Otherwise, the returning string is in uppercase alpha

characters.

• len – length of the string.

No input data

Lab 15 – Reports 429

Method Description

Value

Generates random string based on the optional parameters:

• low

• high

The function gets a random number, greater than or equal to 0 and less

than 1, with 38 digits precision.

Alternatively, you can get a random Oracle number x, where x

is greater than or equal to low and less than high.

Other initialization methods of the dbms_random package:

Tab. 15.4: dbms_random methods

Method Description

INITIALIZE Procedure Initializes the package with a seed value.

SEED Procedures Resets the seed.

TERMINATE Procedure Terminates package.

We will generate random values of the uniform distribution from the interval <1;20),

therefore Value method will be used. Time granularity will be the day. The appropriate code

looks like this:

begin

 for i in 1..100 loop

 insert into sensor_table

 values(trunc(dbms_random.value(1, 20)), sysdate - i);

 end loop;

end;

/

Notice, whereas the Value function of the dbms_random package produces real values,

they must be truncated. Otherwise, they will be rounded to the whole part so that the table

would also include values of 20.

To produce the line graph for such data, the following Select statement is defined

for the report. Like always, it is determined by the three attributes in the result set.

The first attribute stores values in the x-axis (attribute time), the second attribute is constant

and refers to the legend ('Time values evolution'), the third attribute expresses values

to be shown in the y-axis (attribute value). In this case, values should be ordered to have

an informative value.

select time, 'Time values evolution', value

 from sensor_table

 order by time;

430 Lab 15 – Reports

The results will look like this:

Fig. 15.58: Line report

We can remove the time element of the processing by converting the time attribute

to the string.

Then, the report will look like this:

select to_char(time, 'DD.MM.YYYY'), 'Time values evolution', value

 from sensor_table

 order by time;

Also, design parameters like colors, line strength, and so on can be set in the Property

branch.

Let´s extend the previously defined table by another sensor data results.

alter table sensor_table add value2 integer;

In this case, generate values for the attribute value2 using interval <1,5).

update sensor_table set value2 = trunc(dbms_random.value(1, 5));

commit;

Now, we can define multiple graphs inside one line chart (other chart types can also be

used).

Follow the instructions:

1. create a new report, name it (multiple_line_chart) with the chart type.

Fig. 15.59: Report definition

Lab 15 – Reports 431

2. Select statement for the definition must contain all data, which will be required

for the reports (sensorial data (attribute value, value2) delimited by the time

attribute). It should also contain constants for legends). The order of attributes is

not fundamental. We will show how to map them to the result set (graph).

select to_char(time, 'DD.MM.YYYY'), value, value2, 'report - value1',

 'report - value2'

 from sensor_table;

3. In the Property section, choose the Line of the Chart Type combo box.

Fig. 15.60: Setting property Chart Type

4. Now, it´s time to map attributes for the graph. This functionality can be set Data

subsection of the Property branch in Master Report:

Fig. 15.61: Data subsection

5. For this purpose, an active connection to the database must be provided to execute

mapping, so choose the appropriate connection in the right part of the window:

Fig. 15.62: Mapping

432 Lab 15 – Reports

6. Now, the mapping is enabled. However, you must fetch column names available

from the associated Select statement (click on the Fetch Column Names button):

Fig. 15.63: Mapping

7. Fill the Mapping section of the data grid. The first column defines the attribute

to be processed in the x-axis. The second column represents the legend,

so use constants. The last (third) column of the data grid delimits the attribute

association for the y-axis.

8. We will create two graphs inside one chart. In our case – attribute time with removed

time spectrum (only day, month, and year are processed) is used for the x-axis,

another axis (y-axis) will be defined by sensorial data – attributes value, value2.

Thus, the data grid for mapping will look like this:

Fig. 15.64: Mapping

9. Apply changes and create a report. By default, the value1 of the report will have a red

color, value2 will be shown in blue color; however, the settings can be changed

in the Plot area of the Property branch.

Lab 15 – Reports 433

Fig. 15.65: Plot area property

10. Finish.

Fig. 15.66: Multiple graphs

11. Optionally, you can associate a separate y-axis scale with the changing Chart Type

to Line Dual Y. These settings can be found in the Property branch.

434 Lab 15 – Reports

Fig. 15.67: Chart type

12. The result (y-axis scale for the value will be 0-21 (by default, it is set automatically

based on provided data), and the y-axis scale for the value2 will be 0-5).

Fig. 15.68: Multiple graphs

15.9 Three-dimensional (3D) graph types
We can define three-dimensional (3D) graph reports. Let´s have a simple example.

We want to get the number of students for each class and study field. So, the Select statement

will be like this:

select field_id, class, count(*), field_name

 from student join st_field using(field_id, specialization_id)

 group by field_id, class, field_name;

We want to get the text form (field_name), so join the student table with the st_field table.

Lab 15 – Reports 435

Fig. 15.69: Report definition

The definition consists of these steps:

1. Choose the 3D-bar for the Chart Type.

Fig. 15.70: 3D-bar graph definition

436 Lab 15 – Reports

2. Map the attributes to the graph visualization definition:

Fig. 15.71: Mapping

3. Result:

Fig. 15.72: 3D-bar Graph report

15.10 Binding multiple reports of various types
In the previous part of this section, we have experienced the principles of multiple reports

binding. It was based on two or more table reports (one is master, the rest of them

are children). In principle, it is possible to build child reports not only by using table form.

We can use any style type. Now, we will show the chart reflecting the actual selection

in the master table.

The master report of the example will be based on personal_data and student information

– name, surname, and student_id. Child report will be based on student_id and will reflect

the number of registered subjects for each school_year.

Master report Select statement:

select name, surname, student_id

 from personal_data join student using(personal_id);

Lab 15 – Reports 437

Master report Style should be set to Table:

Fig. 15.73: Setting style

Child report Select statement (it must be bonded):

select school_year, 'subjects registration for student: ' || student_id,

 count(*)

 from study_subjects

 where student_id = :STUDENT_ID

 group by school_year, student_id;

Child report Style should be set to Chart. Such settings can be found using this tree path:

Master Report => Child Reports => name_of_child:

Fig. 15.74: Setting style

438 Lab 15 – Reports

Chart type can be then changed in the Property section of the Child Reports node:

Fig. 15.75: Setting properties of the child report

The result of the binding is performed by clicking on the master report cell or row.

The particular graph will be redrawn automatically.

Fig. 15.76: Report output (binding)

15.11 Exports

Defined reports can be exported to multiple formats, which provide great techniques

for presentations, evaluations, and post-processing. Moreover, the Reports module allows

you to create various export formats for subsequent use in other database systems

and applications.

Lab 15 – Reports 439

For simplicity, exactness, and clearness, we will deal with reports based on table data

(personal_data and student) joined using Left Outer Join:

select personal_id, name, surname, student_id, class, status

 from personal_data LEFT JOIN student using(personal_id);

We can store the results of the report physically in the file. So, create such a report,

execute it and on the generated table report, right-click and select the Export… option.

Fig. 15.77: Exporting the report

A new window will be created, allowing you to define the format in which the report

should be exported. There are multiple types, which can be selected (combo box named

Format). Therefore, we will describe only the most significant of them:

Fig. 15.78: Export wizard

440 Lab 15 – Reports

15.11.1 CSV format

CSV (Comma Separated Values) file format has been proposed for data exchanges

between various applications and systems. Such a file consists of a non-limited number

of records (rows) delimited by the new line symbol. Each attribute (column) of the record

is usually bounded by the comma (,), semicolon (;), or tab. Usually, each record has the same

number of columns. Column values can be optionally enclosed by the quotation marks ("").

The main advantage of this format is based on allowing multiple system data transformations

preparing data as input to another system. Notice that the CSV format is not strictly defined.

There is no strict specification for it.

Fig. 15.79: CSV export

Optionally, you can select whether the header will be included or not (Header checkbox).

Lab 15 – Reports 441

After selecting CSV in the Format combo box, also define the file path for the export

and click on the Next button, which provides an export summary:

Fig. 15.80: Export wizard

Click the Finish button, and the file is automatically created in the destination folder.

"PERSONAL_ID","NAME","SURNAME","STUDENT_ID","CLASS","STATUS"

"601224/6526","Michael","Flower",,,""

"601224/6537","","",,,""

"740210/6525","Carol","Matiasko",,,""

"740210/6536","Michael","Flower",,,""

"781015/4431","Peter","Roger",550020,3,"S"

"791229/5431","Jack","Robinson",501333,1,"S"

In this case, NULL values are represented by empty strings.

15.11.2 Delimited format

Generalization of the CSV format provides a Delimited file format type. Possible types

for the value of the property Delimiter are comma (,) pipe (|), semicolon (;), tab,

whitespace, space, etc. Values themselves can be enclosed using the following symbols:

quotation marks (""), apostrophes ('') parentheses (()), <, >, square parentheses ([]),

or no special symbol can be used (none option). A line terminator can be defined based on

the environment to be used, like <LF> for Unix or by <CR> <LF> for Windows. For this

example, select Pipe (|) for property Delimited and none for Left and Right Enclosure.

442 Lab 15 – Reports

Fig. 15.81: Data export

Again, click the Next button and Finish button.

This is the input file for SQL Loader.

601224/6526|Michael|Flower|||

601224/6537|||||

740210/6525|Carol|Matiasko|||

740210/6536|Michael|Flower|||

781015/4431|Peter|Roger|550020|3|S

791229/5431|Jack|Robinson|501333|1|S

791229/5431|Jack|Robinson|501103|0|K

791229/5431|Jack|Robinson|501096|0|V

The defined format is well known for you, isn´t it? Where has that format been used?

15.11.3 Text format

A special case of the Delimited format is Text. If the Text option of the Format combo

box is selected, the used Delimited option is automatically selected to Tab. The user

can define Left and Right Enclosures and Line Terminator. Values are aligned using tabs,

Lab 15 – Reports 443

so each starting position of the value for the particular attribute is the same. The file format

is *.tsv and can be opened in any text editor (e.g., Notepad or WordPad):

Fig. 15.82: Export wizard

Example of the data file output:

Fig. 15.83: Output

15.11.4 Excel format

Reports connected to the Export module can also provide output format in Excel.

Each column value is in a separate Excel cell. These values can be changed

using a compatible application. Moreover, they can be automatically mapped to the database

using external table functionality.

The following example will map the result to the *.xlsx output format, which

is characterized by Excel version 2003 and newer releases. *.xls file format is used for older

versions than Excel 2003.

Export to Excel is also provided by the Wizard, Excel 2003+ or Excel 95-2003 should be

used (Format combo box).

Two generated sheets will delimit the provided output file. The first will contain data

themselves, and the second will include a statement, which generated such a report. The user

PERSONAL_ID NAME SURNAME STUDENT_ID CLASS STATUS

791229/5431 Jack Robinson 501333 1 S

791229/5431 Jack Robinson 501103 0 K

791229/5431 Jack Robinson 501096 0 V

800407/3522 Mark Bailey 501402 2 S

800407/3522 Mark Bailey 501402 1 S

444 Lab 15 – Reports

can name these sheets (Data Worksheet Name and Query Worksheet Name input box),

or default names can be used (name Export Worksheet for Data Worksheet Name and name

SQL for Query Worksheet Name).

When you deselect the option True in the Query Worksheet Name check box,

only one sheet will be provided (with the report data).

Fig. 15.84: Export wizard

If NULL values are defined for any attribute, an empty string will be included in the Excel

file.

Fig. 15.85: Excel export

The second sheet with SQL statement forming export is following:

Fig. 15.86: SQL worksheet

Lab 15 – Reports 445

Fig. 15.87: SQL worksheet

15.11.5 XML format

XML (eXtensible Markup Language) is the vital format used in many information

systems for data transferring, sharing, or platform changing. It simplifies data availability

and portability. It has been proposed by the consortium W3C and is based on previous markup

approaches.

An XML document contains specific instructions called tags, elements, and entities.

The resulting document is self-describing. Therefore, it is possible to use it to define data as

well as their meaning (semantics).

Tags are not predefined. You must create your own ones, which will describe the relevant

data.

Fig. 15.88: XML wizard

<?xml version='1.0' encoding='Cp1250' ?>

<RESULTS>

 <ROW>

 <COLUMN NAME="PERSONAL_ID"><![CDATA[601224/6526]]></COLUMN>

 <COLUMN NAME="NAME"><![CDATA[Michael]]></COLUMN>

 <COLUMN NAME="SURNAME"><![CDATA[Flower]]></COLUMN>

 <COLUMN NAME="STUDENT_ID"><![CDATA[]]></COLUMN>

 <COLUMN NAME="CLASS"><![CDATA[]]></COLUMN>

 <COLUMN NAME="STATUS"><![CDATA[]]></COLUMN>

 </ROW>

446 Lab 15 – Reports

 <ROW>

 <COLUMN NAME="PERSONAL_ID"><![CDATA[601224/6537]]></COLUMN>

 <COLUMN NAME="NAME"><![CDATA[]]></COLUMN>

 <COLUMN NAME="SURNAME"><![CDATA[]]></COLUMN>

 <COLUMN NAME="STUDENT_ID"><![CDATA[]]></COLUMN>

 <COLUMN NAME="CLASS"><![CDATA[]]></COLUMN>

 <COLUMN NAME="STATUS"><![CDATA[]]></COLUMN>

 </ROW>

</RESULTS>

15.11.6 HTML format

Reports can be exported and stored in the HTML format. Thanks to that, websites can

reference such page and provide report values in any form (table, charts, …). HMTL reports

can be generated by two methods, which also influence the characteristics. The first type

is similar than the other exporting techniques described earlier. It can be provided in multiple

formats like tables and charts, so right click on the report and choose Export… option.

Export Format should be HTML. By this approach, it is possible to search in the result set

using the search input box. However, be aware, generated HTML code is static, so it does

not reflect any change in the database, which generated such HTML. Thus, there is

no connection to the database, the HTML site itself embeds all the data:

<tr>

 <th>PERSONAL_ID</th>

 <th>NAME</th>

 <th>SURNAME</th>

 <th>STUDENT_ID</th>

 <th>CLASS</th>

 <th>STATUS</th>

</tr>

<tbody id="data">

<tr>

 <td>601224/6526</td>

 <td>Michael</td>

 <td>Flower</td>

 <td align="right"> </td>

 <td align="right"> </td>

 <td> </td>

</tr>

Lab 15 – Reports 447

Fig. 15.89: HTML report

Searching using wildcards is available, and the Search box is added automatically. Thus,

if you write ‘Mich’ in the search box, it will be automatically replaced by the ‘%Mich%’ –

first example. A similar principle also works for numerical values, e.g. (‘1224’ is replaced

by the ‘%1224%’ – second example).

Fig. 15.90: HTML report

448 Lab 15 – Reports

Fig. 15.91: HTML report

The second way, how to generate HTML export of the report can be processed by right-

clicking on the report name in the Reports window by selecting the HTML… option.

Fig. 15.92: HTML report

You can select the destination folder and the name of the file (Destination HTML File).

Like all exports, defined file outputs are STATIC, so any change in the database IS NOT

automatically reflected in the output. For the PDF files, it is clear. However, the same

principle is also used for HTML generated files. Therefore, you can select whether the time

stamp of the generation should (or should not) be part of the report header (checkbox Include

Time Stamp in Report Header).

Lab 15 – Reports 449

Fig. 15.93: HTML report

The output of this module is an HTML site, which can be published on the web. It will

look like this:

Fig. 15.94: HTML report

Using this solution, you can select (set focus on) individual rows. Thanks to that, you can

generate exports based on correlations (bindings). Thus, not only one report will be managed

(master table), but records can also be associated with the child exports. So, add child report,

which will contain all registered subjects of the particular (selected) student

using the following Select statement:

select subject_id, name, school_year

 from study_subjects join subject using(subject_id)

 where student_id = :STUDENT_ID;

When you generate export using the second way, after selecting some row, also subject

information of such student will be listed in the second report (child):

select school_year, 'subject registration count', count(*)

 from study_subjects

 where student_id = :STUDENT_ID

 group by school_year;

450 Lab 15 – Reports

Fig. 15.95: HTML report

15.11.7 Exporting to PDF

The last category we will deal with is an export tool for generating PDF files.

This functionality is based on the Export... option:

Fig. 15.96: Exporting to PDF

In the Export window, choose the pdf in the Format combo box. If selected, Title,

Subtitle, and Keywords can be optionally defined.

 PERSONAL_ID NAME SURNAME STUDENT_ID CLASS STATUS

1 601224/6526 Michael Flower (null) (null) (null)

2 601224/6537 (null) (null) (null) (null) (null)

3 740210/6525 Carol Matiasko (null) (null) (null)

4 740210/6536 Michael Flower (null) (null) (null)

5 781015/4431 Peter Roger 550020 3 S

6 791229/5431 Jack Robinson 501333 1 S

7 791229/5431 Jack Robinson 501103 0 K

8 791229/5431 Jack Robinson 501096 0 V

9 800407/3522 Mark Bailey

10 800407/3522 Mark Bailey

11 810101/8079 Thomas Hall

Save Grid as Report...

Single Record View...

Count Rows...

Find/Highlight...

Publish to APEX...

Export...

Lab 15 – Reports 451

Fig. 15.97: Export to PDF wizard

You can optionally define also fonts, headers, footers, etc., to create PDF exact

to your wishes. These settings can be changed after right-clicking on the report name

and selecting the Edit… option.

Fig. 15.98: Export to PDF wizard

Just the PDF branch part deals with such attributes influencing the design.

452 Lab 15 – Reports

Fig. 15.99: Export to PDF wizard

Possible design changes can be defined and changed on the following nodes:

• Cell Layout,

• Column Layout,

• Table Layout,

• Header,

• Footer,

• Security,

• Page Layout.

Solution:

Fig. 15.100: Export to PDF wizard

Report Date: 5/9/2016 4:54:21 PM

PID NAME SURNAME STUDENT ID CLASS STATUS

601224/6526 Michael Flower (null) (null) (null)

601224/6537 (null) (null) (null) (null) (null)

740210/6525 Carol Matiasko (null) (null) (null)

740210/6536 Michael Flower (null) (null) (null)

781015/4431 Peter Roger 550020 3 S

791229/5431 Jack Robinson 501333 1 S

791229/5431 Jack Robinson 501103 0 K

791229/5431 Jack Robinson 501096 0 V

800407/3522 Mark Bailey 501402 2 S

800407/3522 Mark Bailey 501555 1 S

810101/8079 Thomas Hall 500438 2 K

820101/8452 Thomas Simson 500433 0 E

830301/7789 Michael Simson 500422 0 K

830324/7887 Daniel Gomez 500428 0 K

830420/8088 Daniel Green 500432 2 K

830514/5341 Viliam Whittel 501567 0 E

830514/5341 Viliam Whittel 501319 2 S

830703/7486 Charlie Lewis 500429 2 S

830914/7748 Peter Murphy 500427 0 K

831002/8463 Lucas Powel 500423 0 E

831204/7766 Mathias Taylor 500430 0 V

generated by: mk

Student Report

page no: 1

Lab 15 – Reports 453

15.12 Script format (Insert)
SQL developer Report tool allows you to create (generate) the script for inserting data

into the database – particular Insert statements are generated. There should be a defined name

of the table (Table Name input box) and Terminator. Transaction commit

can also be optionally generated after a specified number of data to be inserted.

Fig. 15.101: Creating a script

The result (in our case, preview for 3 records) of the processing will provide the following

data (example for inserting into personal_data table):

Insert into EXPORT_TABLE

 (PERSONAL_ID, NAME, SURNAME, STREET, TOWN, ZIP, NATIONALITY)

 values ('841106/3456', 'Michael', 'Pearce', 'Kamenna 27',

 'Banska Bystrica', '97401', 'SK');

Insert into EXPORT_TABLE

 (PERSONAL_ID, NAME, SURNAME, STREET, TOWN, ZIP, NATIONALITY)

 values ('840312/7845', 'Jack', 'Smith', 'Zelena 9',

 'Nove Mesto nad Vahom', '91501', 'SK');

Insert into EXPORT_TABLE

 (PERSONAL_ID, NAME, SURNAME, STREET, TOWN, ZIP, NATIONALITY)

 values ('860907/1259', 'John', 'Young', 'Slnecne namestie',

 'Komarno', '94501', 'SK');

As described in this lab, the Report tool provides sufficient power for user-friendly

formatted output, responsible for data changes. This lab does not contain practice, however,

be familiar with such technology and offered options.

Summary 455

Summary

You have reached the end of the textbook. Its goal is to teach you the principles of

relational database systems in the Oracle Cloud environment.

In chapter 1, we have been dealing with the Oracle Cloud Infrastructure - the registration

and database provisioning process. Oracle provides you with an Always Free option suitable

for studying and testing. By implementing real solutions, you can migrate the account to the

paid option extending the opportunities and individual resources. Available database types

are autonomous, so most administration activities are managed automatically without your

intervention. Connection details have been discussed, covering the SQL Developer tool.

The basics and principles of the data retrieval process are divided into multiple chapters.

Chapter 2 emphasizes the Select, From, Where, and Order By clauses. In addition, it covers

the Inner Join and set operations. You have been navigated to the problem of a Cartesian

product, caused mostly by improper joining in the case of using composite primary keys.

In chapter 3, data changing operations (Insert, Update, Delete statements) are discussed,

summarizing all data manipulation language (DML) operations. All executed statements are

part of the transactions. To make the change durable, it is necessary to approve

the transaction by reaching Commit. The transaction itself ensures the consistency of the data.

Thus, all integrity constraints must be passed during the approval process. Otherwise,

the transaction is refused (Rollback).

Chapter 4 covers the data modeling principles in a theoretical and practical manner. Data

models are created in the Toad Data Modeler environment. The selection was made based

on its versatility across multiple database systems. It can generate models and scripts not only

for DBS Oracle. Moreover, individual models and types are interchangeable. This chapter

has driven you through the table definitions and relationship types, focusing on the primary

and foreign keys. Note that SQL Developer has embedded data modeler for Oracle databases.

In chapter 5, you have been proposed data definition language (DDL), covering Create,

Alter, and Drop commands, which implicitly reach transaction approval (implicit Commit).

You have been focused on user management, table and relationship definitions, and indexes

as key elements ensuring the system's performance.

Robustness of the data loading process in terms of SQL Loader, client, and server import

and export operations was covered in chapter 6. You learned the principles of data object

sharing and privilege management in chapter 7.

The second part of the data retrieval process was discussed in chapter 8, focusing

on the Outer Join operators and aggregate functions by creating the groups in Group By

clause. You have been focused on the relational algebra operations manipulating multiple

sets.

Chapter 9 gave you an overview of the procedural extension of SQL (PL/SQL). Code

blocks can be anonymous, executed only once, or the named notation can be used, allowing

you to reference the methods later. The focus was done on the syntax, code primitives

up to the procedure, and function definitions, optionally covered by the packages. The data

retrieval process inside the block must produce values stored in the variables. As stated,

Select Into type should reference one row precisely, while the cursor provides a general

solution using the assignment loop. Code blocks were also discussed in chapter 10, dealing

with the triggers associated with the individual operations or events.

456 Summary

Chapter 11 provides you with the reference knowledge of relational integrity, supervised

by the transactions.

Stored Select statements using View references were offered in chapter 12.

Date and Time management (chapter 13) is a complex topic related to the individual

elements, time-zone synchronization, regions, NLS parameters, etc. You also obtained the

information about the existing functionality summary, focusing on the principles and

limitations.

A complex data object overview can be got by the system tables. Their principles,

structures, and type division were discussed in chapter 14. After learning it, you are

responsible for obtaining any structural information from the database.

In the last chapter, we returned to the topic of data retrieval, shaped in the report format.

We discussed various styles of reporting and output formats to provide you with robust

power. We have been dealing with the exports, as well.

In conclusion, we would like to draw your attention to further study in database

technology. Oracle APEX (Application Express) is a low-code development platform

enabling you to create robust, secure, and scalable applications deployed in the cloud. APEX

applications are data-driven and can be developed fast using pre-prepared components.

All necessary features and tools are part of the cloud, so you need to log on there and enjoy

the modules. More about the APEX technology can be found in:

• https://beeapex.eu/

• https://apex.oracle.com/en/

That´s the end. Thank you very much for your interest in database technology. If would

like to contact the authors, please use the email addresses in the following format:

<name> . <surname> @ uniza . sk

https://beeapex.eu/
https://apex.oracle.com/en/

References 457

References

[1] ALAPATI, S. – KIM, CH.: Oracle Database 11g: New Features for DBAs and

Developers (Expert's Voice in Oracle), Apress, 2014.

[2] ATZENI, P.- CERI, S.- PARABOSCHI, S.- TORLONE, R.: Database Systems –

concepts, languages & architectures, McGraw-Hill, England, 1999.

[3] BEAULIEU, A.: Learning SQL: Generate, Manipulate, and Retrieve Data, O'Reilly

Media, 2020.

[4] BLOKDYK, G.: Oracle Cloud Infrastructure A Complete Guide, 5STARCooks,

2019.

[5] BRYLA, B.: Oracle Database 12c The Complete Reference, Oracle Press, 2013,

ISBN - 978-0071801751.

[6] CANNAN, S. J.: SQL – The Standard Handbook, McGraw-Hill, 1992.

[7] CUMMING, A. – RUSSELL, G.: SQL Hacks, O’Reilly, 2007, ISBN-13: 978-0-

596-52799-0.

[8] DATE, C.J.: Database in Depth, O’Reilly, 2005, ISBN 0-596-10012-4.

[9] DATE, C.J. – DARWEN H. – LORENTZOS N.: Temporal Data & the Relational

Model, Morgan Kaufmann, 2002, ISBN – 9780080518718.

[10] DATE, C.J. – DARWEN H. – LORENTZOS N.: Time and Relational Theory –

Temporal Databases in the Relational Model and SQL, Morgan Kaufmann, 2014,

ISBN – 9780128006313.

[11] DUTKA A., HANSON H.: Fundamentals of Data Normalization, Addison Wesley,

London, 1994.

[12] FAROULT, S. – ROBSON, P.: The Art of SQL, O’Reilly, 2006, ISBN 0-596-00894-

4.

[13] FERNANDEZ, I.: Beginning Oracle Database 12c Administration: From Novice to

Professional, APress, 2015.

[14] FEUERSTEIN, S.: Oracle PL/SQL Best Practices: Write the Best PL/SQL Code of

Your Life, O'Reilly Media, 2007, ISBN - 978-0596514105.

[15] FEUERSTEIN, S. – PŘIBYL, B.: Oracle PL/SQL programming, O'Reilly Media

5th, 2009, ISBN - 978-1449324452.

[16] FINKELSTEIN S., SCHKOLNICK M., TIBERIO P.: Physical Database Design

for Relational Databases, ACM Transactions on Database Systems Vol. 13, No. 1,

1988.

[17] GAN, I.: T-SQL Fundamentals, Microsoft Press, 2016, ISBN - 978-1509302000.

[18] GELLER, A. – SPENDOLINI, B.: Oracle Application Express: Build Powerful

Data-Centric Web Apps with APEX (Oracle Press), McGraw-Hill Education, 2017.

[19] GENNICK J. – MISHRA S.: Oracle SQL*Loader: The Definitive Guide, O'Reilly

Media, 2001, ISBN - 978-1565929487.

[20] GORMAN, T. – JORGENSEN I. – CAFFREY M. – HAAN L.: Beginning Oracle

SQL: For Oracle Database 12c, Apress, 2014, ISBN - 978-1430265566.

[21] GREENWALD, R. – STACKOWIAK R. – STERN J.: Oracle Essentials: Oracle

Database 12c, O'Reilly Media, 2013, ISBN - 978-1449343033.

458 References

[22] GURRY M.: Oracle SQL Tuning Pocket References, O’Reilly, 2002, ISBN 0-596-

0068-8.

[23] HALPIN, T.: Information Modeling and Relational Databases – From Conceptual

Analysis to Logical Design, Morgan Kaufmann, 2001, ISBN – 9781558606722.

[24] HANSEN, K.: Practical Oracle SQL: Mastering the Full Power of Oracle

Database, Apress, 2020.

[25] HARRINGTON, J.: Relational Database Design and Implementation, Morgan

Kaufmann, 2016, ISBN – 9780128043998.

[26] HELLER, J.: Pro Oracle SQL Development: Best Practices for Writing Advanced

Queries, Apress, 2019.

[27] HERMANDEZ, M.: Database Design for Mere Mortals: A Hands-On Guide to

Relational Database Design, Addison-Wesley Professional, 2013, ISBN - 978-

0321884497.

[28] CHEN, L.: Query Processing and Optimization in Information-integration Systems,

Stanford University, 2001.

[29] CHEN, P. P.: The Entity-Relationship Model: Toward a Unified View of Data, ACM

Transactions on Database Systems, vol. 1, no. 1, pp. 9-36, 1976.

[30] CHURCHER, C.: Beginning SQL Queries: From Novice to Professional, Apress,

2016, ISBN - 978-1484219546.

[31] JAIN, A. – MAHAJAN, N.: The Cloud DBA-Oracle: Managing Oracle Database

in the Cloud, Apress, 2017.

[32] JAKÓBCZYK, M.: Practical Oracle Cloud Infrastructure: Infrastructure as a

Service, Autonomous Database, Managed Kubernetes, and Serverless, Apress,

2020.

[33] JOHNSTON, T.: Bitemporal data, Morgan Kaufmann, 2014, ISBN-

9780124080676.

[34] JOHNSTON, T. – WEIS, R.: Managing Time in Relational Databases – How to

Design, Update and Query Temporal Data, Morgan Kaufmann, 2010, ISBN –

9780123750419.

[35] JURIC, K.: Oracle CX Cloud Suite: Deliver a seamless and personalized customer

experience with the Oracle CX Suite, Packt Publishing, 2019.

[36] KUMAR,Y. – BASHA, N. et al.: Oracle High Availability, Disaster Recovery, and

Cloud Services: Explore RAC, Data Guard, and Cloud Technology, Apress, 2019.

[37] KUHN, D. – KYTE, T.: Oracle Database Transactions and Locking Revealed:

Building High Performance Through Concurrency, Apress, 2020.

[38] KUHN, D. – KYTE, T.: Expert Oracle Database Architecture: Techniques and

Solutions for High Performance and Productivity, Apress, 2021.

[39] KVET, M. – MATIAŠKO, K. – VESTENICKÝ, V. – ŠALGOVÁ, V.: Rýchly vývoj

dátových modelov a aplikácií v prostredí Oracle APEX, EDIS UNIZA, 2020. ISBN:

978-80-554-1678-6.

[40] KVET, M. – MATIAŠKO, K.: Temporálne databázy, EDIS UNIZA, 2020. ISBN:

978-80-554-1662-5.

[41] KVET, M.: Database index balancing strategy, 29th conference of open

innovations association FRUCT: Tampere, Finland 12-14 May 2021. ISBN: 978-

952-69244-5-8.

References 459

[42] KVET, M. – KRŠÁK, E. – MATIAŠKO, K.: Locating and accessing large datasets

using Flower Index Approach, Concurrency and computation-practice and

experience (Vol. 32, Issue 13). ISSN: 2305-7254.

[43] KVET, M. – MATIAŠKO, K.: Managing, locating and evaluating undefined values

in relational databases, Information technology and systems, Springer Nature 2021.

ISBN: 978-3-030-68284-2.

[44] KVET, M. – MATIAŠKO, K.: Trigger performance characteristics in temporal

environment, SIMS 2016: second international conference on systems informatics,

modelling and simulation: Riga, Latvia 1-3 June 2016. – Piscataway: IEEE, 2016.

– ISBN-978-1-5090-2693-7.

[45] KVET, M. – MATIAŠKO, K.: Temporal transaction integrity constraints

management, Cluster Computing, Springer, 2017, ISSN-13867857.

[46] LACKO, L.: Oracle. Správa, programování a použití databázového systému.,

Computer Press, a.s.,Brno, ISBN 978-80-251-1490-2, 2007.

[47] LEWIS, J.: Cost-Based Oracle Fundamentals, Apress, US, 2005, ISBN: 1-59059-

636-6.

[48] LONEY, K. – THERIAULT, M.: Oracle. Kompletní pruvodce tvorbou, správou a

údržbou databází, Computer Press, Praha 2002, ISBN 80-7226-635-7.

[49] MALCHER, M. – KUHN, D.: Pro Oracle Database 18c Administration: Manage

and Safeguard Your Organization’s Data, Apress, 2019.

[50] MATIAŠKO, K. – KVET, M. – KVET, M.: Databázové systémy – 1. diel, EDIS

UNIZA, 2018, ISBN: 978-80-554-14881.

[51] MATIAŠKO, K. – KVET, M. – KVET, M.: Databázové systémy – 2. diel, EDIS

UNIZA, 2018, ISBN: 978-80-554-1489-8.

[52] MATIAŠKO, K. – VAJSOVÁ, M. – KVET, M.: Pokročilé databázové systémy – 1.

Diel – Umenie programovania a administrácie, EDIS UNIZA, 2017, ISBN: 978-

80-554-1311-2.

[53] MATIAŠKO, K. – VAJSOVÁ, M. – KVET, M.: Pokročilé databázové systémy – 1.

Diel – Architektúra, programovanie s objektmi a XML, EDIS UNIZA, 2017, ISBN:

978-80-554-1312-9.

[54] MATIAŠKO, K. – KVET, M. – KVET, M.: Practices for database systems, EDIS

UNIZA, 2017, ISBN: 978-80-554-1396-9.

[55] MCLAUGHLIN, M.: Oracle Database 12c PL/SQL Advanced Programming

Techniques, McGraw-Hill Education, 2014, ISBN - 978-0071835145.

[56] MCLAUGHLIN, M.: Oracle Database 11g PL/SQL Programming, Oracle Press,

2008, ISBN: 978-0071494458.

[57] MELTON, J. – SIMON A.: Understanding Relational Language Components,

Morgan Kaufmann, 2001, ISBN – 9781558604568.

[58] MISHRA, S. – BEAULLIEU, A.: Mastering Oracle SQL, 2nd Edition, O'Reilly

Media, 2004, ISBN - 978-0596006327.

[59] MOLINA, H. – ULLMAN, J. – WIDOM, J.: Database Systems: The Complete

Book, Pearson, 2008, ISBN - 978-0131873254.

[60] MOLINARO, A.: SQL Cookbook: Query Solutions and Techniques for Database

Developers, O'Reilly Media, 2005, ISBN - 978-0596009762.

[61] MOLKEN, R.: Implementing Oracle Integration Cloud Service: Understand

everything you need to know about Oracle's Integration Cloud Service and how to

utilize it optimally for your business, Packt Publishing, 2017.

460 References

[62] MORTON, K. – OSBORNE K. – SANDS R. – SHAMSUDEEN R. – STILL J.: Pro

Oracle SQL (Expert's Voice in Oracle), Apress, 2013, ISBN - 978-1430262206.

[63] MUSTAFA, O. – LOCKARD, R.: Oracle Database Application Security: With

Oracle Internet Directory, Oracle Access Manager, and Oracle Identity Manager,

Apress, 2019.

[64] NIEMEC R.: Oracle Database 12c Release 2 Performance Tuning Tips &

Techniques, Oracle Press, 2017, ISBN - 978-1259589683.

[65] O´HEARN, S.: OCE Oracle Database SQL Certified Expert Exam Guide, Oracle

Press, McGraw-Hill Education, 2009, ISBN - 978-0071614214.

[66] OZSU, M. T. – VALDURIEZ, P.: Principles of Distributed Database Systems,

Prentice Hall, Englewood Cliffs, N. J., 1999.

[67] PNG, A. – DEMANCHE, L.: Getting Started with Oracle Cloud Free Tier: Create

Modern Web Applications Using Always Free Resources, Apress, 2020.

[68] POKORNÝ, J.: Databázové systémy, CVUT, 2013.

[69] PRICE, J.: Oracle Database 11g SQL, Oracle Press, 2007.

[70] RAMAKRISHNAN, R. – GEHRKE, J.: Database Management Systems, Mc Grow

Hill, New York, 2000.

[71] RAMKLASS, R.: Oracle Cloud Infrastructure Architect Associate All-in-One

Exam Guide (Exam 1Z0-1072), McGraw-Hill Education, 2020.

[72] ROSENBLUM, M. – DELMOLINO, D. – CUNNINGHAM, L. – SHAMSUDEEN,

R. – MCDONALD, C. – CAFFREY, M. – HARPER, S. – HOLM, T. – SANDS, R.

– BERESNIEWICZ, J. – CRISCO, R. – BCHI, M. – BILLINGTON, A. – PETIT,

S. – NANDA, A.: Expert PL/SQL Practices: for Oracle Developers and DBAs,

Apress, 2011.

[73] ROSENBLUM, M.: Oracle PL/SQL Performance Tuning Tips & Techniques,

McGraw-Hill Education, 2014, ISBN - 978-0071824828.

[74] SCIORE, E.: Understanding Oracle APEX 20 Application Development: Think Like

an Application Express Developer, Apress, 2020.

[75] SIMSION, G. – WITT G.: Data Modeling Essentials, Morgan Kaufmann, 2004,

ISBN – 9780126445510.

[76] TEOREY T. – LIGHTSTONE, S. – NADEAU, T. – JAGADISH, H.V.: Database

Modeling and Design – Logical Design, Morgan Kaufmann, 2014, ISBN –

9780123820211.

[77] VALDURIEZ, P. – GARDARIAN, G.: Analysis and Comparison of Relational

Database Systems, Addison Wesley, 1989.

[78] VESTERLI, S.: Oracle Visual Builder Cloud Service Revealed: Rapid Application

Development for Web and Mobile, Apress, 2019.

[79] VIESCAS, J. – STEELE, D. – CLOTHIER B.: Effective SQL: 61 Specific Ways to

Write Better SQL (Effective Software Development Series), Addison-Wesley

Professional, 2016, ISBN - 978-0134578897.

[80] Oracle documentation (docs.oracle.com)

Oracle database Autonomous database APEX

Abbreviations 461

Abbreviations

Abbreviation Meaning

1NF The first normal form

2NF The second normal form

2PC Two-Phase Commit

2PL Two-Phase Locking

2VL Two-Valued Logic

3NF The third normal form

3VL Three-Valued Logic

4NF The fourth normal form

5NF The fifth normal form

ABORT Abnormal Termination

ACID Atomicity. Consistency, Isolation, Durability

ACM Association of Computer Machinery

ADT Abstract Data Type

AK Alternate Key

ANSI American National Standards Institute

ANSI /SPARC ANSI/Systems Planning and Requirements Committee

ASM Automatic Storage Management

BCNF Boyce Codd Normal Form

BCS British Computer Society

BLOB Binary Large Object

BNF Backus/Nur form

CACM Communications of the Association of Computer Machinery

CAD/CAM Computer-Aided Design/Computer-Aided Manufacturing

CAD/CAM Computer-Aided Design

CAM Computer Aided Manufacturing

CASE Computer Aided Software Engineering

CBO Cost Base Optimization

CDO Class Definition Object

CIM Computer Integrated Manufacturing

CLOB Character Large Object

CODASYL Conference on Data Systems Languages

CPU Central Processor Unit

CS Cursor Stability

DB2 Database system of the IBM company

DBA DataBase Administrator

DBCA Database Configuration Assistant

DBMS Database Management System

DBS Database System

DBTG Database Task Group

DC Data Communication

DDB Distributed Database

DDBS Distributed Database System

DDL Data Definition Language

DES Data Encryption Standard

462 Abbreviations

Abbreviation Meaning

DKNF Domain-Key Normal Form

DM Data Model

DML Data Manipulation Language

DOC Document Object Model

DSL Data Sublanguage

DTD Document Type Definition

EJB Enterprise JavaBeans

EM Enterprise Manager

ER Entity Relation

ERA Entity Relation Attribute

FD Functional Dependency

FIFO First In First Out approach

FK Foreign Key

HTML HyperText Markup Language

I/O Input /Output

IC Integrity constraints

ID Identification

IDMS Integrated Database Management System

IMS Information Management System

Informix Database system type

Ingres Database system type

I/O Input/Output

IO Integrity constraint

IS Information system

IS Intent Share

ISAM Index Sequence Method

ISO International Organization for Standardization

IT Information technologies

IX Intent exclusive

JD Join Dependence

JDBC Java Database Connectivity

JSP Java Server Pages

LAN Local Area Network

LOB Large Object

MVD MultiValued Dependency

MySQL Database system type

NULL Undefined value

O2 Database system type

ObjectStore Database system type

ODL Object Definition Language

ODMG Object Database Management Group

OID Object ID

OLAP Online Analytical Processing

OLTP Online Transaction Processing

OMF Oracle Managed Files

OML Object Manipulation Language

OO Object Oriented

Abbreviations 463

Abbreviation Meaning

OODB Object-Oriented DataBase

OOPL OO Programming Language

OUI Oracle Universal Installer

OQL Object Query Language

ORACLE Database system type

ORDBS Object Relation Database System

OSI Open System Interconnection

OSQL Object SQL

PGA Process Global Area

PJ/NF Project/Join normal form

PK Primary Key

PL/SQL Procedural Language/Structured Query Language

Postgres Database system type

Progress Database system type

QBE Query By Example

QMF Query Management Facility

QUEL Query Language

RA Relational algebra

RAC Real Application Cluster

RAID Redundant Array of Inexpensive Disk

RBO Rule-Based Optimization

RDB Relational Database

RDBS Relational Database System

RF Reduction Factor

RI Relational integrity

RID Record ID

RMAN Recovery Manager

ROWID Pointer to the physical row

RPC Remote Procedure Call

RR Repeatable Read

SGML Standard Markup Language

SIGMOD Special Interest Group on Management of Data

SGA System Global Area

SID Oracle System Identifier

SIX Shared Intent Exclusive

SQL Structured Query Language

SRBD DBMS

TCP/IP Transmission Control protocol/Internet Protocol

UNK UNKNOWN

VLDB Very Large Data Base

VSAM Virtual Storage Access Method

WAL Write Ahead Log

WAN Wide Area Network

WFF Well-Formed Formula

WWW World Wide Web

WYSIWYG What You See Is What You Get

XML Extended Markup Language

464 Abbreviations

Abbreviation Meaning

XPATH Language for defining parts of an XML document

XQUERY XML language for querying XML data

XSLT EXtensible Stylesheet Language

XSD XML Schema Definition

Index 465

Index

A

Abs 65

Access Method 172

 Full Table Scan 172

 Index Scan 172

Access Rights 292

Add_months 69

Afiedt.buf 48

Aggregate Function 225

Allen Relationship 374

Alias

 Column 58

 Table 95

Alter 162

Alternative Key 333

Anonymous Block 265

Ascii 62

Assignment 254

Associative Entity 128

Attribute 122

 Group 122

 Multi-value 122

 Non-atomic 122

Authid current_user 293

Avg 225

C

Cartesian Product 88

Cascade 334

Case
76

259

Cd 146

Ceil 65

Coalesce 77

ColumnName macro 139

Column Alias 58

Comment 51

Commit 54

Compilation error 52

Concat 62

Conceptual modeling 117

Condition management 81

Constraint naming 160

Count 225

Cp 147

Create 156

Create Table 156

Cursor 286

 Open 287

 Fetch 287

 Close 287

D

Data Dictionary View 384

 All 384

 Dba 384

 User 384

 Dict_Columns 386

 User_Arguments 393

 User_Constraints 389

 User_Objects 392

 User_Sequences 396

 User_Tab_Cols 387

 User_Tables 47

 User_Triggers 392

Data import 193

Data Model 114

Data Type
48

152

 Date
48

353

 Double 48

 Float 48

 Char 48

 Integer 48

466 Index

 Interval 353

 Interval Day To Second 379

 Interval Year To Month 378

 Lob 48

 Long 48

 Number 48

 Timestamp
48

353

 Varchar2 48

Dbms_Output Package 270

 Disable 270

 Enable 270

 Get_Line 271

 Get_Lines 271

 New_Line 271

 Put 271

 Put_Line 272

Dbms_Random Package 428

Dbms_Stats Package 402

DCL 217

DDL 156

Decode 77

Default
160

314

Delete 104

Desc 58

Determinant 126

Difference 244

Directory Oracle

43

46

185

202

Directory OS 146

Disconnect 54

Distinct 94

DML 99

Drop 165

Dual Table 61

Dynamic Performance View 383

E

Editor Joe 148

Entity 133

Entity-Relational (E-R)

Conceptual Model
118

Exception

53

275

342

Execute
53

269

Exists 90

Exit
54

263

Exp 184

Expdp 207

Extract 69

F

File management 147

Flashback 166

Floor 66

For 264

Foreign Key
105

158

Function

52

61

266

G

Grant 217

 Object Privilege 219

 System Privilege 217

Group By 227

H

Having 233

Help 50

Host 50

CH

Check Constraint 159

Chmod 147

I

Identifying Key 119

If 255

Imp 184

Index 467

Impdp
193

195

In 90

Index 167

 B+ Tree 168

 Bitmap 171

 Function-Based 170

 Index Organized Table 172

 Reverse 169

Initcap 63

Initialization Block 302

Insert 99

 Insert – Select 101

 Insert – Values 100

Intersection 245

J

Joe 148

Join
235

85

 Anti 239

 Full 238

 Inner
235

85

 Left 237

 Natural 240

 Right 238

 Semi 239

L

Last_Day 70

Length 64

Like 81

Linear notation 119

Loop 263

Lower 63

Ls 146

M

Max 225

MaxValueTime 377

Min 225

Mkdir 147

Mod 67

Months_Between 70

Mv 147

N

Next_Day 71

Nls_Parameters 358

 Nls_Date_Format 361

 Nls_Date_Language 360

 Nls_Language
359

367

 Nls_Territory 360

Null
80

254

Null Management 258

Nullif 78

Nullified 334

Nvl 78

Nvl2 78

O

Order By 83

Overloading 301

P

Package 296

 Body 298

 Specification 297

Password 154

Period 374

Personal_id structure
61

361

Primary Key

106

157

322

332

Privilege Database 217

Privilege OS 147

Privilege Directory 147

Procedure
52

266

Projection 58

Pwd 146

468 Index

R

Recycle Bin 166

Relational Algebra 240

Relational Integrity 331

 Column 338

 Domain 339

 Entity 332

 Referential 333

 User 338

Relationship 141

 Recursive
131

246

 Cardinality – 1:1 124

 Cardinality – 1:N 125

 Cardinality – M:N 125

 Identifying 123

 Non-Identifying 123

Report 399

 Binding 414

 Csv Format 440

 Delimited Format 441

 Excel Format 443

 Export 438

 Graph 422

 Hidden Column 413

 HTML format 446

 Child 414

 Mapping 431

 Master 414

 PDF Export 450

 Script Format 453

 Table 404

 Text Format 442

 XML Format 445

Restricted 334

Revoke 220

Rmdir 147

Role 223

Rollback 54

Round 66

Rowid 167

S

Select 57

Select Into 285

Selection 58

Sequence
323

396

 Currval 324

 Nextval 324

Set Operator 90

Set Serveroutput On
54

256

Show User 52

Spool 49

SQL Developer 38

SQL Loader 175

Sqlldr 177

Sqlplus 41

SQL script generating 142

Start 51

Substr 64

Sum 225

Superkey 333

Syntax 55

Sys_Context 79

Sysdate 68

System Analysis 113

System Design 114

Systimestamp 68

T

Table Management
133

155

Table Renaming 164

Technical Design 114

To_Date
75

67

To_Char 73

To_Number 75

To_Timestamp 75

Index 469

Toad Modeler
121

131

Transaction 107

Trigger 307

 DDL 327

 Event 329

 New 308

 Old 308

 Row 308

 Statement 309

Trim 64

Trunc 66

U

Union 241

Update 102

Upper 63

User 79

User Account
151

154

User Defined Domain 137

User Management 152

V

Variable 254

View 341

 Check Option 347

 Read Only 349

W

While 264

APPENDICES

Appendix A – Model Student 473

APPENDIX A – MODEL STUDENT

Data model Student consists of nine tables (Personal_data, Student, Study_subjects,

St_field, Subject, Teacher, St_program, Subject_year, and Contact). It deals with students

(personal, contact, and student data) and their registrations to particular subjects supervised

by teachers.

Table PERSONAL_DATA
This table contains information about the details of the person. Such table is connected

to the table Student and Contact.

 Fig. A.1: Personal_data submodel

Attributes

❖ personal_id – unique identification of the person.

➢ attribute personal_id is the primary key of the table.

➢ the data type is the string with exactly 11 characters. It follows this structure:

▪ YYMMDD/XXXX where:

• YY is two digits for the year of birth of the person,

• MM is two digits for the month of birth of the person,

• DD is two digits for the day of birth of the person (for women, 50 is added

to the appropriate value),

• “/” – separator,

• XXXX are four digits for defining the order number of the person.

➢ Notice that in a standard environment, the personal_id value can be divided by 11

without the remainder.

➢ Example:

▪ 890811/0134 is the identification for the person born on 11th August 1989 with

order number 0134. It reflects the man.

▪ 895811/0137 is the identification for the person born on 11th August 1989 with

order number 0137. It reflects the woman.

474 Appendix A – Model Student

❖ name – first name of the person.

➢ value is the string with variable length limited to 15 characters.

➢ Example:

▪ Karol

❖ surname – family name of the person.

➢ value is the string with variable length limited to 15 characters.

➢ Example:

▪ Matiaško

❖ street – street and house number of the person address.

➢ value is the string with variable length limited to 20 characters.

➢ Example:

▪ Moyzesova 20

❖ town – the town of the address of the person.

➢ value is the string with a variable limited to 50 characters.

➢ Example:

▪ Prievidza

❖ zip – ZIP code of the address of the person.

➢ value is the string with a fixed length of 5 numerical characters. Although it

expresses numerical value, it is stored as a string due to possible initial zeros.

➢ Example:

▪ 97251

▪ 01001

❖ nationality – nationality abbreviation of the person.

➢ value is the string with a fixed length of 2 characters.

➢ Example:

▪ SK ... it expresses “Slovakia”

Primary key

The primary key is attribute personal_id.

Foreign key

The table has no foreign keys.

SQL script for table creation

Create table personal_data

(

 personal_id Char(11) NOT NULL,

 name Varchar2(15),

 surname Varchar2(15),

 street Varchar2(20),

 town Varchar2(50),

 zip Char(5),

 nationality Char(2),

 primary key (personal_id)

);

Appendix A – Model Student 475

Script for the relationship definition

None.

Table data example

Tab. A.1: Personal_data

personal_id name surname street town zip nationality

841106/3456 Michael Pearce Kamenna 27 Banska Bystrica 97401 SK

840312/7845 Jack Smith Zelena 9 Nove Mesto nad Vahom 91501 SK

871124/3578 Lucas Austin Dolna 12 Cadca 02201 SK

871203/5472 Tom Moore Prievoznicka Ruzomberok 03401 SK

890310/2145 Arnas Mitchell Kosicka cesta Michalovce 07101 SK

911001/3623 Mark Vox Tatranska 22 Poprad 05801 SK

901130/4454 Jack Clever Janka Borodaca 12 Prievidza 97101 SK

921225/7452 Sim Eas Kolarovce 12 Kolarovce 01401 SK

900913/3326 Jacob Murgas Namestie SNP 15 Banska Bystrica 97401 SK

870913/3326 Jacob Murgas Fatranska 13 Zilina 01008 SK

890608/4543 Jacob Hoom Orlove 16 Orlove 01701 SK

860103/2238 John Young Bratislavska cesta 2 Zilina 01001 SK

896123/5471 Suzanne Walker Pivovarska 14/536 Plzen 30100 SK

855122/8569 John Pearce Priecna ulica 35 Bytca 01401 SK

830914/7748 Peter Murphy 147 Vysne Ruzbachy 06501 SK

840410/6777 Milan Clarke Mostna 19/1 Handlova 97251 SK

476 Appendix A – Model Student

Table STUDENT
This table contains details of the student. This table is connected to the tables

Personal_data, Study_subjects, and St_field.

Fig. A.2: Student submodel

Attributes

❖ student_id – identification number of the student.

➢ attribute student_id is the primary key of the table.

➢ value is the integer with the maximal number composed of 6 digits.

➢ Example:

▪ 11111

❖ personal_id – identification key of the person.

➢ this attribute is the foreign key to the Personal_data table.

➢ the data type is the string with exactly 11 characters. It follows this structure:

▪ YYMMDD/XXXX where:

• YY is two digits for the year of born of the person,

• MM is two digits for the month of born of the person,

• DD is two digits for the day of born of the person (for women, 50 is added

to the appropriate value),

• “/” – separator,

• XXXX are four digits for defining order number of the person.

➢ Notice, that in a standard environment, the personal_id value can be divided by 11

without the remainder.

➢ Example:

▪ 890811/0134 is the identification for the person born on 11th August 1989 with

order number 0134. It reflects the man.

▪ 895811/0137 is the identification for the person born on 11th August 1989 with

order number 0137. It reflects the woman.

❖ field_id – identification number of the study field.

➢ the attribute is the part of the foreign key of the table, references St_field table.

➢ value is the integer with the maximal number composed of 3 digits.

➢ Example:

▪ 111

Appendix A – Model Student 477

❖ specialization_id – identification number of the study specialization of the study field.

➢ the attribute is the part of the foreign key of the table, references st_field table.

➢ value is the integer with the maximal number composed of 3 digits.

➢ Example:

▪ 111

❖ class – particular class of the student.

➢ value is the integer with the maximal number composed of 1 digit.

➢ Example:

▪ 1

❖ st_group – value is the identifier for the study group.

➢ value is the string with fixed length - 6 characters and following structure:

▪ ABCDEF where:

• A is one alphabet character for the faculty,

• B is one alphabet character for the location - place of the campus,

• C is one alphabet character for the field of the study,

• D is one numerical character for the specialization of the study,

• E is one numerical character for the class of the study,

• F is one alphanumerical character for the order number of the group.

➢ Example:

▪ 5ZI02A ... is the identifier for the study group of the faculty with number 5

(Faculty of Management Science and Informatics) with a location in town

Z (Zilina) in study field I (Informatics) in the 2nd class and with the order

preference number A (tenth group).

❖ final_date – value is the last day of the study of the student.

➢ value has the Date data type.

➢ Example:

▪ 25.6.2015

▪ NULL

❖ status – value representing the status of the study of the student.

➢ value has the Date data type.

➢ Example:

▪ S = student (actual),

▪ E = ended successfully,

▪ A = aborted,

▪ I = interrupted,

▪ X = fired due to disciplinary commission decision.

❖ first_date – value the date of the beginning of the study.

➢ value is the Date data type.

➢ Example:

▪ 1.9.2017

Primary key

The primary key is attribute student_id.

Foreign key

Attribute personal_id is the foreign key to the Personal_data table.

478 Appendix A – Model Student

Composite attributes (field_id, specialization_id) form the foreign key to the St_field

table.

SQL script for table creation

Create table student

(

 student_id Number(6, 0) NOT NULL,

 personal_id Char(11) NOT NULL,

 field_id Number(3, 0) NOT NULL,

 specialization_id Number(3, 0) NOT NULL,

 class Number(1, 0),

 st_group Char(6),

 final_date Date,

 status Char(1),

 first_date Date,

 primary key (student_id)

);

Script for relationship definition

Alter table student

 add foreign key (personal_id)

 references personal_data (personal_id);

Alter table student

 add foreign key (field_id, specialization_id)

 references st_field (field_id, specialization_id);

Table data example

Tab. A.2: Student

student_id personal_id field_id
speciali

zation_id
class st_group final_date status first_date

550020 781015/4431 102 0 3 5ZM031 5.8.1999 S (null)

501096 791229/5431 100 0 0 5ZI000 13.6.2000 V 20.12.2001

501103 791229/5431 100 0 0 5ZI000 13.7.2002 K 23.6.2006

501333 791229/5431 200 1 1 5ZSD11 5.9.2006 S (null)

501555 800407/3522 101 0 1 5ZP012 10.10.2000 S (null)

501402 800407/3522 102 0 2 5ZM023 15.7.2000 S (null)

500428 830324/7887 200 3 0 5ZSN00 6.9.2005 K 15.6.2007

501567 830514/5341 100 0 0 5ZI000 19.7.2005 E 31.8.2006

501319 830514/5341 100 0 2 5ZIA21 5.9.2006 S (null)

500429 830703/7486 200 3 2 5ZSN23 6.9.2005 S 31.8.2007

500427 830914/7748 200 3 0 5ZSN00 6.9.2005 K 15.6.2007

Appendix A – Model Student 479

Table STUDY_SUBJECTS
This table contains details of courses studied by the student. This table is connected

to the tables Student, Teacher, and Subject.

Fig. A.3: Study_subjects submodel

Attributes

❖ school_year – number of the actual school year.

➢ attribute school_year is the part of the primary key of the table.

➢ value is the integer with the maximal number composed of 4 digits.

➢ Example:

▪ 2016 – this number represents the school year 2016/2017

❖ student_id – identification number of the student.

➢ attribute student_id is the part of the primary key of the table.

➢ this attribute is the foreign key to the table Student.

➢ value is the integer number with the maximal number composed of 6 digits.

➢ Example:

▪ 11111

❖ subject_id – identification number of the subject.

➢ attribute subject_id is the part of the primary key of the table.

➢ this attribute is the foreign key to the table Subject.

➢ value is the string (see table Subject).

➢ Example:

▪ 5BI006

❖ lecturer – identification number of the teacher.

➢ this attribute is the foreign key to the table Teacher.

➢ value is the number (see table Teacher).

➢ Example:

▪ 33088

480 Appendix A – Model Student

❖ result – value expressing the result of the exam.

➢ value is the string with a fixed length – 1 character.

➢ It can hold the following values:

▪ A – excellent results,

▪ B – results above average,

▪ C – results on average,

▪ D – acceptable result,

▪ E – results fulfilling the minimum requirements,

▪ F – failed – further work required.

❖ exam_date – value expresses the date of the exam.

➢ Example:

▪ 15.6.2017

❖ sign_date – value represents the date of the evaluation test.

➢ Example:

▪ 30.4.2017

❖ ects – value is the number of credits for the course.

➢ Example:

▪ 6

Primary key

The primary key is composite, formed by attributes student_id, subject_id,

and school_year.

Foreign key

Attribute student_id is the foreign key to the Student table.

Attribute subject_id is the foreign key to the Subject table.

Attribute lecturer is the foreign key to the Teacher table.

SQL script for table creation

Create table study_subjects

(

 school_year Number(4, 0) NOT NULL,

 student_id Number(6, 0) NOT NULL,

 subject_id Varchar2(30) NOT NULL,

 lecturer Char(5) NOT NULL,

 result Varchar2(1),

 exam_date Date,

 sign_date Date,

 ects Number(2, 0),

 primary key (student_id, subject_id, school_year)

);

Appendix A – Model Student 481

Script for relationship definition

Alter table study_subjects

 add foreign key (student_id)

 references student (student_id);

Alter table study_subjects

 add foreign key (subject_id)

 references subject (subject_id);

Alter table study_subjects

 add foreign key (lecturer)

 references teacher (teacher_id);

Table data example

Tab. A.3: Study_subjects

school_year student_id subject_id lecturer result exam_date sign_date ects

2005 500424 II08 KI001 (null) (null) (null) 5

2005 500424 IN09 KI001 E 20.12.2005 8.2.2006 5

2005 500424 IP02 KI001 (null) 3.2.2006 (null) 6

2005 500424 IP03 KI001 (null) 22.6.2006 (null) 6

2006 500424 II15 KI001 F (null) (null) 5

2006 500424 II08 KI001 F (null) (null) 5

2006 500424 IP07 KI001 E 20.12.2006 17.1.2007 5

2007 500424 II08 KI001 D 5.5.2008 27.5.2008 5

2007 500424 IP05 KI001 (null) 23.5.2008 (null) 0

2007 500424 IPN3 KI001 (null) 22.5.2008 (null) 6

482 Appendix A – Model Student

Table ST_FIELD
This table contains details of the study fields and study specializations offered

by the faculty. This table is connected to the tables Student and St_program.

Fig. A.4: St_field submodel

Attributes

❖ subject_id – identification number of the subject.

➢ The attribute is the primary key of the table.

➢ value is the string composed of 4 characters.

➢ Example:

▪ BI06

❖ name – the name of the subject.

➢ string value contained a maximally of 180 characters.

➢ Example:

▪ Database systems

Primary key

The primary key is the attribute subject_id.

Foreign key

This table has no foreign keys.

SQL script for table creation

Create table subject

(

 subject_id Varchar2(6) NOT NULL,

 name Varchar2(180),

 primary key (subject_id)

);

Script for the relationship definition

None.

Appendix A – Model Student 483

Table data example

Tab. A.4: St_field

field_id specialization_id field_name spec_name

100 0 Informatics (null)

101 0 Computer engineering (null)

102 0 Management (null)

200 0 Information systems (null)

200 1 Information systems Decision support systems

200 2 Information systems Applied informatics

200 3 Information systems Information and communication systems

201 0 Information management (null)

202 0 Computer engineering (null)

484 Appendix A – Model Student

Table SUBJECT
This table contains details of the subjects offered by the faculty. This table is connected

to the tables Study_subjects and Subject_year.

Fig. A.5: Subject submodel

Attributes

❖ field_id – this attribute is used as an identifier of the study field.

➢ integer value composed maximally to 3 digits.

➢ this attribute is part of the primary key of the table.

➢ Example:

▪ 1

❖ specialization_id – this attribute is used for the identification of the study specialization.

➢ integer value composed maximally to 3 digits.

➢ this attribute is part of the primary key of the table.

➢ Example:

▪ 2

❖ field_name – this attribute expresses the name of the study field.

➢ string value composed maximally of 40 characters.

➢ Example:

▪ Information systems

❖ spec_name – this attribute represents the name of the study specialization.

➢ string value contained a maximally of 40 characters.

➢ Example:

▪ Data processing

Primary key

The primary key is composite, formed by attributes field_id and specialization_id.

Foreign key

This table has no foreign keys.

Appendix A – Model Student 485

SQL script for table creation

Create table st_field

(

 field_id Number(3, 0) NOT NULL,

 specialization_id Number(3, 0) NOT NULL,

 field_name Varchar2(40),

 spec_name Varchar2(40),

 primary key(field_id, specialization_id)

);

Script for the relationship definition

None.

Table data example

Tab. A.5: Subject

subject_id name

BA20 Modern approximate methods

BI26 Object programming in Windows

BE16 Business management

BI22 Open source techniques

IE04 Taxes and budget

IH07 Signal processing 2

BH08 Automatic control theory 1

II12 Databases and knowledge discovery

BI06 Database systems - the best subject :)

486 Appendix A – Model Student

Table TEACHER
This table contains details of the teachers. This table is connected to the tables

Study_subjects and Subject_year.

Fig. A.6: Teacher submodel

Attributes

❖ teacher_id – identification number of the teacher.

➢ the attribute is the primary key of the table.

➢ value is the string composed exactly of 5 characters.

➢ Example:

▪ GAR01

❖ name – first name of the teacher.

➢ value is the string composed maximally of 15 characters.

➢ Example:

▪ Michal

❖ surname – the family name of the teacher.

➢ value is the string composed maximally of 15 characters.

➢ Example:

▪ Kvet

❖ department – identification of the department of the teacher.

➢ value is the string composed of exactly 4 characters.

➢ Example:

▪ KINF

Primary key

 The primary key is the attribute teacher_id.

Foreign key

This table has no foreign keys.

Appendix A – Model Student 487

SQL script for table creation

Create table teacher

(

 teacher_id Char(5) NOT NULL,

 name Varchar2(15),

 surname Varchar2(15),

 department Char(4),

 primary key(teacher_id)

);

Script for the relationship definition

None.

Table data example

Tab. A.6: Teacher

teacher_id name surname department

GAR01 Mark Madrigal Gar

KI001 Wiliam Santos DI

KMM02 Michael Cloutier DMM

KMM03 Carol Poulin DMM

KI002 Charlie Polanco DI

KI003 Rachel Vargas DI

KI005 Mathias Fortin DI

KTK02 Jacob Demers DTK

KDS04 Bill Rosario KTN

488 Appendix A – Model Student

Table SUBJECT_YEAR
This table contains details of the courses offered by the faculty in the defined school year.

This table is connected to the tables Subject, Teacher, and St_program.

Fig. A.7: Subject_year submodel

Attributes

❖ school_year – number of the actual school year.

➢ attribute school_year is part of the primary key of the table.

➢ value is the integer with the maximal number composed of 4 digits.

➢ Example:

▪ 2017 – this number represents the school year 2017/2018

❖ subject_id – identification number of the subject.

➢ attribute subject_id is part of the primary key of the table.

➢ this attribute is the foreign key to the table Subject.

➢ value is the string (see table Subject).

➢ Example:

▪ BI06

❖ guarantee – identification number of the teacher, expresses teacher responsible

for the subject.

➢ this attribute is the foreign key to the table Teacher.

➢ value is the number (see table Teacher).

➢ Example:

▪ 33088

❖ ects – attribute defining the number of credits for the course.

➢ value is the number of credits for the course.

➢ Example:

▪ 6

❖ semester – attribute representing the semester of the education of the particular subject.

➢ value is one character, where value “S” is for the summer semester and “W”

for the winter semester.

➢ Example:

▪ S

Appendix A – Model Student 489

❖ ending_type – attribute is the symbol for the form of the exam.

➢ value is one character:

▪ B = exam + accreditation to exam,

▪ E = exam,

▪ S = semester only (no exam).

➢ Example:

▪ E

Primary key

The primary key is composite, formed by attributes subject_id and school_year.

Foreign key

Attribute subject_id is the foreign key to the table Subject,

Attribute guarantee is the foreign key to the table Teacher.

SQL script for table creation

Create table subject_year

(

 school_year Char(4) NOT NULL,

 subject_id Varchar2(30) NOT NULL,

 guarantee Char(5) NOT NULL,

 ects Number(3, 0) NOT NULL,

 semester Char(1) NOT NULL,

 ending_type Char(1) NOT NULL,

 primary key(school_year, subject_id)

);

Script for relationship definition

Alter table subject_year

 add foreign key (subject_id)

 references subject (subject_id);

Alter table subject_year

 add foreign key (guarantee)

 references teacher (teacher_id);

Table data example

Tab. A.7: Subject_year

school_year subject_id guarantee ects semester ending_type

2009 IA06 KDS01 5 S B

2009 IM09 KMT01 6 W B

2009 IZ01 GAR01 30 S E

2009 IM15 KMT02 4 W B

2009 IPD1 KDS03 6 W S

2008 BI23 EX001 5 W B

2005 BI01 KI001 6 W B

2007 BI06 KI001 6 S B

2006 BI11 EX002 1 W S

490 Appendix A – Model Student

Table ST_PROGRAM
This table contains details of the content of study programs offered by the faculty

for the study in the defined school year. This table is connected to the tables St_field

and Subject_year.

Fig. A.8: St_program submodel

Attributes

❖ field_id – this attribute is used for the identification of the study field.

➢ the number is composed maximally of 3 digits.

➢ this attribute is part of the primary key of the table.

➢ this attribute is also part of the foreign key referencing table St_field.

➢ Example:

▪ 1

❖ specialization_id – this attribute is used for the identification of the study specialization.

➢ the number is composed maximally of 3 digits.

➢ this attribute is part of the primary key of the table.

➢ this attribute is also part of the foreign key referencing table St_field.

➢ Example:

▪ 2

❖ school_year – number of the actual school year.

➢ attribute school_year is the part of the primary key of the table.

➢ value is the integer composed of 4 digits.

➢ Example:

▪ 2017 ... this number represents the school year 2017/2018

❖ subject_id – identification number of the subject.

➢ attribute subject_id is the part of the primary key of the table.

➢ this attribute is also the foreign key referencing table Subject.

➢ value is the string composed maximally of 30 characters (see table Subject).

➢ Example:

▪ BI06

❖ class – attribute represents the year of the study during education.

➢ value is expressed by one digit.

➢ Example:

▪ 1 ... the subject is respective to the first year of the study.

Appendix A – Model Student 491

❖ mandatory_type – attribute value characterizes the kind of the course.

➢ value is one character:

▪ M = mandatory,

▪ O = optional,

▪ X = mandatory / optional,

➢ Example:

▪ M

❖ class_preference – attribute represents recommended year of the study

during education.

➢ value is one digit.

➢ Example:

▪ 1 ... the subject is recommended to be studied in the first year of the study.

Primary key

The primary key is composite, formed by attributes field_id, specialization_id, subject_id,

and school_year.

Foreign key

Composite attribute group (school_year, subject_id) is the foreign key to the table

Subject_year.

The composite attribute group (field_id, specialization_id) is the foreign key to the table

St_field.

SQL script for table creation

Create table st_program

(

 field_id Number(3, 0) NOT NULL,

 specialization_id Number(3, 0) NOT NULL,

 school_year Char(4) NOT NULL,

 subject_id Varchar2(30) NOT NULL,

 class Number(1, 0) NOT NULL,

 mandatory_type Char(1) NOT NULL,

 class_preference Number(1, 0),

 primary key(field_id, specialization_id, school_year, subject_id)

);

Script for relationship definition

Alter table st_program

 add foreign key (school_year, subject_id)

 references subject_year (school_year, subject_id);

Alter table st_program

 add foreign key (field_id, specialization_id)

 references st_field (field_id, specialization_id);

492 Appendix A – Model Student

Table data example

Tab. A.8: St_program

field_id
speciali

zation_id
school_year subject_id class

mandatory

_type

class

_preference

200 2 2009 IPA3 2 M 2

200 3 2009 IPN3 2 M 2

202 0 2009 IPM3 2 M 2

101 0 2009 II14 3 O 3

102 0 2009 II14 3 O 3

100 0 2009 IS05 3 O 3

101 0 2009 IS05 3 O 3

102 0 2009 IS05 3 O 3

200 0 2009 IM20 0 O 3

200 0 2009 IM12 0 O 3

Appendix A – Model Student 493

Table CONTACT
This table contains details about the contacts of the persons. This table is connected

only to the Personal_data table. Notice that in this table, a foreign key can hold a NULL

value.

Fig. A.9: Contact submodel

Attributes

❖ contact_id – identification key of the contact.

➢ attribute contact_id is the primary key of the table.

➢ value is the integer.

➢ Example:

▪ 111

❖ personal_id – unique identifier of the person.

➢ attribute personal_id is the foreign key of the table Personal_data.

➢ the data type is the string with exactly 11 characters. It follows this structure:

▪ YYMMDD/XXXX where:

• YY is two digits for the year of birth of the person,

• MM is two digits for the month of birth of the person,

• DD is two digits for the day of birth of the person (for women, 50 is added

to the appropriate value),

• “/” – separator,

• XXXX are four digits for defining the order number of the person.

➢ Notice that in a standard environment, the personal_id value can be divided by 11

without the remainder.

➢ Example:

▪ 890811/0134 is the identification for the person born on 11th August 1989 with

order number 0134. It reflects the man.

▪ 895811/0137 is the identification for the person born on 11th August 1989 with

order number 0137. It reflects the woman.

❖ type – this attribute defines kind of the contact.

➢ value is the only one character:

▪ M = mobile

▪ E = email

➢ Example:

▪ E

❖ value – this attribute includes real contact value.

➢ value is the string with a variable length of the characters limited to 50 characters.

➢ Example:

▪ name.surname@email.com;

▪ 0912 345 678;

494 Appendix A – Model Student

Primary key

The primary key is attribute contact_id.

Foreign key

Attribute personal_id is the foreign key to the table Personal_data. Notice that a foreign

key can hold a NULL value.

SQL script for table creation

Create table contact

(

 contact_id Integer NOT NULL,

 personal_id Char(11),

 type Char(1) NOT NULL,

 value Varchar2(50) NOT NULL,

 primary key (contact_id)

);

Script for relationship definition

Alter table contact

 add foreign key (personal_id)

 references personal_data (personal_id);

Table data example

Tab. A.9: Contact

contact_id personal_id type value

1 841106/3456 E Michael.Pearce@dbs.web

2 840312/7845 E Jack.Smith@dbs.web

3 860907/1259 E John.Young@dbs.web

4 850130/3695 E Carol.Pearce@dbs.web

5 841201/1248 E Carol.Pearce@dbs.web

6 830514/5341 E Wiliam.Whittel@dbs.web

7 781015/4431 E Peter.Roger@dbs.web

8 896123/5471 M 22368479

9 840409/7900 M 8404097900

10 810101/8079 M 0908123456

Appendix B – Model Flight 495

APPENDIX B – MODEL FLIGHT

Data model Flight consists of eleven tables (L_person, L_flight_ticket, L_class, L_flight,

L_plane, L_employee, L_airport, L_plane_type, L_country, L_town and L_air_company).

It deals with flights and relevant information to them (plane, plane types, air_company,

employee) and people booking them (persons). For management simplicity, each table

is prefixed by the “L_”. Therefore, it is easy to distinguish the model, which it belongs to.

Table L_PERSON
This table contains information about the details of the person. Such table is connected

to the table L_country, L_employee, and L_flight_ticket.

Fig. B.1: L_person submodel

Attributes

❖ id_card is the identification key of the card associated with the person.

➢ attribute id_card is part of the primary key of the table.

➢ value is the string with variable length limited to 20 characters.

➢ Example:

▪ AA 93286116

496 Appendix B – Model Flight

❖ card_type – value expresses the type of the card for the person.

➢ attribute card_type is part of the primary key of the table.

➢ value is one character belonging to the domain dom_card_type:

▪ I = ID card

▪ P = passport

➢ Example:

▪ P

❖ name – first name of the person.

➢ value is the string with variable length limited to 30 characters.

➢ Example:

▪ Karol

❖ surname – family name of the person.

➢ value is the string with variable length limited to 30 characters.

➢ Example:

▪ Matiaško

❖ id_country – attribute expresses country person comes from.

➢ attribute id_card is the part of the foreign key referencing table L_country.

➢ value is the string with a length of (maximally) 3 characters.

➢ Example:

▪ SK

Primary key

The primary key is composite, formed by attributes id_card and card_type.

Foreign key

Attribute id_country is the foreign key to the L_country table.

SQL script for table creation

Create table L_person

(

 id_card Varchar2(20) NOT NULL,

 card_type Char(1) NOT NULL

 Check (card_type IN ('I', 'P')),

 name Varchar2(30) NOT NULL,

 surname Varchar2(30) NOT NULL,

 id_country Char(3) NOT NULL,

 primary key (id_card, card_type)

);

Script for relationship definition

Alter table L_person

 add foreign key (id_country)

 references L_country (id_country);

Appendix B – Model Flight 497

Table L_FLIGHT TICKET
This table contains information about the details of a bought ticket for the flight

of the particular person. Such table is connected to the table L_person, L_class,

and L_employee.

Fig. B.2: L_flight_ticket submodel

Attributes

❖ id_flight_ticket is the identification key of the ticket associated with the flight.

➢ attribute id_flight_ticket is part of the primary key of the table.

➢ value is an integer.

➢ Example:

▪ 1245

❖ id_class is the identification key of the class associated with the ticket.

➢ attribute id_class is part of the primary key of the table.

➢ attribute id_class is part of the foreign key referencing table L_class.

➢ value belongs to the domain dom_class, which contains positive integers.

➢ Example:

▪ 1

❖ id_flight is the identification of the flight associated with the ticket.

➢ attribute id_flight is part of the primary key of the table.

➢ attribute id_flight is part of the foreign key referencing table L_class,

respectively L_flight.

➢ value is an integer.

➢ Example:

▪ 806068

498 Appendix B – Model Flight

❖ id_card is the identification key of the card associated with the passenger.

➢ attribute id_card is part of the foreign key referencing table L_person.

➢ value is the string with variable length limited to 20 characters.

➢ Example:

▪ AH 79800501

❖ card_type – value expresses the type of the card for the person.

➢ attribute card_type is part of the foreign key referencing table L_person.

➢ value is one character belonging to the domain dom_card_type:

▪ I = ID card,

▪ P = passport.

➢ Example:

▪ P

❖ id_employee determines the employee who sold such a ticket.

➢ attribute id_employee is the foreign key referencing table L_employee.

➢ value is the integer.

➢ Example:

▪ 85

❖ reservation_date determines the reservation time of the ticket.

➢ value is the Date data type.

➢ Example:

▪ 12.6.2017

❖ payment_date determines the payment time of the ticket.

➢ value is the Date data type.

➢ Example:

▪ 18.6.2017

❖ cancel_date determines the cancel time of the ticket.

➢ value is the Date data type.

➢ Example:

▪ 22.1.2017

❖ price determines the price of the ticket.

➢ value is the decimal number.

➢ Example:

▪ 110.50

❖ seat determines a specific number of the seat particular to the flight ticket.

➢ value is the string formed by precisely 3 characters.

➢ Example:

▪ 12A

Primary key

The primary key is composite, formed by attributes id_flight_ticket, id_flight,

and id_class.

Foreign key

Composite attributes (id_card, card_type) form the foreign key to the L_person table.

Composite attributes (id_flight, id_class) form the foreign key to the L_class table.

Appendix B – Model Flight 499

SQL script for table creation

Create table L_flight_ticket

(

 id_flight_ticket Integer NOT NULL,

 id_flight Integer NOT NULL,

 id_class Smallint NOT NULL

 Check (id_class in (1, 2, 3)),

 id_card Varchar2(20) NOT NULL,

 card_type Char(1) NOT NULL

 Check (card_type IN ('I', 'P')),

 id_employee Integer,

 reservation_date Date NOT NULL,

 payment_date Date,

 cancel_date Date,

 price Number(12, 2) NOT NULL,

 seat Char(3),

 primary key (id_flight_ticket, id_flight, id_class)

);

Script for relationship definition

Alter table L_flight_ticket

 add foreign key (id_employee)

 references L_employee (id_employee);

Alter table L_flight_ticket

 add foreign key (id_flight, id_class)

 references L_class (id_flight, id_class);

500 Appendix B – Model Flight

Table L_CLASS
This table contains information about the details of the flight categories (economic,

business, etc.). Such table is connected to the table L_flight_ticket and L_flight.

Fig. B.3: L_class submodel

Attributes

❖ id_class is the identification key of the class associated with the flight.

➢ attribute id_class is part of the primary key of the table.

➢ attribute id_class is part of the foreign key referencing table L_flight_ticket.

➢ value belongs to the domain dom_class, which contains positive integers.

➢ Example:

▪ 1

❖ id_flight is the identification key associated with the flight.

➢ attribute id_flight is part of the primary key of the table.

➢ attribute id_flight is part of the foreign key referencing table L_flight_ticket.

➢ value is an integer number

➢ Example:

▪ 19691

❖ capacity determines the total number of seats of the particular class in the flight.

➢ value is the positive integer and belongs to the domain dom_capacity.

➢ Example:

▪ 160

Primary key

The primary key is composite, formed by attributes id_flight and id_class.

Foreign key

Attribute id_flight is the foreign key to the L_flight table.

Appendix B – Model Flight 501

SQL script for table creation

Create table L_class

(

 id_flight Integer NOT NULL,

 id_class Smallint NOT NULL

 Check (id_class in (1, 2, 3)),

 capacity Smallint NOT NULL

 Check (capacity > 0),

 primary key (id_flight, id_class)

);

 Script for relationship definition

Alter table L_class

 add foreign key (id_flight)

 references L_flight (id_flight);

502 Appendix B – Model Flight

Table L_FLIGHT
This table contains information about the details flight. Such table is connected

to the table L_class, L_airport, L_air_company, and L_plane.

Fig. B.4: L_flight submodel

Attributes

❖ id_flight is the identification key of the flight.

➢ attribute id_flight is the primary key of the table.

➢ value is the integer number

➢ Example:

▪ 12345

❖ departure_airport defines the identifier of the departure airport.

➢ attribute departure_airport is the foreign key referencing table L_airport.

➢ value is the string composed of 3 characters.

➢ Example:

▪ BTS

❖ arrival_airport defines the identifier of the destination airport.

➢ attribute arrival_airport is the foreign key referencing table L_airport.

➢ value is the string composed of 3 characters.

➢ Example:

▪ PRG

❖ id_company defines the identification value for the air company.

➢ attribute id_company is the foreign key referencing table L_air_company.

➢ value is the integer.

➢ Example:

▪ 8

Appendix B – Model Flight 503

❖ flight_date defines the date of the flight.

➢ value is the Date data type.

➢ Example:

▪ 17.8.2017

❖ flight_length defines the duration of the flight in minutes.

➢ value is the integer

➢ Example:

▪ 120

❖ planned_departure defines the date and time of the flight departure (planned,

expected).

➢ value is the timestamp with the local time zone.

➢ Example:

▪ 17.8.2017 19:30

❖ planned_arrival defines the date and time of the flight arrival (planned, expected).

➢ value is the timestamp with the local time zone.

➢ Example:

▪ 17.8.2017 21:30

❖ price is the value of the ticket.

➢ value is a decimal number with two digits after the decimal point.

➢ Example:

▪ 100.50

❖ real_departure defines the actual date and time of the flight departure.

➢ value is the timestamp with the local time zone.

➢ Example:

▪ 17.8.2017 19:30

❖ real_arrival specifies the actual date and time of the flight arrival.

➢ value is the timestamp with the local time zone.

➢ Example:

▪ 17.8.2017 21:30

❖ id_plane determines the used plane for the flight.

➢ attribute id_plane is the foreign key referencing table L_plane.

➢ value is an integer

➢ Example:

▪ 17

Primary key

The primary key is attribute id_flight.

Foreign key

Attribute id_plane is the foreign key to the L_plane table.

Attribute departure_airport is the foreign key to the L_airport table.

Attribute arrival_airport is the foreign key to the L_airport table.

Attribute id_company is the foreign key to the L_air_company table.

504 Appendix B – Model Flight

SQL script for table creation

Create table L_flight

(

 id_flight Integer NOT NULL,

 departure_airport Char(3) NOT NULL,

 arrival_airport Char(3) NOT NULL,

 id_company Integer NOT NULL,

 flight_date Date NOT NULL,

 flight_length Integer NOT NULL,

 planned_departure Timestamp(6) with local time zone,

 planned_arrival Timestamp(6) with local time zone,

 price Number(12,2) NOT NULL,

 real_departure Timestamp(6) with local time zone,

 real_arrival Timestamp(6) with local time zone,

 id_plane Integer,

 primary key (id_flight)

);

Script for relationship definition

Alter table L_flight

 add foreign key (departure_airport)

 references L_airport (id_airport);

Alter table L_flight

 add foreign key (arrival_airport)

 references L_airport (id_airport);

Alter table L_flight

 add foreign key (id_plane)

 references L_plane (id_plane);

Alter table L_flight

 add foreign key (id_company)

 references L_air_company (id_company);

Appendix B – Model Flight 505

Table L_PLANE
This table contains information about the details of the airplane owned by a particular air

company. Such table is connected to the table L_air_company, L_flight, and L_plane_type.

Fig. B.5: L_plane submodel

Attributes

❖ id_plane is the identification key of the airplane.

➢ attribute id_plane is the primary key of the table.

➢ value is the integer.

➢ Example:

▪ 125

❖ id_company is the identification of the owner air company of the plane.

➢ attribute id_company is the foreign key referencing table L_air_company.

➢ value is the integer.

➢ Example:

▪ 5

❖ id_type determines the kind of airplane.

➢ attribute id_type is the foreign key referencing table L_plane_type.

➢ value is the integer.

➢ Example:

▪ 5

❖ capacity determines the number of seats inside the airplane.

➢ value is the positive integer number and belongs to the domain dom_capacity.

➢ Example:

▪ 160

Primary key

The primary key is attribute id_plane.

506 Appendix B – Model Flight

Foreign key

Attribute id_company is the foreign key to the L_air_company table.

Attribute id_type is the foreign key to the L_plane_type table.

SQL script for table creation

Create table L_plane (

 id_plane Integer NOT NULL,

 id_company Integer NOT NULL,

 id_type Integer NOT NULL,

 capacity Smallint

 Check (capacity > 0),

 primary key (id_plane)

);

Script for relationship definition

Alter table L_plane

 add foreign key (id_company)

 references L_air_company (id_company);

Alter table L_plane

 add foreign key (id_type)

 references L_plane_type (id_type);

Appendix B – Model Flight 507

Table L_EMPLOYEE
This table contains information about the details of the employee of the air company.

Such table is connected to the table L_person, L_air_company, L_town, and L_flight_ticket.

Fig. B.6: L_employee submodel

Attributes

❖ id_employee is the identification key of the person who the particular air company

employs.

➢ attribute id_employee is the foreign key referencing table L_flight_ticket.

➢ value is the integer.

➢ Example:

▪ 9618

❖ id_company is the identification key of the air company.

➢ attribute id_company is the foreign key referencing table L_air_company.

➢ value is the integer.

➢ Example:

▪ 5

❖ id_card is the identification key of the card associated with the person.

➢ attribute id_card is part of the foreign key referencing table L_person.

➢ value is the string with variable length limited to 20 characters.

➢ Example:

▪ AH 79800501

508 Appendix B – Model Flight

❖ card_type – value expresses the type of the card for the person.

➢ attribute card_type is part of the foreign key referencing table L_person.

➢ value is one character belonging to the domain dom_card_type:

▪ I = ID card

▪ P = passport

➢ Example:

▪ P

❖ begin_date expresses the first date of the employer contract validity.

➢ value is the Date data type.

➢ Example:

▪ 1.1.2000

❖ end_date expresses the last date of the employer contract validity.

➢ value is the Date data type.

➢ Example:

▪ 31.1.2017

❖ position expresses the function of the person in the air company.

➢ value is the string with variable length limited to 30 characters.

➢ Example:

▪ Steward

❖ personal_id is the identification of the person expressing his birth number.

➢ the data type is the string with exactly 11 characters. It follows this structure:

▪ YYMMDD/XXXX where:

▪ YY is two digits for the year of birth of the person,

▪ MM is two digits for the month of birth of the person,

▪ DD is two digits for the day of birth of the person (for women, 50 is added to

the appropriate value),

▪ “/” – separator,

▪ XXXX are four digits for defining the order number of the person.

➢ Notice that in a standard environment, the personal_id value can be divided by 11

without the remainder.

➢ Example:

▪ 890811/0134 is the identification for the person born on 11th August 1989 with

order number 0134. It reflects the man.

▪ 895811/0137 is the identification for the person born on 11th August 1989 with

order number 0137. It reflects the woman.

❖ zip is the identification key of the town (associated with the country)

where such a person is employed.

➢ attribute zip is part of the foreign key referencing table L_town.

➢ value is the string with a fixed length of 5 numerical characters. Although

it expresses numerical value, it is stored as a string due to possible initial zeros.

➢ Example:

▪ 97251

▪ 01001

Appendix B – Model Flight 509

❖ id_country is the identification key associated with the country of the town.

➢ attribute id_country is part of the foreign key references table L_town.

➢ value is the string with a length of (maximally) 3 characters.

➢ Example:

▪ SK

Primary key

The primary key is attribute id_employee.

Foreign key

Attribute id_company is the foreign key to the L_air_company table.

Composite attributes (id_card,card_type) form the foreign key to the L_person table.

Composite attributes (zip, id_country) form the foreign key to the L_town table.

SQL script for table creation

Create table L_employee (

 id_employee Integer NOT NULL,

 id_company Integer NOT NULL,

 zip Char(5) NOT NULL,

 id_card Varchar2(20) NOT NULL,

 card_type Char (1) NOT NULL

 Check (card_type IN ('I', 'P')),

 begin_date Date NOT NULL,

 end_date Date,

 position Varchar2(30) NOT NULL,

 personal_id Char(11),

 id_country Char(3) NOT NULL,

 primary key (id_employee)

);

Script for relationship definition

Alter table L_employee

 add foreign key (id_card, card_type)

 references L_person (id_card, card_type);

Alter table L_employee

 add foreign key (zip, id_country)

 references L_town (zip, id_country);

Alter table L_employee

 add foreign key (id_company)

 references L_air_company (id_company);

510 Appendix B – Model Flight

Table L_AIRPORT
This table contains information about the details of the airport. Such table is connected

to the table L_flight and L_town.

Fig. B.7: L_airport submodel

Attributes

❖ id_airport is the identification value for the airport.

➢ attribute id_airport is the primary key for the airport.

➢ value is the string with 3 characters in length.

➢ Example:

▪ LHR

❖ airport_name is the name of the airport.

➢ value is the string with variable length limited to 50 characters.

➢ Example:

▪ Heathrow

❖ runway_length is the distance of the runway of the airport.

➢ value is the numerical, and expressed value is in meters.

➢ Example:

▪ 2000

❖ zip is the identification key of the town associated with the country.

➢ attribute zip is part of the foreign key referencing table L_town.

➢ value is the string with a fixed length of 5 numerical characters. Although

it expresses numerical value, it is stored as a string due to possible initial zeros.

➢ Example:

▪ 97251

▪ 01001

Appendix B – Model Flight 511

❖ id_country is the identification key associated with the country of the town.

➢ attribute id_country is part of the foreign key referencing table L_town.

➢ value is the string with a length of (maximally) 3 characters.

➢ Example:

▪ SK

❖ street is the name of the street where the airport is located in the town.

➢ value is the string with variable length limited to 60 characters.

➢ Example:

▪ Nelson Road

Primary key

The primary key is attribute id_airport.

Foreign key

Composite attributes (zip, id_country) form the foreign key to the L_town table.

SQL script for table creation

Create table L_employee

(

 id_employee Integer NOT NULL,

 id_company Integer NOT NULL,

 zip Char(5) NOT NULL,

 id_card Varchar2(20) NOT NULL,

 card_type Char(1) NOT NULL

 Check (card_type IN ('I', 'P')),

 begin_date Date NOT NULL,

 end_date Date,

 position Varchar2(30) NOT NULL,

 personal_id Char(11),

 id_country Char(3) NOT NULL,

 primary key (id_employee)

);

 Script for relationship definition

Alter table L_airport

 add foreign key (zip, id_country)

 references L_town (zip, id_country);

512 Appendix B – Model Flight

Table L_PLANE_TYPE
This table contains information about the technical details of the airport category.

Such table is connected to the table L_plane.

Fig. B.8: L_plane_type submodel

Attributes

❖ id_type is the identification key of the kind of airplane.

➢ attribute id_type is the primary key of the table.

➢ value is the integer

➢ Example:

▪ 1

❖ designation determines the type of airplane.

➢ value is the string with variable length limited to 30 characters.

➢ Example:

▪ Boeing 360

❖ capacity determines the number of seats on the airplane.

➢ value is the positive integer number belonging to the dom_capacity domain.

➢ Example:

▪ 160

❖ min_runway_dep expresses minimal distance of the runway of the airport

for the departure of the flight.

➢ value is the integer, expressed in meters.

➢ Example:

▪ 2000

❖ min_runway_arr expresses minimal distance of the runway of the airport for the arrival

of the flight.

➢ value is the integer, expressed in meters.

➢ Example:

▪ 2000

Primary key

The primary key is attribute id_type.

Foreign key

The table has no foreign keys.

Appendix B – Model Flight 513

SQL script for table creation

Create table L_plane_type

(

 id_type Integer NOT NULL,

 designation Varchar2(30) NOT NULL,

 capacity Smallint NOT NULL

 Check (capacity > 0),

 min_runway_dept Number,

 min_runway_arr Number,

 primary key (id_type)

);

Script for the relationship definition

None.

514 Appendix B – Model Flight

Table L_COUNTRY
This table contains information about the country. Such table is connected to the table

L_person and L_town.

Fig. B.9: L_country submodel

Attributes

❖ id_country is the identification key of the table.

➢ attribute id_country is the primary key of the table.

➢ value is the string with a length of (maximally) 3 characters.

➢ Example:

▪ SK

❖ name – name of the country.

➢ value is the string with variable length limited to 30 characters.

➢ Example:

▪ Slovakia

Primary key

The primary key is attribute id_country.

Foreign key

The table has no foreign keys.

SQL script for table creation

Create table L_country

(

 id_country Char(3) NOT NULL,

 name Varchar2(30) NOT NULL,

 primary key (id_country)

);

Script for the relationship definition

None.

Appendix B – Model Flight 515

Table L_TOWN
This table contains information about the town. Such table is connected to the table

L_country, L_air_company, L_employee, and L_airport.

Fig. B.10: L_town submodel

Attributes

❖ zip is the identification key of the town associated with the country.

➢ attribute zip is part of the primary key of the table.

➢ value is the string with a fixed length of 5 numerical characters. Although

it expresses numerical value, it is stored as a string due to possible initial zeros.

➢ Example:

▪ 97251

▪ 01001

❖ id_country is the identification key associated with the country of the town.

➢ attribute id_country is part of the primary key of the table.

➢ attribute id_country is the foreign key referencing table L_country.

➢ value is the string with a length of (maximally) 3 characters.

➢ Example:

▪ SK

❖ name – name of the town.

➢ value is the string with variable length limited to 60 characters.

➢ Example:

▪ ZILINA

Primary key

The primary key is composite, formed by attributes zip and id_country.

Foreign key

Attribute id_country is the foreign key to the L_country table.

516 Appendix B – Model Flight

SQL script for table creation

Create table L_town

(

 zip Char(5) NOT NULL,

 id_country Char(3) NOT NULL,

 name Varchar2(60) NOT NULL,

 primary key (zip, id_country)

);

Script for relationship definition

Alter table L_town

 add foreign key (id_country)

 references L_country (id_country);

Appendix B – Model Flight 517

Table L_AIR_COMPANY
This table contains information about the details of the air company. Such table

is connected to the table L_flight, L_plane, L_town, and L_employee.

Fig. B.11: L_air_company submodel

Attributes

❖ id_company is the identification value for the air company.

➢ attribute id_company is the primary key for the air company.

➢ value is the integer number.

➢ Example:

▪ 5

❖ company_name is the name of the air company.

➢ value is the string with variable length limited to 60 characters.

➢ Example:

▪ Czech Airlines

❖ street is the street's name where the air company headquarters is located in value

is the string with variable length limited to 60 characters.

o Example:

▪ Ruzinska 21

❖ zip is the identification key of the town associated with the air company.

➢ attribute zip is part of the foreign key referencing table L_town.

➢ value is the string with a fixed length of 5 numerical characters. Although

it expresses numerical value, it is stored as the string due to possible initial zeros.

➢ Example:

▪ 97251

▪ 01001

518 Appendix B – Model Flight

❖ id_country is the identification key associated with the country of the town.

➢ attribute id_country is part of the foreign key referencing table L_town.

➢ value is the string with a length of (maximally) 3 characters.

➢ Example:

▪ SK

Primary key

The primary key is composite, formed by attributes zip and id_company.

Foreign key

The table has no foreign keys.

SQL script for table creation

Create table L_air_company

(

 id_company Integer NOT NULL,

 company_name Varchar2(60) NOT NULL,

 street Varchar2(30),

 zip Char(5) NOT NULL,

 id_country Char(3) NOT NULL,

 primary key (id_company)

);

Script for relationship definition

Alter table L_air_company

 add foreign key (zip, id_country)

 references L_town (zip, id_country);

Appendix C – Model Library 519

APPENDIX C – MODEL LIBRARY

Data model Library consists of seven tables (K_person, K_reader, K_rent_books,

K_book, K_title, K_authors_of_book, and K_author). It deals with person management

(persons, readers), book management (authors, titles, physical books), and book renting.

For management simplicity, each table is prefixed by the “K_”. Therefore, it is easy

to distinguish the model, which it belongs to.

Table K_PERSON
This table contains information about the details of the person. Such table is connected

to the table K_reader.

Fig. C.1: K_person submodel

Attributes

❖ person_id – unique identifier of the person.

➢ attribute person_id is the primary key of the table.

➢ The data type is the string with exactly 11 characters. It follows this structure:

▪ YYMMDD/XXXX where:

• YY is two digits for the year of birth of the person,

• MM is two digits for the month of birth of the person,

• DD is two digits for the day of birth of the person (for women, 50 is added

to the appropriate value),

• “/” – separator,

• XXXX are four digits for defining the order number of the person.

➢ Notice that in a standard environment, the personal_id value can be divided by 11

without the remainder.

➢ Example:

▪ 890811/0134 is the identification for the person born on 11th August 1989 with

order number 0134. It reflects the man.

▪ 895811/0137 is the identification for the person born on 11th August 1989 with

order number 0137. It reflects the woman.

❖ name – first name of the person.

➢ value is the string with variable length limited to 20 characters.

➢ Example:

▪ Karol

520 Appendix C – Model Library

❖ surname – family name of the person.

➢ value is the string with variable length limited to 20 characters.

➢ Example:

▪ Matiaško

❖ street – street and house number of the personal address.

➢ value is the string with variable length limited to 20 characters.

➢ Example:

▪ Moyzesova 20

❖ zip – zip code of the address of the person.

➢ value is the string with a fixed length of 5 numerical characters. Although

it expresses numerical value, it is stored as a string due to possible initial zeros.

➢ Example:

▪ 97251

▪ 01001

❖ town – the town of the address of the person.

➢ value is the string with variable length limited to 20 characters.

➢ Example:

▪ Podunajske Biskupice

❖ district – district name where the town belongs.

➢ value is the variable string with a maximal length of 20 characters.

➢ Example:

▪ Bratislava II ... Bratislava is divided into several parts, e.g., “Podunajske

Biskupice” belongs to “Bratislava II” district.

❖ region – region abbreviation of the country.

➢ value is the string with a fixed length of 2 characters.

➢ Example:

▪ BA ... expresses “Bratislava region”

❖ state – country abbreviation of the person.

➢ value is the string with a fixed length of 3 characters.

➢ Example:

▪ SVK ... expresses “Slovakia”

Primary key

The primary key is attribute person_id.

Foreign key

The table has no foreign keys.

Appendix C – Model Library 521

SQL script for table creation

Create table k_Person

(

 person_id Char(11) NOT NULL,

 name Varchar2(20) NOT NULL,

 surname Varchar2(20) NOT NULL,

 street Varchar2(20),

 zip Char(5),

 town Varchar2(20),

 district Varchar2(15),

 region Char(2),

 state Char(3),

 primary key (person_id)

);

Script for the relationship definition

None.

522 Appendix C – Model Library

Table K_READER
This table contains details about a person registered as a reader. Such table is connected

to the table K_person and K_rent_books.

Fig. C.2: K_reader submodel

Attributes

❖ reader_id – identification number of the reader.

➢ the attribute is the primary key of the table.

➢ value is the integer.

➢ Example:

▪ 11111

❖ person_id – identification key of the person.

➢ this attribute is the foreign key to the K_person table.

➢ The data type is the string with exactly 11 characters. It follows this structure:

▪ YYMMDD/XXXX where:

• YY is two digits for the year of birth of the person,

• MM is two digits for the month of birth of the person,

• DD is two digits for the day of birth of the person (for women, 50 is added

to the appropriate value),

• “/” – separator,

• XXXX are four digits for defining the order number of the person.

➢ Notice that in a standard environment, the personal_id value can be divided by 11

without the remainder.

➢ Example:

▪ 890811/0134 is the identification for the person born on 11th August 1989 with

order number 0134. It reflects the man.

▪ 895811/0137 is the identification for the person born on 11th August 1989 with

order number 0137. It reflects the woman.

❖ valid_from – value expresses the start date of the evidence validity.

➢ Example:

▪ 15.6.2017

Appendix C – Model Library 523

❖ valid_until – value expresses the end date of the evidence validity.

➢ Example:

▪ 15.12.2017

Primary key

The primary key is attribute reader_id.

Foreign key

Attribute person_id is the foreign key to the K_person table.

SQL script for table creation

Create table k_Reader

(

 reader_id Integer NOT NULL,

 person_id Char(11) NOT NULL,

 valid_from Date NOT NULL,

 valid_until Date,

 primary key (reader_id)

);

Script for relationship definition

Alter table k_Reader

 add foreign key (person_id)

 references k_Person (person_id);

524 Appendix C – Model Library

Table K_RENT_BOOKS
This table contains information about the details of the rent books. Such table is connected

to the table K_reader and K_book.

Fig. C.3: K_rent_books submodel

Attributes

❖ borrow_date – value is the day the book was borrowed.

➢ the attribute is the part of the primary key of the table.

➢ value has the Date data type.

➢ Example:

▪ 25.6.2015

❖ book_id – identification number of the book.

➢ the attribute is the part of the primary key of the table.

➢ value is the integer number.

➢ Example:

▪ 11111

❖ reader_id – identification number of the reader.

➢ attribute reader_id is the foreign key referencing table K_reader.

➢ value is the integer number.

➢ Example:

▪ 15

❖ price – the amount the reader has to pay the rent (e.g., due to book damage, loss,

or late return).

➢ value is the number composed of 10 digits with two decimal numbers.

➢ Example:

▪ 123.20

❖ return_date – value expresses a day when a particular book was returned to the library.

➢ value has the Date data type.

➢ Example:

▪ 25.6.2015

▪ NULL

Appendix C – Model Library 525

❖ extension_date – value expresses a day rent was extended.

➢ value has the Date data type.

➢ Example:

▪ 25.6.2015

▪ NULL

❖ status – status of the book in a rent.

➢ value is the one character:

▪ L – lost

▪ B – borrowed

▪ R – returned

▪ D – damaged

Primary key

The primary key is composite, formed by attributes borrow_date and book_id.

Foreign key

Attribute reader_id is the foreign key to the K_reader table.

Attribute book_id is the foreign key to the K_book table.

SQL script for table creation

Create table k_Rent_books (

 borrow_date Date NOT NULL,

 reader_id Integer NOT NULL,

 book_id Integer NOT NULL,

 return_date Date,

 extension_date Date,

 status Char(1) NOT NULL,

 price Number(10, 2),

 primary key (borrow_date, book_id)

);

Script for relationship definition

Alter table k_Rent_books

 add foreign key (reader_id)

 references k_Reader (reader_id);

Alter table k_Rent_books

 add foreign key (book_id)

 references k_Book (book_id);

526 Appendix C – Model Library

Table K_BOOK
This table contains information about the details of the physical books in the library.

Such table is connected to the table K_rent_books and K_title.

Fig. C.4: K_book submodel

Attributes

❖ book_id – identification key of the book.

➢ attribute book_id is the primary key of the table.

➢ value is the integer.

➢ Example:

▪ 111

❖ title_id – identification number of the title of the book.

➢ attribute title_id is the foreign key referencing the K_title table.

➢ value is the integer number.

➢ Example:

▪ 1234

❖ price – information about the price of the book (for how much the book was bought).

➢ value is the number composed of 10 digits with two decimal numbers.

➢ Example:

▪ 150

❖ registration_date – value is the day of the registration of the book.

➢ value has the Date data type.

➢ Example:

▪ 25.6.2015

▪ NULL

❖ disposal_date – value is the day of the disposal of the book.

➢ value has the Date data type.

➢ Example:

▪ 25.6.2015

▪ NULL

❖ lost_date – value is the day of the loss of the book.

➢ value has the Date data type.

➢ Example:

▪ 25.6.2015

▪ NULL

Appendix C – Model Library 527

Primary key

The primary key is attribute book_id.

Foreign key

Attribute title_id is the foreign key to the K_title table.

SQL script for table creation

Create table k_Book

(

 book_id Integer NOT NULL,

 title_id Integer NOT NULL,

 price Number(10, 2) NOT NULL,

 registration_date Date,

 disposal_date Date,

 lost_date Date,

 primary key (book_id)

);

Script for relationship definition

Alter table k_Book

 add foreign key (title_id)

 references k_Title (title_id);

528 Appendix C – Model Library

Table K_TITLE
This table contains information about the details of the book titles in the library.

Such table is connected to the table K_rent_books and K_title.

Fig. C.5: K_title submodel

Attributes

❖ title_id – identification number of the title of the book.

➢ attribute title_id is the primary key of the table.

➢ value is the integer number.

➢ Example:

▪ 11111

❖ title_name – the name of the book.

➢ string value composed maximally of 50 characters.

➢ Example:

▪ Database systems

❖ genre – category of literature.

➢ string value composed maximally of 11 characters.

➢ Example:

▪ Science

❖ publisher – the publisher is a commercial name of the publisher.

➢ string value composed maximally of 40 characters.

➢ Example:

▪ Pearson Prentice Hall

❖ year_of_issue – value expresses the year of the publishing.

➢ value is the integer number.

➢ Example:

▪ 2017

❖ isbn – the International Standard Book Number (ISBN) is a unique numeric commercial

book identifier.

➢ string value composed maximally of 20 characters.

➢ Example:

▪ 978-80-554-1311-2

https://en.wikipedia.org/wiki/Category_of_being
https://en.wikipedia.org/wiki/Literature

Appendix C – Model Library 529

Primary key

The primary key is attribute title_id.

Foreign key

The table has no foreign keys.

SQL script for table creation

Create table k_Title

(

 title_id Integer NOT NULL,

 title_name Varchar(50) NOT NULL,

 genre Varchar(11) NOT NULL,

 publisher Varchar(40),

 year_of_issue Integer,

 isbn Varchar(20),

 primary key (title_id)

);

Script for the relationship definition

None.

530 Appendix C – Model Library

Table K_AUTHOR
This table contains information about the details of the authors. Such table is connected

to the table K_authors_of_book.

Fig. C.6: K_author submodel

Attributes

❖ author_id – identification number of the author.

➢ the attribute is the primary key of the table.

➢ value is the integer.

➢ Example:

▪ 11111

❖ name – first name of the author.

➢ value is the string with variable length limited to 20 characters.

➢ Example:

▪ Karol

❖ surname – family name of the author.

➢ value is the string with variable length limited to 20 characters.

➢ Example:

▪ Matiaško

❖ registration_date – value is the day of the registration of the author.

➢ value has the Date data type.

➢ Example:

▪ 25.6.2015

▪ NULL

❖ note – some remarks and comments about the author.

➢ value is the string with variable length limited to 100 characters.

➢ Example:

▪ Interested in Computer science

Primary key

The primary key is attribute author_id.

Foreign key

The table has no foreign keys.

Appendix C – Model Library 531

SQL script for table creation

Create table k_Author

(

 author_id Integer NOT NULL,

 name Varchar2(20) NOT NULL,

 surname Varchar2(20) NOT NULL,

 registration_date Date,

 note Varchar2(100),

 primary key (author_id)

);

Script for the relationship definition

None.

532 Appendix C – Model Library

Table K_AUTHORS_OF_BOOK
This table contains information about the associations of the authors to the titles

of the book. Such table is connected to the table K_author and K_title.

Fig. C.7: K_authors_of_book submodel

Attributes

❖ author_id – identification number of the author.

➢ the attribute is the part of the primary key of the table.

➢ the attribute is the part of the foreign key referencing K_author table.

➢ value is the integer number.

➢ Example:

▪ 11111

❖ title_id – identification number of the title of the book.

➢ the attribute is the part of the primary key of the table.

➢ the attribute is the part of the foreign key referencing K_title table.

➢ value is the integer number.

➢ Example:

▪ 11111

❖ no – attribute represents the order of the author in the particular title.

➢ value is the integer number.

➢ Example:

▪ 2

Primary key

The primary key is composite, formed by attributes author_id and title_id.

Foreign key

Attribute author_id is the foreign key to the K_author table.

Attribute title_id is the foreign key to the K_title table.

Appendix C – Model Library 533

SQL script for table creation

Create table k_Rent_books

(

 borrow_date Date NOT NULL,

 reader_id Integer NOT NULL,

 book_id Integer NOT NULL,

 return_date Date,

 extension_date Date,

 status Char(1) NOT NULL,

 price Number(10, 2),

 primary key (borrow_date, book_id)

);

Script for relationship definition

Alter table k_Authors_of_book

 add foreign key (author_id)

 references k_Author (author_id);

Alter table k_Authors_of_book

 add foreign key (title_id)

 references k_Title (title_id);

Appendix D – Syntax 535

APPENDIX D – SYNTAX

CREATE USER user_name

IDENTIFIED { BY password | EXTERNALLY | GLOBALLY AS 'CN=user' }

[DEFAULT TABLESPACE tablespace]

[TEMPORARY TABLESPACE tablespace]

[QUOTA { number [K|M] | UNLIMITED } ON tablespace]

 [, QUOTA { number [K|M] | UNLIMITED } ON tablespace]

[PROFILE profile_name]

[PASSWORD EXPIRE]

[{ ACCOUNT LOCK | ACCOUNT UNLOCK }]

CREATE TABLE [schema.]table_name

[(column_name datatype [DEFAULT expr]

 [{ [column_constraint] } [...]

 |

 table_constraint

 }

] [...]

)

]

column_constraint ::=

[CONSTRAINT constraint_name]

{

 [NOT] NULL

 |

 { UNIQUE | PRIMARY KEY }

 |

 REFERENCES [schema.]table_name [(column_name1 [, column_name2, ...])]

 [ON DELETE CASCADE]

 |

 CHECK (condition)

}

table_constraint ::=

[CONSTRAINT constraint_name]

{

 { UNIQUE | PRIMARY KEY } ({ column_name1 } [, column_name2, ...])

 |

 FOREIGN KEY (column_name1 [, column_name2, ...])

 REFERENCES [schema.]table_name [column_name1 [, column_name2,

 ...]] [ON DELETE CASCADE]

 |

 CHECK (condition)

}

DROP TABLE table_name [CASCADE CONSTRAINTS | PURGE];

PURGE TABLE table_name;

PURGE INDEX index_name;

PURGE RECYCLEBIN;

PURGE TABLESPACE tablespace_name;

PURGE TABLESPACE tablespace_name USER user_name;

FLASHBACK TABLE table_name TO BEFORE DROP;

FLASHBACK TABLE table_name TO BEFORE DROP

 RENAME TO new_table_name;

536 Appendix D – Syntax

CREATE [UNIQUE] INDEX index_name

 ON table_name (column_name1 [ASC | DESC], ...);

DROP INDEX index_name;

CREATE SEQUENCE sequence_name

 [INCREMENT BY integer_value]

 [START WITH integer_value]

 [{MAXVALUE integer_value | NOMAXVALUE}]

 [{MINVALUE integer_value | NOMINVALUE}]

 [{CYCLE | NOCYCLE}]

 [{CACHE positive_integer_value | NOCACHE}]

 [{ORDER | NOORDER}];

ALTER SEQUENCE sequence_name INCREMENT BY integer_value;

ALTER SEQUENCE sequence_name MAXVALUE integer_value;

ALTER SEQUENCE sequence_name {CYCLE | NOCYCLE};

ALTER SEQUENCE sequence_name {CACHE positive_integer_value | NOCACHE};

ALTER SEQUENCE sequence_name {ORDER | NOORDER};

DROP SEQUENCE sequence_name;

schema_name.object_name@dblink_name

schema_name.object_name

object_name

INSERT INTO table_name [(column_list)]

{

 VALUES (list_of_values)

 |

 SELECT-statement

}

DELETE FROM table_name

 [WHERE conditions];

UPDATE table_name SET

{

 column_name1 = expression1[, ...]

 |

 { (column_list)

 |

 *

 } = (expression_list)

}

 [WHERE conditions]

Appendix D – Syntax 537

SELECT [ALL | DISTINCT]

 { * | column_name1 | function_name1[(parameters1)] } [, ...]

 FROM table_reference1 [table_alias1] [, ...]

 [WHERE conditions]

 [GROUP BY column_list]

 [HAVING conditions]

 [ORDER BY column_list [ASC | DESC], ...]

 FROM table_name1 [table_alias1]

 { [{LEFT | RIGHT | FULL} [OUTER]] JOIN table_name2

 [table_alias2]

 { ON (join_conditions1) | USING(column_list_join1)}

 |

 [INNER] JOIN table_name3 [table_alias3]

 { ON (join_conditions3) | USING(column_list_join3)}

 | {CROSS | NATURAL [INNER]} JOIN table_name4

 [table_alias4]

 }

expression1 relational_operation expression2

expression [NOT] BETWEEN expression1 AND expression2

expression [NOT] IN (item_set)

expression [NOT] LIKE 'string' [ESCAPE escape-character]

expression relational_operation

 {ALL | [ANY | SOME]} (SELECT-statement)

expression [NOT] IN (SELECT- statement)

[NOT] EXISTS (SELECT-statement)

expression IS [NOT] NULL

SELECT-statement1

 {UNION [ALL] | INTERSECT | MINUS}

SELECT-statement2

 [{UNION [ALL] | INTERSECT | MINUS}

 SELECT-statement3

] ...

SUBSTR(string, m [, n])

LENGTH(string)

UPPER(string)

LOWER(string)

INITCAP(string)

Operator ||

CONCAT(string1, string2)

INSTR(string, substring, [m [, n]])

LIKE '%_%' ESCAPE '\';

% any number of characters

_ one character only

ABS(expression)

ROUND(n [, m])

TRUNC(n [, m])

538 Appendix D – Syntax

ALTER SESSION

 SET nls_date_format='DD.MM.YYYY HH24:MI:SS';

ALTER SESSION

 SET nls_timestamp_format='DD.MM.YYYY HH24:MI:SS:FF';

ALTER SESSION

 SET nls_date_language='English';

ALTER SESSION

 SET nls_territory='Slovakia'; -- 1 (day number) – Monday

ALTER SESSION

 SET nls_territory= 'America'; -- 1 (day number) – Sunday

TO_CHAR(date_value, [format [, nls_param]])

TO_DATE(string_value, [format [, nls_param]])

SYSDATE

SYSTIMESTAMP

ADD_MONTHS(d, n)

NEXT_DAY(d, day_value)

LAST_DAY(d)

TRUNC(d [, format])

ROUND(d [, format])

EXTRACT(format FROM d)

MONTHS_BETWEEN(d1, d2)

COALESCE(expr1, expr2, ..., exprn)

DECODE(expression, if1, then1 [, ifn, thenn] [, else])

NVL(expression1, expression2)

NVL2(expression1, expression2, expression3)

case expression

 when value1 then result1

 [when valuen then valuen] [...]

 [else result]

end

case

 when condition1 then result1

 [when conditionn then resultn] [...]

 [else result]

end

ROWID

USER

row_number() over ([partition by expression]

 ORDER BY column_list)

rank() over ([partition by expression]

 ORDER BY column_list)

dense_rank() over ([partition by expression]

 ORDER BY column_list)

GRANT database_privilege_list

 TO {PUBLIC | list_of_users}

 [WITH ADMIN OPTION]

GRANT object_privilege_list ON object_name

 TO {PUBLIC | list_of_users}

 [WITH GRANT OPTION]

Appendix D – Syntax 539

REVOKE { privilege_name ON object_name

 |

 database_privilege_name

 |

 role_name}

 FROM {PUBLIC | list_of_users}

CREATE ROLE role_name;

BEGIN WORK

COMMIT [WORK]

ROLLBACK [WORK]

SAVEPOINT savepoint_name

ROLLBACK TO SAVEPOINT savepoint_name

IF condition THEN

 statements;

END IF;

IF condition1 THEN

 statements;

ELSIF condition2 THEN

 statements;

[ELSE

 statements;]

END IF;

IF condition THEN

 statements;

[ELSE

 statements;]

END IF;

LOOP

 ...

 IF condition THEN

 EXIT;

 END IF;

 ...

END LOOP;

LOOP

 ...

 EXIT WHEN condition;

END LOOP;

WHILE condition LOOP

 statements;

END LOOP;

FOR variable_name IN min..max LOOP

 statements;

END LOOP;

540 Appendix D – Syntax

FOR variable_name IN REVERSE min..max LOOP

 statements;

END LOOP;

[DECLARE -- variable declaration part

 variable_name data_type [:= init_value];

]

BEGIN

 statements; -- execution part

[EXCEPTION -- exception processing

 WHEN exception_type1 THEN

 statements;

 WHEN exception_type2 THEN

 statements;

 ...

]

END;

/

CREATE [OR REPLACE] PROCEDURE procedure_name

 [(parameter1 [mode1] data_type1,

 parameter2 [mode2] data_type2, ...)]

IS|AS

 [variable_name data_type [:= init_value];]

BEGIN

 statements;

 [EXCEPTION

 WHEN exception_type1 THEN

 statements;

 [WHEN ...]

]

END [procedure_name];

/

CREATE [OR REPLACE] FUNCTION function_name

 [(parameter1 [mode1] datatype1,

 parameter2 [mode2] datatype2, ...)]

RETURN datatype

IS|AS

 [variable_name data_type [:= init_value];]

BEGIN

 statements;

 RETURN expression;

 [EXCEPTION

 WHEN exception_type1 THEN

 statements;

 [WHEN ...]

]

END [function_name];

/

DROP PROCEDURE procedure_name;

DROP FUNCTION function_name;

RAISE_APPLICATION_ERROR(error_code, error_text [, {TRUE | FALSE}]);

Appendix D – Syntax 541

CREATE [OR REPLACE] TRIGGER [schema.]trigger

{ {BEFORE | AFTER}

 {DELETE | INSERT | UPDATE [OF column1 [, column2 [, ...]]]}

 [OR {DELETE | INSERT | UPDATE [OF column1 [, column2 [, ...]]] }]

 [...]

 |

 INSTEAD OF {DELETE | INSERT | UPDATE}

}

ON [schema.][table_name | view_name]

[REFERENCING { OLD [AS] renamed_old | NEW [AS] renamed_new}]

[FOR EACH ROW]

[WHEN (condition)]

 Trigger_body

ALTER TRIGGER [schema.]trigger_name {ENABLE | DISABLE};

ALTER TABLE [schema.]table_name {ENABLE | DISABLE}

 ALL TRIGGERS;

DROP TRIGGER [schema.]trigger_name;

CREATE [OR REPLACE] [FORCE | NOFORCE]

 VIEW [schema.]view_name [(column_alias1 [, ...])]

 AS Select_statements

 [WITH [READ ONLY | CHECK OPTION [CONSTRAINT constraint_def]]]

SELECT column_list | function_calls | expressions

 INTO variable_list

 FROM table_list

 SELECT expr1, expr2 ..., exprn

 BULK COLLECT INTO var1, var2 ..., varn

 FROM table_list

OPEN cursor_name;

FETCH cursor_name INTO list_of_variables;

CLOSE cursor_name;

cursor_name%ISOPEN

cursor_name%FOUND

cursor_name%NOTFOUND

cursor_name%ROWCOUNT

Appendix E – File management 543

APPENDIX E – FILE MANAGEMENT

 Tab. E.1: Storage

File name Location

All materials

https://gofile.me/4voWB/07zl894BI

Data models

https://gofile.me/4voWB/4HLYQykKg

Flight

https://gofile.me/4voWB/ToX7d1Yc8

Library

https://gofile.me/4voWB/avlOV2nhj

https://gofile.me/4voWB/07zl894BI
https://gofile.me/4voWB/4HLYQykKg
https://gofile.me/4voWB/ToX7d1Yc8
https://gofile.me/4voWB/avlOV2nhj

544 Appendix E – File management

File name Location

Student

https://gofile.me/4voWB/XTdRsaluR

exp_flight.exp

https://gofile.me/4voWB/PRwipZIXD

exp_library.exp

https://gofile.me/4voWB/kcgfvaEpO

exp_music.exp

https://gofile.me/4voWB/13teiA8f0

exp_student_ENG.exp

https://gofile.me/4voWB/L5q4hBI7p

https://gofile.me/4voWB/XTdRsaluR
https://gofile.me/4voWB/PRwipZIXD
https://gofile.me/4voWB/kcgfvaEpO
https://gofile.me/4voWB/13teiA8f0
https://gofile.me/4voWB/L5q4hBI7p

Appendix E – File management 545

File name Location

family_tree_script.txt

https://gofile.me/4voWB/G2QwSAT4f

library_part.txp

https://gofile.me/4voWB/PVReZt0xE

student_pref_script.sql

https://gofile.me/4voWB/98J8QZgv7

SQL_load_library.zip

https://gofile.me/4voWB/Agb9Fuqgz

document version 1.1

https://gofile.me/4voWB/G2QwSAT4f
https://gofile.me/4voWB/PVReZt0xE
https://gofile.me/4voWB/98J8QZgv7
https://gofile.me/4voWB/Agb9Fuqgz

doc. Ing. Michal Kvet, PhD., prof. Ing. Karol Matiaško, PhD., Ing. Štefan Toth, PhD.

PRACTICAL SQL FOR ORACLE CLOUD

Copyright © University of Žilina

Printed by EDIS-Publishing House of the University of Žilina, 2022
First edition, AA 32,40

Number of copies 100 USB

ISBN 978-80-554-1880-3

	Preface
	Introduction
	Acknowledgment
	Oracle Academy
	Organization of the book

	Lab 1 – Oracle Cloud Infrastructure (OCI)
	1.1 SQL Developer connection specification
	1.2 SQL*Plus command-line – SQL Client
	1.2.1 Alternative 1 – full definition
	1.2.2 Alternative 2 – connect identifiers
	1.2.3 Capturing activities in SQL
	1.2.4 Working with Help
	1.2.5 Working with multiple commands
	1.2.6 Comments
	1.2.7 Working with procedures and functions
	1.2.8 Connection and session termination

	1.3 Syntax symbols

	Lab 2 – Basics of data retrieval
	2.1 Introduction
	2.2 Projection, selection, column alias
	2.2.1 Personal_id structure
	2.2.2 Dual table

	2.3 Using functions
	2.3.1 Character string functions
	ASCII function
	CONCAT function
	String character case management (LOWER, UPPER, INITCAP functions)
	LENGTH function
	SUBSTR function
	TRIM function

	2.3.2 Numeric and Math functions
	ABS function
	CEIL function
	ROUND function
	FLOOR function
	TRUNC function
	MOD function

	2.3.3 Date and Time functions
	SYSDATE function
	SYSTIMESTAMP function
	ADD_MONTHS function
	EXTRACT function
	LAST_DAY function
	MONTHS_BETWEEN function
	NEXT_DAY function
	TRUNC function

	2.3.4 Conversion functions
	TO_CHAR function
	TO_DATE function
	TO_NUMBER function
	TO_TIMESTAMP function

	2.3.5 Advanced functions
	CASE conversion function
	COALESCE function
	DECODE function
	NULLIF function
	NVL function
	NVL2 function
	USER function
	SYS_CONTEXT function

	2.4 Managing NULL values
	2.5 Comparing strings (equality, operator Like)
	2.6 Using Order By clause
	2.7 Table joining
	2.8 Cartesian product
	2.9 SETs operations (IN, EXISTS)
	2.10 Managing duplicate values
	2.11 Table alias
	2.12 Practice

	Lab 3 – Insert, Update, Delete statements and transactions
	3.1 Introduction
	3.2 Insert statement
	3.2.1 Insert – values type
	3.2.2 Insert – Select type

	3.3 Update statement
	3.4 Delete statement
	3.5 The order of operations
	3.6 Foreign key definition
	3.7 Changing the primary key value
	3.8 Transactions
	3.9 Practice
	3.9.1 Insert statements
	3.9.2 Update statements
	3.9.3 Delete statements

	Lab 4 – Data modeling
	4.1 Introduction
	4.1.1 System analysis
	4.1.2 System design
	4.1.3 Technical design

	4.2 Creating data model
	4.3 Conceptual modeling
	4.4 Entity-relational conceptual model
	4.4.1 Identifying key

	4.5 Conceptual schema notation in E-R model
	4.5.1 Linear notation

	4.6 Type diagram / Occurrence E-R diagram
	4.6.1 Type diagram
	4.6.2 Occurrence E-R diagram

	4.7 Attributes
	4.7.1 Non-atomic attributes
	4.7.2 Group attributes
	4.7.3 Multiple value attributes

	4.8 Relationships and integrity constraints
	4.8.1 Identifying and non-identifying relationship
	4.8.2 Relationship cardinality
	Cardinality 1:1
	Cardinality 1:N
	Cardinality M:N

	4.8.3 Decomposition of the M:N relationship cardinality
	4.8.4 Associative entity
	4.8.5 Membership types
	4.8.6 Multiple relationships between same tables
	4.8.7 Recursive (self) relationships

	4.9 Data modeling in Toad Modeler tool
	4.9.1 Environment settings
	4.9.2 Entity management
	4.9.3 User-defined domain
	4.9.4 Relationship management
	4.9.5 Generating SQL script
	4.9.6 Executing script on the server
	4.9.7 Working with directories and files

	4.10 Practice

	Lab 5 – Create, Alter and Drop commands
	5.1 Introduction
	5.2 Data types
	5.3 User management
	5.4 Table management
	5.4.1 Create command
	Foreign key
	Domain definition (check constraint)
	Default value
	Constraint naming
	Create table as Select

	5.4.2 Alter command
	Add option
	Modify option
	Drop option
	Table renaming

	5.4.3 Drop command
	Recycle bin

	5.5 Index
	5.5.1 ROWID
	5.5.2 Index management
	5.5.3 Types of indexes
	B+ tree index type
	Bitmap index
	Index organized table

	5.5.4 Access methods

	5.6 Practice

	Lab 6 – Data loading
	6.1 Introduction
	6.2 SQL Loader
	6.3 EXP / IMP utility
	6.4 Creating import/export using dump files
	6.4.1 Import using data pump
	Object storage
	Bucket
	Create_credentials procedure
	Authentication token
	Data Pump Import Wizard
	Bucket
	Object

	6.4.2 ExpDp
	6.4.3 Useful notes

	Lab 7 – Managing privileges
	7.1 Introduction
	7.2 Grant command
	7.2.1 System privilege management
	7.2.2 Object privilege management

	7.3 Accessing another schema object
	7.4 Revoke command
	7.5 Grouping privileges to roles
	7.6 Practice

	Lab 8 – Advanced techniques of data retrieval
	8.1 Introduction
	8.2 Aggregate functions
	8.3 Fundamentals for Group By clause management
	8.4 Working with aggregate function Count and Group By clause
	8.5 Having clause
	8.6 Extended versions of table joining
	8.6.1 INNER JOIN type
	8.6.2 ON / USING CLAUSE
	8.6.3 LEFT OUTER JOIN type
	8.6.4 RIGHT OUTER JOIN type
	8.6.5 FULL OUTER JOIN type
	8.6.6 SEMI JOIN type
	8.6.7 ANTI JOIN type
	8.6.8 NATURAL JOIN type

	8.7 Relational algebra operations
	8.7.1 Union operation
	8.7.2 Difference operation
	8.7.3 Intersection operation

	8.8 Recursive relationships
	8.9 Using the same table multiple times in the Select statement
	8.10 Practice

	Lab 9 – Procedures, functions and packages
	9.1 Introduction
	9.2 Code preliminaries
	9.2.1 Variable definition
	9.2.2 Assignment, NULL
	9.2.3 Conditional processing
	IF condition
	Condition CASE

	9.2.4 LOOPs
	Infinite loop, EXIT condition
	WHILE loop type
	FOR loop type

	9.3 PL/SQL anonymous block
	9.4 Procedure, function
	9.4.1 Procedure syntax
	9.4.2 Function syntax

	9.5 Executing stored method
	9.5.1 Disable procedure
	9.5.2 Enable procedure
	9.5.3 Get_line procedure
	9.5.4 Get_lines procedure
	9.5.5 New_line procedure
	9.5.6 Put procedure
	9.5.7 Put_line procedure

	9.6 Calling function from the Select statement
	9.7 Exception handling
	9.8 Ways of passing parameters
	9.8.1 Position way of passing parameters.
	9.8.2 Passing parameters using names
	9.8.3 Hybrid passing

	9.9 Differences between anonymous and stored (named) PL/SQL block
	9.10 Removing procedures and functions
	9.11 Select statement in PL/SQL
	9.11.1 SELECT INTO type
	9.11.2 CURSOR

	9.12 Increasing control – access rights
	9.13 Packages
	9.13.1 Package specification syntax
	9.13.2 Package body syntax
	9.13.3 Overloading
	9.13.4 Initialization block

	9.14 Practice

	Lab 10 – Triggers
	10.1 Introduction
	10.2 Syntax
	10.3 Restrictions for trigger definition
	10.4 Triggers turning on and off
	10.5 Changes monitoring
	10.6 Default values
	10.7 Conditions for trigger firing
	10.8 One trigger – multiple operations
	10.9 Referential integrity management
	10.10 Changing the value of the primary key
	10.11 Sequences and triggers
	10.11.1 Sequence syntax
	10.11.2 Sequence and transaction correlation

	10.12 DDL triggers
	10.13 Event triggers
	10.14 Practice

	Lab 11 – Relational integrity
	11.1 Introduction
	11.2 Integrity constraints classification
	11.3 Entity integrity
	11.3.1 Primary key candidate
	11.3.2 Primary key
	11.3.3 Alternative key
	11.3.4 Superkey

	11.4 Referential integrity
	11.4.1 Referential integrity rule
	11.4.2 Referential integrity consequences
	11.4.3 Cascade option example
	11.4.4 Restricted option example
	11.4.5 Nullified option example

	11.5 User integrity
	11.6 Column integrity
	11.7 Domain integrity
	11.8 Integrity constraints controlling and processing
	11.9 Practice

	Lab 12 – Views
	12.1 Introduction
	12.2 Syntax
	12.3 Exceptions
	12.4 Managing data in views
	12.5 Attribute name redefinition in views
	12.6 Check option clause
	12.7 Read only view
	12.8 View based on multiple tables and triggers
	12.9 Triggers associated with views
	12.10 Summary
	12.11 Practice

	Lab 13 – Date and Time value management
	13.1 NLS parameters & session format
	13.1.1 NLS_Language
	13.1.2 NLS_Territory
	13.1.3 NLS_Date_Language
	13.1.4 NLS_Date_format

	13.2 Transformation of the personal_id into the date of birth
	13.3 Get the list of persons who celebrate a birthday today
	13.4 Get the list of students who passed the exam this month
	13.5 Get the list of students who passed the exam previous last month
	13.6 Get the list of the persons, who will celebrate their birthday next Sunday
	13.7 Get the Date of the second Sunday of the month
	13.8 Get the list of the persons, who will celebrate their birthday next week
	13.9 Get the difference between Date values
	13.10 Get the difference between Date values – a sophisticated solution
	13.11 YY vs. RR
	13.12 Actual employees
	13.13 Period models and Allen relationships
	13.14 Unlimited validity definition
	13.15 Data type Interval management
	13.15.1 Interval Year to Month data type
	13.15.2 Interval Day to Second data type
	13.15.3 Examples – Interval data types
	13.15.4 Update validity definition based on Interval data value

	Lab 14 – Data dictionary views
	14.1 Introduction
	14.2 Data dictionary – structure
	14.3 Querying data dictionary
	14.3.1 List of tables owned actual user
	14.3.2 List of table attributes
	14.3.3 Get attribute data type and characteristics
	14.3.4 Get system identifier and definition of the primary key
	14.3.5 Get system identifier and definition of the foreign key
	14.3.6 Listing triggers for a particular table
	14.3.7 Listing developed methods (procedures, functions)
	14.3.8 Managing sequences

	14.4 Practice

	Lab 15 – Reports
	15.1 Overview
	15.2 Environment settings, background
	15.3 Filtering, sorting
	15.4 Hidden columns
	15.5 Binding multiple reports – Master – Child
	15.6 Graph reports
	15.7 Pie graph type reports
	15.8 Line type reports
	15.9 Three-dimensional (3D) graph types
	15.10 Binding multiple reports of various types
	15.11 Exports
	15.11.1 CSV format
	15.11.2 Delimited format
	15.11.3 Text format
	15.11.4 Excel format
	15.11.5 XML format
	15.11.6 HTML format
	15.11.7 Exporting to PDF

	15.12 Script format (Insert)

	Summary
	References
	Abbreviations
	Index
	Appendices
	Appendix A – Model Student
	Table PERSONAL_DATA
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition
	Table data example

	Table STUDENT
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition
	Table data example

	Table STUDY_SUBJECTS
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition
	Table data example

	Table ST_FIELD
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition
	Table data example

	Table SUBJECT
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition
	Table data example

	Table TEACHER
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition
	Table data example

	Table SUBJECT_YEAR
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition
	Table data example

	Table ST_PROGRAM
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition
	Table data example

	Table CONTACT
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition
	Table data example

	Appendix B – Model Flight
	Table L_PERSON
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_FLIGHT TICKET
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_CLASS
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_FLIGHT
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_PLANE
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_EMPLOYEE
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_AIRPORT
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_PLANE_TYPE
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition

	Table L_COUNTRY
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition

	Table L_TOWN
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_AIR_COMPANY
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Appendix C – Model Library
	Table K_PERSON
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition

	Table K_READER
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table K_RENT_BOOKS
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table K_BOOK
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table K_TITLE
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition

	Table K_AUTHOR
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition

	Table K_AUTHORS_OF_BOOK
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Appendix D – Syntax
	Appendix E – File management

