Oracle Cloud
Always Free

ZILINSKA UNIVERZITA
V ZILINE

Practical SQL
for Oracle Cloud

Michal Kvet
Karol Matiasko
Stefan Toth

Scientific redactor doc. Ing. Michal Zabovsky, PhD.

Reviewers prof. Ing. Marcel Harakal’, PhD.
doc. Ing. Jarmila Skrinarova, PhD.

Copyright © University of Zilina

© M. Kvet, K. Matiagko, S. Toth, 2022
ISBN 978-80-554-1880-3

Contents i
Contents

Preface 11

INETOAUCTION ...ttt ettt sbe e b et e eae 11

ACKNOWICAZIMENL.......eeeeiiiiieiiieiieie ettt sae e e seeesaeesaesseesaensens 11

Oracle ACAACIMYocvieuieiieiieieeieeteste ettt et e et et este e b e e b e essessaesseesseeseenseenseans 12

Organization of the BOOKcc.ooiiiiiiiiii e 14

Lab 1 - Oracle Cloud Infrastructure (OCI) 15

1.1 SQL Developer connection SpecifiCation...........c.eeverveeeuercuesueseereenieernennenns 38

1.2 SQL*Plus command-line — SQL Client.........ccceeeveeviieeiiieeiieeiie e 41

1.2.1 Alternative 1 — full definition.........c.ccoooeerieiieiiiiieeeee e 42

1.2.2 Alternative 2 — connect identifiers..........occvevverieecieeienienieeee e 44

1.2.3 Capturing activities in SQLccoeierieriieieeie e 49

1.2.4 Working with Helpoccoooiiiiiii e 50

1.2.5 Working with multiple commandscoccoevieiieiinienieeeee e 51

1.2.6 (070311111153 11 J OSSPSR 51

1.2.7 Working with procedures and functions............ecceeeeerieiienienenieneee 52

1.2.8 Connection and SesSion termMinationcceeeeveereieeecveeseveesireesveenneens 54

1.3 Syntax SYMDOIS ...c.eeciieiiieiiiieiieiieseesie ettt saeesaeesbeenne e 55

Lab 2 — Basics of data retrieval 57

2.1 TNErOAUCTIONeeiieiieiie ettt ettt et e et e e e e e beeeaeeesbeeensaeenes 57

2.2 Projection, selection, COIUMN @liascccueeierieriesieerieeie e 58

2.2.1 Personal id StrUCTUIEccvvevieiieieiie et 61

222 DUALtADIEeveeiieeee e e 61

2.3 USING FUNCHONS ..utietieiieieeieeiie ettt ettt ettt ettt s seeenaeeee e ene 61

2.3.1 Character String fUNCHONSc..ccueeierieriieieree et eeee s 62

ASCIT fUNCHION ...ttt ettt sb e e e ae e s beeeabeeebeeeaseeeabeeenseeenns 62

CONCAT fUNCHONeeeiviieiieeiee et etee et ettt et eeee et e e staeesareeseaeesaeeseneensnas 62

String character case management (LOWER, UPPER, INITCAP functions)...63

LENGTH fUNCHON.ccuviiiieiieiieie ettt see e sveesseesaeeseesseessaenseas 64

SUBSTR fUNCHON ...veeiiiiiiieciiiecieeete sttt sveesave e sb e e saveesebeesaveeas 64

TRIM fUNCHON ..evtiieiiiiciiieeie ettt ettt sb e e sae e s be e e e e ebeeeaseeeareeenseeenns 64

232 Numeric and Math funCtionsccoecveeierierieeieie e 65

ABS fUNCHON ..ottt e s ve e e be e e beesbeeeareeenreeenns 65

CEIL fUNCHON.tiiitieeiie ettt ettt ettt et e et eetaeestaeeaseessaeesaeesnneenenas 65

ROUND fUNCHON ...ttt eesaeesseesseesseeseesseeseensens 66

FLOOR fUNCHONevviiieiiieieeie ettt ettt eve s s ee e eseesseesseeseesseeseenseas 66

TRUNC fUNCHOMN ...ttt esveeeareesbeeeavessabeeereeenns 66

LY (0] D I 75T 2 o) s SRR PUPPRRRRN 67

233 Date and Time fUnCtionsccceeveieeeiieiciieerieeie e 67

SYSDATE fUNCHON.tiiiiieciiieiiieeie ettt ettt veesve e sbeesare e sebeeeaneeas 68

SYSTIMESTAMP fUNCHONeovvieieiiiiciieiieiieieie ettt 68

ADD_MONTHS fUNCHONeeeiiieiiieciieeieesieeeee sttt stee e 69

EXTRACT fUNCLION ..ottt ettt sve e e v e v e sabeeeveeenns 69

LAST DAY fUNCHON ..c.eeuiiiiiiientieitreetetetee sttt 70

MONTHS BETWEEN fUNCHON......ccctiiiiieiiieeieecieeeiee et eveesiee e 70

NEXT DAY fUNCHON ..eouviiiiiieiit ettt ettt eieesveeesee e 71

Contents

TRUNC fUNCLION ...ttt sttt 72
2.3.4 Conversion fUNCHONS.covereririririeteee ettt 73
TO _CHAR fUNCHON ...ttt st e s e s enneas 73

TO DATE fUNCHOMN. ...ttt ettt 75

TO _NUMBER fUNCHONcovvieiieiieieciieiteieeieeie ettt 75

TO _TIMESTAMP fUNCLION ...ovveniieeieeiieciieieeieeie et 75
235 Advanced fUNCHONScoiieiiiiiiie et 76
CASE conversion fUnCtIONeiveiieriierieie et 76
COALESCE fUNCHOMN ...ttt sttt s 77
DECODE fUNCHON 1.ttt 77
NULLIF fUNCHOMN ...ttt ettt et s s 78
INVL fUNCHOMN .ottt 78
NVL2 fUNCHON w.uetitiieeieieee ettt sttt 78
USER fUNCHON ...eeutiieiiieiie ettt eite et eieeeiae et e eaeeeteeeseeeseeesaesssaeenseennns 79

SYS CONTEXT fUNCHON.eiiuiitieiieieeieeiee et 79

2.4 Managing NULL ValUCS......c..ccceecverieriieiieiicreettesieesie et eeae e enne e 80
2.5 Comparing strings (equality, operator LikKe)cccocoeerirrinieniienienieeee 81
2.6 Using Order By Clausecccoeiiiieiiiiiee e 83
2.7 Table JOININEG ...cveeveeeeieiietieieeieete sttt ete e et e eteesteebeessaessesssesseesseeseesseensenns 85
2.8 CarteSian PrOAUCTcceervieciirieiiesieesie et ereeeeeette e esbeesbeesbeseaesseesseeseesseessenns 88
2.9 SETs operations (IN, EXISTS)coiiiiiiiiiiieeieeeeeeee e 90
2.10 Managing duplicate ValUeS..........ccecceervieriieiieieeieniesieeie e enne e 94
2,11 Table @lias ...c.eeveiiiiieieiieieeee e e 95
2,12 PTACHICE . .eetiieiie ettt et etteetteette et e et e et eeteeeteeestaeesaeesteeenseeeataeenseeensaeeneeenes 96
Lab 3 — Insert, Update, Delete statements and transactions 99
3.1 INErOQUCHION ...ttt sttt ettt e eneas 99
3.2 INSEIt StAtBMENT . c..eetiiiieiiieiieriieriterteec ettt sttt et 99
3.2.1 InSert — VaIuES LY PC.....ueeueieeieiieiieieee ettt 100
322 INSErt — SEIECt tYPC .vievvieeiieeieiieiieie ettt es 101
3.3 UPAate StAtEIMENT.....uveeuvieeiieeiieeieeeieeeieeeieeeteeeebeeebeesebeeebeesnbeesnseessbaesnneens 102
3.4 Delete StateMENT.....c.eeciiieiieeiieciee et eiee ettt e ere e sre e b e e sebeeeanee s 104
3.5 The order of OPErationscecueeuerierierierieere et eieeee et eae e 105
3.6 Foreign key definitioncceeevieiiiiiiieiieiieic et e 105
3.7 Changing the primary key valueccccoovieiiiiiiiiieeeeeece e 106
3.8 TIaNSACHIONS ...eeeviieiieeeiieeiieeiieeteeeteeeteeebeesbeesebeeesbeesabeesaseessseessseessseessseess 107
3.9 PIACHICE. e ittt ettt b ettt bttt et 109
39.1 InSert StAtEMENTSeouviriiiiiiieiieieeteete et 109
39.2 Update StAtEMENLS.eeueeueiieriinierienieeitetete sttt ettt eneens 110
393 Delete StAteMENTS.eviirieriieiieieeieee et 110
Lab 4 — Data modeling 113
4.1 TNErOAUCTION ..ottt e v e e s b e e abeesabeeeanee s 113
4.1.1 SyStem aNALYSISceveviriiriiriiniineeeee e 113
4.1.2 SYSEM AESIN..ceuevieeiiieiiiieeiieeiieeieeeeeeieeebeeeteesbeeebeesbeesseesnseesnneens 114
413 Technical deSiZN.......cccviieeiieiiieeieeeiee ettt eaee e 114
4.2 Creating data Mmodelcccoevieiiininininiiieicie e 114
4.3 Conceptual MOAEIINGooviiiiiiiiiieieeie et 117
4.4 Entity-relational conceptual modelcccoeviieriieniiiinieeniieeee e 118

Contents 111

4.4.1 Identifying KEYcooveiiieiiieieeee e 119
4.5 Conceptual schema notation in E-R modelcccoocvvrvienieninnieiieee 119
4.5.1 LiNear NOtAtIONcc.evuerieiiieniinieniesiteit ettt 119
4.6 Type diagram / Occurrence E-R diagram...........ccocceeveneniininnenienieneee, 119
4.6.1 TYPE dIAGrAM....c.vieiieiiieiiiciieiieie ettt ettt enee s 120
4.6.2 Occurrence E-R diagram............cccoocveviiniienienieieeie e 120
4T ATTIDULES ..ottt ettt et ettt et 120
4.7.1 Non-atomic attribULESoceeiieiieiiiie e 122
4.7.2 GIOUP AtTTDULES ...uveeveeiieciiecieeie ettt eee e sae e e e sseenseenne e 122
4.7.3 Multiple value attribULeS.......c.eevveeriieeireieiie et eeeeees 122
4.8 Relationships and integrity CONStraints..........coceeveeruerierienieneeneeieeee e 123
4.8.1 Identifying and non-identifying relationship...........ccoccvevvveveniennnennen. 123
4.8.2 Relationship cardinality............cceeveevircieiieniierieniese e 124
Cardinality 1:L...oooieiieieiee e e 124
Cardinality 1IN ..o 125
Cardinality MEN c..ooiiiiiiieieieeieee ettt sttt eeae e saaens 125
483 Decomposition of the M:N relationship cardinalityccccceevuennen. 126
4.8.4 ASSOCIATIVE CNLILY ...eeeiiiiietieiieieeie ettt 128
4.8.5 MEMDEISNIP tYPES ..vvovvieiirieiieiieieete e steserestee e esseesseeeeessaesseesseensees 129
4.8.6 Multiple relationships between same tablesccccveeveeeeeienienneennen. 130
4.8.7 Recursive (self) relationshipsccceeeeeeeriiiienienieceeeeeeeeeee 131
4.9 Data modeling in Toad Modeler toolc.ccceevieriieieeienierieeeie e 131
49.1 ENvironment SEttNEScc.evvereerieeiierieiieseeseesseenseeseenesseesseesseessens 132
492 Entity management............ccooeerieiieieeienie et 133
493 User-defined domainoceeiieiiinieieeeeeceeeee e 137
494 Relationship Managementccvecveeveriereeneeneenreereeeeeeesreeseeenens 141
495 Generating SQL SCIIPL....ccverierieiieieeieeeeseesreereeae e seeesreesseeseesneees 142
4.9.6 Executing script on the SEIVErcoccvvcierieiieriereeie e 145
4.9.7 Working with directories and filesccccoevevierievieciieiieieeieeeen 146
410 PraACLICE..cueeueeuieneeie ettt ettt ettt ettt st ettt b et be e enean 148
Lab 5 — Create, Alter and Drop commands 151
5.1 INEOAUCHION ...oeiiiiiiieiieie ettt ettt et e e eneean 151
5.2 DAta LY PCS.eeeuiiiiiieeiie ettt ettt et ettt et e et e et e e s beennbeesebaennnee s 152
5.3 USEr MANQZEMENL....ccccueteiiieiieeiieeriteeiteeriteesiteenite ettt e sibeesiteesibeesaeeesebeenaeeens 153
54 Table ManagemeNntccceecuieireieriereieieeteete e seeseee sttt et e e e e e eneeas 155
54.1 Create COMMANA.........oouiiiiniiniiieiieeteeee ettt 156
FOT@IGN KEY....viitieiieieeie ettt ettt et ebeseaesaeesaeesaeeneenseenneees 158
Domain definition (check cONStraint)...........coceeereeereeieerienieneneneneseeeeeenne 159
Default ValUeooviiiiiieiie e 160
CONSLTANE NAMINGveeeevieeiieeiieeieeeteeesteeeteeesteeeteeesaeesbeeesseesseeenseesseeanseesnes 160
Create table @s SElECt.........ovieriieiiieieeie et e e 160
542 Alter cOmMMANd.........cccueeieiieiierierie et 162

F e s 03 01510 3 FO S UUUSTUUSRR 162

A Lo 10 73] 5) s FO USSR 163
DIOP OPLION <.ttt ettt s 164
Table TeNAMING.......cccoviiiiieeiieiieeeie et e st steesaeesbeessaeesbeessseesnsaennseens 164

543 Drop command..........cceeeeueeiiiieiiieniie ettt 165

Contents

RECYCIE DIN.c.eieiieiiieee ettt 165

5.5 TIACXK tiiiiiiiieee et et 167
5.5.1 ROWID ..ttt 167
552 Index Managementcccoeeeerieiieiinie et 168
553 TYPEs Of INACXES.....vieevieeiieeieiieiieie ettt nees 168
B tre€ INAEX tYPC .vveuvieeieriieiiieriierii ettt ettt ettt e ebe e srae e e sseeseenseenne e 168
Bitmap INAEX ..ceueeeiiiieeiieieeree e e 171
Index organized tablecooiiiiiiiiii e 172
554 ACCESS MELHOAS ...t 172
5.0 PrACICE...couiiieiiieitceieeteee ettt st 173
Lab 6 — Data loading 175
6.1 INErOQUCHIONcutitiiiitiitieiteiteeee ettt ettt 175
6.2 SQL LOAAET....cciviieieeeiie ettt ettt ettt eve e e reeebeeeanee s 175
6.3 EXP/IMP ULILY ©oovrieiieieiieieieeeee ettt 184
6.4 Creating import/export using dump files..........occeeverinieniiniieeeeee 185
6.4.1 Import using data PUMP......ccceevveeiiecieeieniereeeeieeee e se e eaeene e 185

L@ o <o AR (o) T TSR 186
BUCKEL ...t 186
Create_credentials procedurecocevverienieniieniieie et 189
Authentication tOKENc..eoueririririnieieieee et 190
Data Pump Import Wizardcccoooieiiiiiiiieeeee e 195
BUCKEL ...t st 205
(053 1< SO UPSUURRUUSTRTt 205
6.4.2 EXPDIP ettt eb et ene e ennen 207
6.4.3 USETUL NOLES ...ttt e 216
Lab 7 — Managing privileges 217
7.1 INErOAUCHION ...eetiteee ettt ettt 217
7.2 Grant COMMANG..........ocieriieiuieieeie ettt ettt ettt enaeeaeeseeeenee 217
7.2.1 System privilege Mmanagement...........ccuerverreerreeeeeieeseeseesseesseecnesnennes 217
7.2.2 Object privilege Management.cceecveevereereereerieereeeeeeesreesieenens 219
7.3 Accessing another schema 0bJect..........ccceerierieiiirieniereeee e 220
7.4 Revoke command..........ccccoeiieiieiiiieiie et e e 220
7.5 Grouping privileges t0 TOlES....c.iccuiiiirierierieeie ettt 223
I = T 5 (T PSSR 224
Lab 8 — Advanced techniques of data retrieval 225
8.1 INrOAUCTION ...ttt 225
8.2 AgEregate fUNCHONSeovieiiciiieeieeieeieeieee ettt ere e b enseas 225
8.3 Fundamentals for Group By clause management...........cc.ccccevenerereneennnns 227
8.4 Working with aggregate function Count and Group By clause.................... 228
8.5 HaVING ClAUSEeeeevii ettt be e sbe e sebaesnaee s 233
8.6 Extended versions of table JOININGcccervevirinienininieienienencseeeeceee 235
8.6.1 INNER JOIN tYPE ..vevievienienieieeiieiieeietesiesiesreete e essessessessessesseessessessens 236
8.6.2 ON / USING CLAUSE ..ottt 237
8.6.3 LEFT OUTER JOIN tYPe.....esteettiueeuieiieieiesiesiesieeieeeteneenie e siesieeieeneens 237
8.6.4 RIGHT OUTER JOIN tyPe.....ecuiieieeieieieienieeieeieeieieniesiessessesseesnesnens 238
8.6.5 FULL OUTER JOIN tyPe ...ceoveeiiiuieiieiieieiesiesiesie et 238
8.6.6 SEMI JOIN £YP€.c.eeuieiieiiieiie ettt sttt 239

Contents v

8.6.7 ANTI JOIN £YPC..eivivieeienieiesieeteeie et eteiesie st et sseeseestenee e seeeseeneeneennens 239
8.6.8 NATURAL JOIN £yPE€ ..cuveuieiiniiniiniieiieieie sttt 240
8.7 Relational algebra Operationscccuecveerieecierieriienieneeseeeeeereeeeseeeeeesees 240
8.7.1 UNION OPEIATIONeutiiieeiieieie ittt ettt s 241
8.7.2 Difference OPeration..........c.ceverveerieeceercverieseesieseesseeseeeeseeesseessaensens 244
8.7.3 INtersection OPEIatioNc.cevveriieriieieeieriesresteesteenreereeeeeseeesseesseenseas 245
8.8 Recursive relationshipscocoeeerieiiiiiiiieecee e 246
8.9 Using the same table multiple times in the Select statement........................ 249
810 PraCtiCe....ouieieiiiiiieieeieeetete ettt sttt st 250
Lab 9 — Procedures, functions and packages 253
L2 B §1 1 074 13167510 s B PO 253
9.2 Code PreliMINATICSccueerveerieieeiierieseesitesteeseeereeressaesseesseeseensesssessnessnennes 254
9.2.1 Variable definition.........ccooeriririnieieee e 254
9.2.2 Assignment, NULLcoccoiiiiiiiiiee e 254
9.23 Conditional PrOCESSINGcevveerureereieetieetientieteeteeae e sieeseeeseeeeeeneeens 255

IF CONAITION 1.entitiiiieiieietete et s 255
Condition CASEot 259
9.24 LOOPS ...ttt sttt ettt ettt eneeneennens 263
Infinite 100p, EXIT CONAItIONccviviiiiiiieriieeieeie ettt 263
WHILE 100D tYPC c.vievviieieiiieiieesiierie ettt e et steebeesbeesbessaessaesaeesseeseensessnenns 264
FOR 100D £YPC .-ttt ettt st 264

9.3 PL/SQL anonymous BIOCKccevvuerierieniieniieie e e 265
9.4 Procedure, fUNCHIONc..oeiiiiiieiiiec e 266
94.1 Procedure SYNtaXcoceeruieriieniieiieie et 267
942 Function SYNtaxcoeeierienienieiee et 268
9.5 Executing stored method.........c..ccevviiiiiriiniieniccceceeeeee e 269
9.5.1 Disable ProCEAUIE.ccvievierietieieete e ete et sre e sseenees 270
9.5.2 Enable procedure...........covieriieriieiieieee et 270
9.5.3 Get_1iNe PrOCEAUIEocuvivieiieieeie ettt ettt ebe e eeae e seeesreesreesbeenneees 271
9.5.4 Get_1ines ProCeAUIE........eviiriieiieii ettt ete e eae e seeesreesreeseenne e 271
9.5.5 New_1line procedurecccovieiieiiiiiee e 271
9.5.6 Put procedure.oeeieiiiieiieeeeee e 271
9.5.7 Put_line ProCeAUIE........ccuieuierrierieiieieeie e siee st esreereeere e esee e e sraennees 272
9.6 Calling function from the Select statementccoeceeveerienirieeneee e 273
9.7 Exception handling............ccccoeiiriiriiiiiiieiee et 275
9.8 Ways of passing Parameters........c.eccuereereerreerueerreeeeeeeseesseesseesessesnesnesens 282
9.8.1 Position way of passing parameters..........c.ccveveereerreerreeeeseeseerieennens 282
9.8.2 Passing parameters USing NAIMEScceeuerverrerereeienieneneneneeeenens 283
9.8.3 HYyDIId PASSING....eieuiieeiiieeiieiiieeiee ettt ettt eteesveeeaeesbaeebeeenes 284
9.9 Differences between anonymous and stored (named) PL/SQL block.......... 284
9.10 Removing procedures and fUNCLIONSc..ccevererirereeieiienieneneseneeeenene 284
9.11 Select statement in PL/SQLcccvviiiiieiieieeee e 285
9.11.1 SELECT INTO tYPe ...ceeereeiuerieetieieeieieneesie st eteeieeieeee et seeeie e eneeeens 285
9.11.2 CURSOR ..ottt 286
9.12 Increasing control — access TZhLS........coceeeeririirieninineeieieteencee e 292
0.13 PACKAZES....eieieeeiie ettt ettt ettt e e st enbeesnbaeenaee s 296

9.13.1 Package specification SYNtaX........c.cceeevueeriuieeireesieeesieesiieeesieesreesseeennns 297

Vi

Contents

9.13.2 Package body SYNtaXccceevieriieiiiiieiieeie et 298
9.13.3 OVErloading......cceeevieiieeieeieeieitee ettt enneas 301
9.13.4 Initialization bloCK.......ccooeiiririniiiiii e 302

LB U R o v ot (o1 SRR 305
Lab 10 — Triggers 307
10.1 INErOQUCHION ...coutitititiiteeie ettt st 307
L 1 1 . QOO 308
10.3 Restrictions for trigger definition.........cocceevieriiiiiieniereeeeeee e 311
10.4 Triggers turning on and offc.cccovieriiiieiieiee e 311
10.5 Changes MONItOTINGcc.eeveeeuerrerierierieerteerseeeeeeessresseesseeseesesssesssesseenses 311
10.6 Default ValUESscooeiiiiiiieieeee e e 314
10.7 Conditions for trig@er firiNgcceceverierierieiieieeie et 315
10.8 One trigger — multiple OPErations..........cccvevvveveeeieeiesieneeneeseereene e seeenes 318
10.9 Referential integrity managementccecveerereeeeienienieneeeee e 320
10.10 Changing the value of the primary Key..........cceeeviiniiniieiiiiieeeee 322
10.11 Sequences and trIZEEIS.......ccverrieriieeieiiereereerte ettt e eeeesreesreeseeseensessaenes 323
10.11.1 SEQUENCE SYNTAX ..eeeeriiriieiriiieeieeniieeeiee sttt ettt et e st e s e e 323
10.11.2 Sequence and transaction correlation............cceeeeveerieneenieneenens 326
1012 DL ATIZEEIS .cuiietieiieiieieeieeeesiiesaesteesseesseesreesseeseesseesseeseessesssesssesseesses 327
10.13 EVENT tIIEETS ..eevieiieiieeiieiieetteeteeeieet e e e ve e seesreesseesseesseesaessaesseessaensens 329
10.14 PrACICE ...ttt ettt an 330
Lab 11 — Relational integrity 331
T1.1 INErOQUCHION . .ceuteiiiiiitieteeiceet ettt st 331
11.2 Integrity constraints classifiCation...........cecceevreiiiiiienienieneeeeeee e 331
11.3 BNty INEEEIILY .eeoeeieieiieiieie ettt ettt s 332
11.3.1 Primary key candidate..........cccecvvevvieiiiiirieiieseeeeeeeee e 332
11.3.2 Primary KEY ..eecveeiiieeiieiiieeiee ettt ettt 332
11.3.3 ARErnative KeYoocueeiieiiiieiieeee et 333
11.3.4 SUPCIKEY ..oooiiiiieiicieceeeee ettt ettt 333
11.4 Referential iNteEIItYc.covvevvieeieiieiieiieieerie et eas 333
11.4.1 Referential integrity ruleccceevieieriiiieiiereee e 333
11.4.2 Referential integrity CONSEQUENCESccverueerreereierireieeeeeeeeieeneeeneeeneens 334
11.4.3 Cascade option eXamPple.........cccveruieeieiiieiieiienierie et ereenees 334
11.4.4 Restricted option eXampleccoecuerieriirieiieniee e 336
11.4.5 Nullified option eXample..........cceerrrririerieiiereee e 337
11,5 USEE IMEEEIILY...cuvieeiierieiiereeteeteetesteesteesteeseesaeerresseesseesseeseesseessesssesssesseenes 338
11.6 COlUMN INTEELILY c.vviveeiieiieieeieeie e see sttt ete et e et sre e reesbeesseesaessaeseeenas 338
11.7 DOmAaIN INEZIILY ..evervirreriieiieientiienieeit ettt ettt ettt st eenens 339
11.8 Integrity constraints controlling and processing...........ccceeeveereveeecreerireennnenn 339
L1.9 PIACHICO...cotiiiiiiieeiieteeeetee ettt et s 339
Lab 12 — Views 341
12,1 INtrOAUCHION.......eiiiiiieiieiiee ettt et ns 341
122 SYNLAX eeieiitieiieiieee sttt ettt ettt b bttt sae et neeneeneens 341
12.3 EXCOPLIONS .eecutieiiiieeiieeiieeieesteeeteesteeeteeseteesseessseesnseesnseeassaessseesnseessseennseens 342
12.4 Managing data i VIEWSc..ccueruirieririneeieientenienieeiesieeieeeeneesie s eieeneennens 344
12.5 Attribute name redefinition in VIEWSc..covieviiriirienieneeneeieeieee e 347
12.6 Check OPtON CIAUSEeeevieiiieeiieiiieeieeeieeeiee st e et e sbeeereesbeeereesnreesnseens 347

Contents vii

12,7 Read ONLY VIBW...cc.eiiiiiiieiieieeeee ettt s 349
12.8 View based on multiple tables and triggers...........ccceeveeeervereeseerieeiesnene 350
12.9 Triggers associated With VIEWSccccceerieriieriieienieeieseeneeie e ene e 350
12.10 SUMIMATY ..ottt ettt b ettt et e eeeseee e 351
12.11 PLACLICE ...ttt 351
Lab 13 — Date and Time value management 353
13.1 NLS parameters & session formatccoceevereiiiinienienieieeeee e 358
13.1.1 NLS Language.......cccceeeeruieniieieeieeieeie ettt et eee et 359
13.1.2 NLS_ TeITItOrY .oevieiieeieeiieeeietiesieeieeiesteseesseesseesseenseesseesaesssessaensessens 360
13.1.3 NLS Date Languageccccccerueerieeriieniieenieeneeenieeniteesieesieeesveenaees 360
13.1.4 NLS Date formatccoeieiieiieiieieiieeie ettt 361
13.2 Transformation of the personal id into the date of birth...........c.ccocceceeienie. 361
13.3 Get the list of persons who celebrate a birthday today............cccceevervenene. 362
13.4 Get the list of students who passed the exam this month 363
13.5 Get the list of students who passed the exam previous last month............... 364
13.6 Get the list of the persons, who will celebrate their birthday next Sunday ..366
13.7 Get the Date of the second Sunday of the monthccccoociiiiniininne 368
13.8 Get the list of the persons, who will celebrate their birthday next week......369
13.9 Get the difference between Date values..........ccocevevereeieiienenenenenceieens 370
13.10 Get the difference between Date values — a sophisticated solution 370
1311 YY VSRRt enens 372
13.12 ActUal @MPLOYEES...cueiiieiieieeeieciieriee sttt ettt ete et be e esae e seeenas 373
13.13 Period models and Allen relationshipsccccccevverieriierieecieeieniesieennens 374
13.14 Unlimited validity definitioncoooeerierriiiiieeeceeee e 377
13.15 Data type Interval managementccoeoueveereeneenieneeeee e 378
13.15.1 Interval Year to Month data typecccevvvevierieniieiieieeieeieieennn 378
13.15.2 Interval Day to Second data typecceveververeeniieiieieeiesierieennns 379
13.15.3 Examples — Interval data typesccoeeevierienienieceeeeseeeee 380
13.15.4 Update validity definition based on Interval data value.................. 380
Lab 14 — Data dictionary views 383
141 INtrOAUCHIONeiieiiiieiieeee ettt ettt es 383
14.2 Data dictionary — StIUCLULEeeueeriieriierieeieeie e eieeeie e eee e see e eees 384
14.3 Querying data diCtONATYccevveiierierieeie ettt ese e eeve e seee e 387
14.3.1 List of tables owned actual USerccceveerierienieiieieeeeeeeeeeeens 387
14.3.2 List of table attributes.......coevuieiieiiieieiieeie e 387
14.3.3 Get attribute data type and characteristicsccvevveervreveeeeereereennens 387
14.3.4 Get system identifier and definition of the primary key...................... 389
14.3.5 Get system identifier and definition of the foreign key..........cccceeeeee 390
14.3.6 Listing triggers for a particular table............cccoevveeriiieniieniiieii e, 392
14.3.7 Listing developed methods (procedures, functions)...........ccceeruveenee. 392
14.3.8 Managing SEQUETICES.c..coueruerrerermeerentenrententenueeueerensensestessesueessensens 396
L o v T 5 o1 PSR 397
Lab 15 — Reports 399
I5.1 OVEIVIEW ..ottt ettt ettt ettt st 399
15.2 Environment settings, background............cccccoceeenininienrienininininieneeeenens 400
15.3 Filtering, SOTTINEcueeeiuieeiiieerieeieeiiieeieesteeeieesteeeaeesbeesbeeseseesnseessseensseens 406

15.4 Hidden COIUMISuviiiiiiiiiiiiiiiee et eeear e e e e e enn 413

viil Contents

15.5 Binding multiple reports — Master — Child............cccoeoiniiiiiiiiiiiiee 414
15.6 Graph TEPOTLS.eeueeeeieiietieieeieetestestee st eteesteeseesaaesseesseeseesseensesnsesssesseenses 422
15.7 Pie Graph tyPe rePOILS....cccuierieieeieeiieeierieerteeteeeeete e esee e eteenseenaeseaeseeennes 426
15.8 LiNe tyPe IEPOITS ..eevieiieutieiieeiieeiiesiie e sttt ettt et e st et e e eeteseeeseeeneee 428
15.9 Three-dimensional (3D) graph types.......cceovevvieviieierienienieeeee e 434
15.10 Binding multiple reports of various types..........cceevvereereereesieesnesivesnenne 436
15.11 254070) 4 - J OSSPSR 438
15.11.1 CSV {Ormat ..ot 440
15.11.2 Delimited fOrmat........c.cooeverieieniinienineneeeeeeee e 441
15.11.3 TEXt FOTMAL. ...ttt 442
15.11.4 EXCel fOrmat........cocuieiiiiiiieiieeceee e 443
15.11.5 XML fOIMAL ...c.eeuiiieieiere et 445
15.11.6 HTML fOImMat....c.coitiiieiiiiiiiieieieeescse et 446
15.11.7 Exporting to PDFoooiiiiiee e 450

15.12 Script format (INSEIt)ooueereieiiieiieie et 453
Summary 455
References 457
Abbreviations 461
Index 465
Appendix A — Model Student 473
Table PERSONAL DATA ..ottt 473
Table STUDENT ..ottt sttt ettt 476
Table STUDY SUBJECTS ..ottt 479
Table ST FIELDcooiiiiiieiieieeiieiieieie ettt ettt ettt et e see e sbesseeneeneaneeneens 482
Table SUBJECT ..ottt ettt ettt e e s e sbesbeeseeneeneennens 484
Table TEACHER ..ottt 486
Table SUBJECT YEAR ..ottt 488
Table ST PROGRAM.......cooiiiieiieieieceete sttt sttt ettt sse s s aneennens 490
Table CONTACT ...ttt ettt st st eaeeneens 493
Appendix B — Model Flight 495
Table L PERSONooiiiiiiiieiieiieieie ettt ettt et ettt et esae s e sbesseeseeseaneennens 495
Table L FLIGHT TICKETcccteiiiiiiiieeiteieieiete sttt sre st eneenaens 497
Table LCLASS ..ttt ettt ettt st eb et 500
Table L FLIGHT ...cooiiiioiieteeieieieie ettt sttt ettt eneanaennens 502
Table L PLANE ..ottt ettt ettt ettt sebesseeteeneanaennens 505
Table L EMPLOYEEccoiiiiieieee et 507
Table L ATRPORTooiiiiiiitieeeee ettt 510
Table L PLANE TYPE.......cooiiieieieeee ettt enaesnens 512
Table L COUNTRY ..ottt sttt ettt st 514
Table L TOWN ...ttt ettt b ettt ettt eaeeaeeneens 515
Table L_ATIR COMPANYooiiieieieiiie et eiteiteieie sttt ettt esae s sbe s sseeseasaesnens 517
Appendix C — Model Library 519
Table K PERSON ...ttt sttt st st 519
Table K. READERooiiiiiitieieee ettt s 522
Table K RENT BOOKSccoooiiieieiieieeiieiieieietest ettt esae s sse s sseeseasaesnens 524
Table K BOOK ..ottt ettt st 526

Table KUTITLEooiiiiiiiiiiieteeeetee ettt st 528

Contents X

Table KL AUTHOR......coooiiiiiiicre ettt e e 530
Table K. AUTHORS_OF _BOOKcccccooiiriieiiniieieeneeeneeteeeeeeeeee e 532
Appendix D — Syntax 535
Appendix E — File management 543
Errata

Authors make every effort to make sure no errors are present in the text. If you find any
typo or mistake, that has not been reported, yet, please, let us know. Errata sheets are available
here: https://gofile.me/4voWB/mK3v2Sz{fU

https://gofile.me/4voWB/mK3v2SzfU

Preface 11

Preface

Introduction

We have just prepared the first edition of the book for people to increase practical
knowledge and skills in the area of Database systems. The content and labs of the textbook
are prepared under our experiences with the education of Database systems at the University
of Zilina, Slovakia, supervised by the discussion with the consortium members, experts,
and Oracle Academy.

From time to time, we perceive that students, researchers, or practitioners have problems
with the correct way of using Database systems during the implementation processes
into any information systems.

This book was written for students and practitioners. It is intended as a practical guide
for them and other developers to analyze, design, and implement commercial information
systems. The language and diagram conventions apply ANSI standards with the strength of
the Oracle Autonomous Database used in Oracle Cloud. Toad data modeler is used for data
modeling and visual data model preparation.

We suppose that readers can recognize that using database systems and SQL is essential
knowledge for the design process, with opportunities for choice and creativity. Nowadays,
cloud technology is ubiquitous and provides a robust general solution. Therefore, we have
chosen to use the Oracle Cloud environment. Moreover, Free Tier and Always Free option
gives you many benefits (autonomous transaction processing database, data warehouse,
APEX (tool for data-driven applications definitions), object storage, etc.) free of charge.
Such an option is mainly devoted to the testing and development environment but can
perfectly fit the self-teaching process. You do not need extra hardware; no installation and
administration are necessary.

The text proposes many practical exercises highlighting the problems, solutions, tricks,
and improvements to provide a robust, reliable solution and knowledge extension. Each
chapter consists of a brief theory overview supervised by the discussion and practical
examples.

Acknowledgment “

These textbook and e-book versions were prepared during the
implementation of the Cloud cOmputing for Digital Education
Innovation (Codeln) project — Erasmus+ Strategic Partnerships, Key
Action 2, Project Number: 2020-1-HR0I1-KA226-HE-094713. 1t is devoted to education
using Cloud technology computing. Oracle Cloud focuses on the Oracle autonomous
databases (transaction processing (47P), data warehouse (4DW), or JSON).

The proposed book is partially covered by the Erasmus+ project Better Employability
for Everyone with APEX (BeeAPEX), supporting the digital
transformation of higher education institutions through drﬁ
the development of the digital readiness, resilience, and capacity

of educators and students. Grant No.: 2021-1-S101-KA220-HED- QEEX
000032218.

Proper knowledge of SQL and PL/SQL is crucial for the data driven application
development.

12 Preface

Oracle Academy

Oracle Academy welcomes the publication of this
textbook written by experts from the University of Zilina Or‘) AC I_e
in Slovakia as a significant contribution to the teaching
and learning about Oracle technologies, not just at the Acade my
university but also in the Slovak Republic and the broader
international community of educators and learners. It demonstrates how the determination
and innovation of lecturers, and the availability of state-of-the-art technologies provide new
learning opportunities for students, helping them gain skills and knowledge for their future
careers in both local and global IT markets. In this section, we would like to provide a short
overview of this program and its free resources that can benefit educators and students using
this textbook to achieve their teaching and learning objectives.

About Oracle Academy

As Oracle’s global, philanthropic educational program, Oracle Academy advances
computing education around the world to increase knowledge, innovation, skills
development, and diversity in technology fields. This program engages with thousands of
educational institutions and educators in more than 130 countries, helping millions of
students become college and career ready.

Oracle Academy provides educators with free teaching resources for computing
education including curriculum focused on Java, database, cloud, and project management;
Oracle Cloud and Autonomous Database technologies through the Oracle Academy Cloud
Program; Oracle APEX low code learning environments; a wide range of software;
professional certification resources; and continuing professional development for educators.
All teaching and learning resources are designed for degree-granting academic programs of
study.

Oracle Academy Cloud Program

The Oracle Academy Cloud Program offers Oracle Academy members exclusive access
to the Oracle Cloud Free Tier, a set of services educators and students can continue to use for
an unlimited time, even after their graduation, with easy, accelerated signup and no need for
a credit card, mobile phone contact information, or any approval delays.

With this free program, Oracle Academy members can teach and learn in the cloud. They
can build, learn, and explore the full functionality of Oracle Autonomous Database, the
world’s only self-driving database, and Oracle Cloud infrastructure for an unlimited time.
Plus, they can use free developer tools and get started quickly and learn and practice new
technologies with just a one-time classroom setup, saving hundreds of hours of time over
years of teaching.

A simple signup process enables member educators and students to also access Compute
Virtual Machine or VM, object storage, data egress, and other essential developer building
blocks. Educators easily can provision student accounts, and classes are up and running in
minutes in a cloud environment without the need to download, install, patch, or maintain
software or databases.

New services continually are added to the Always Free Services, and in addition, at the
time of publication of this textbook, member educators and their students also receive
US$300 of free credits for one year to prototype applications, run machine learning models

Preface 13

in notebooks, or try software from Oracle Cloud Marketplace. These credits can be spent
without providing any credit card details.

Teachers and students enjoy always free access to tools including Oracle Application
Express (APEX) for low code Web application development, SQL Developer Web for
working with Oracle Autonomous Databases, SQL Notebooks for Machine Learning, Oracle
REST Data Services for web interfaces, and Oracle Instant Client for the most popular
programming languages. Other cloud technologies include Linux, AI/ML, and digital
assistants; students can develop in SQL, NoSQL, APEX, Java, Node.js, Python, PHP, and
Ruby.

Supported by Oracle Academy’s comprehensive curriculum and hands-on labs, educators
and students can teach, build, learn, explore, and develop in the cloud.

In the global classroom, educators and students can take advantage of Oracle Cloud
technology for teaching and learning — anytime, anywhere. The cloud is always available,
in and out of the classroom, using only an Internet browser, through the Oracle Academy
Cloud Program.

Students must be the age of legal majority in their country of residence to access a cloud
account.

Faculty can learn more and sign up at https://academy.oracle.com/cloud.

Oracle Cloud Infrastructure Foundations I Curriculum

Oracle Cloud Infrastructure (OCI) leads cloud computing with a deep and broad platform
of cloud services that enables customers to build and run a wide range of applications in a
scalable, secure, highly available and high-performance environment.

The new Oracle Academy Cloud Infrastructure Foundations I curriculum helps students
build foundational knowledge of cloud computing by focusing on OCI concepts and
terminology through lesson slides, corresponding videos and demonstrations, hands-on labs,
and midterm and final exams. Throughout the course, learners gain an understanding of the
core infrastructure of cloud, how it works with databases, and information on security,
administration, monitoring, and management.

This curriculum is currently available in English only. The recommended total course
time, which includes instruction, self-study, videos, and assessment is 90 hours.

Access the full course description under the Cloud Curriculum section of the Oracle
Academy website, academy.oracle.com.

Join Oracle Academy
Oracle Academy requires Institutional membership for those institutions and their
educators who wish to take advantage of our wide range of free teaching and learning
resources. Membership requires completing an agreement and is free.
Members access our free resources through the Oracle Academy
Member Hub, a state-of-the-art learning management system. They
simply log in on the home page of https://academy.oracle.com ———»
It is easy to join Oracle Academy — and it is free.

https://academy.oracle.com/cloud
https://academy.oracle.com/
https://academy.oracle.com/en/oa-web-overview.html

14 Preface

Organization of the book

The textbook itself is divided into nine parts organized into fifteen chapters. Besides
the Introduction where we described the aims, prerequisites, and necessary environment
for the correct work with the Database system, extended by the Oracle academy membership
registration and web access structure, the following parts can be recognized:

e Data Manipulation Language (DML),
Data modeling,
Data Definition Language (DDL) and the data loading process,
Advanced SELECT statements,
PL/SQL introduction,
Data integrity (DI),
Data dictionary and additional SQL extension,
Data reports.

Each chapter contains a short description of the theory, examples, and tasks to evaluate
the received knowledge.

During lab 1, we enclosed the documentation:

e for the Oracle Cloud registration,

advantages of using the Oracle Cloud Always Free option,
resource categories available for you,
basic environment navigation,
o first examples of the verification of the functionality.

In the sections highlighting the DML statements, the first attempts with SELECT
statements are included with a detailed description of the INSERT, DELETE and UPDATE
statements.

The next part is represented by the fifth chapter characterizing the independent part
with all necessary knowledge about data modeling.

The part about DDL includes details about Data Definition Language, statement syntax
and categorization, description of the available data types, Data Access statements
(DAS, Data Control Language (DCL)), and about importing and exporting data
to and from the database.

Advanced SELECT statements include a description of the aggregate functions
and their management, Group By clause management fundamentals, and table joining
options.

Lab. 9 covers the procedural extension of the SQL language. It deals with the procedures,
functions, and packages. It also deals with Select statement management in blocks, exception
handling, and details about work with methods, and cursors. Lab. 10 deals with the triggers
associating the code with the operations fired automatically.

The part about data integrity offers the rules to keep the database in a correct
and consistent state. This part contains information about working with views and their
influence on the data integrity, as well.

The last part extends the practical knowledge and skills related to working with temporal
data types and reports covered by the data dictionary. In the end, we added the Appendix
with three models for the practices and the verification of embedded examples and tasks.

We believe that this textbook will be a helpful document for gaining theoretical
and practical knowledge of modern database systems.

Zilina, May 2022 Authors

Lab 1 — Oracle Cloud Infrastructure (OCI) 15

Lab 1 — Oracle Cloud Infrastructure (OCI)

This lab will drive you through the cloud management principles using the architecture
and product types. It will discuss the registration process followed by the terminology
summary and database provisioning. Access to the database is done by the SOL Developer
application (web or desktop version) or SOL Client.

Connection specification is made of the host, port, service name or SID. It can be specified
by the full connection, or stored connect identifiers can be used, referenced by the
TNS_ADMIN variable, commonly stored as an environment variable. Whereas the whole
communication between the cloud repository and client is secured, encryption keys must be
properly used and stored in the Oracle Wallet.

Reader will understand the basic primitives showing him a simple query, procedure, and
function execution (deeper discussion is in the lab. 9). There is also discussion related to the
table structure and data types of the attributes.

The complex code should use comments for the consecutive reference, evaluation, and
upgrade, respectively, which can be either one-line or multi-line types. Each data operation
is part of the transaction. If the data were changed, it is necessary to navigate the database
system to the approval or operation reject. Reaching Exit automatically approves the active
transaction (Commit).

Finally, there is a summary of the syntax notation. Note that the principles and syntax can
be found in the documentation, but the Help command can also be used. Individual activities
can be recorded using the Spool command.

Oracle Cloud Infrastructure (OCI) uses the Infrastructure as a Service (laaS) principles
to extend the original on-premise systems with high-performance computing power running
in a cloud environment. The main advantage is the elasticity, so the system can dynamically
reflect current workload, processing demands, and user activity. It uses Oracle autonomous
services, an integrated security layer, robust functionality, and optimization techniques.
OCI brings many benefits to your performance and processing by autonomous services,
easy migration, costs reduction, or performance enhancements.

OCl is a residual and exclusive location of the Oracle Autonomous Database. 1t is self-
administering, self-repairing, or self-patching. Leveraging machine learning to automate
routine tasks, Autonomous Database delivers higher performance, better security,
and improved operational efficiency, and frees up more time to focus on building enterprise
applications (https://www.oracle.com/cloud/).

This chapter will navigate you through the process of the Oracle Cloud account creation,
registration, up to the connection possibilities using the SQL developer installed either locally
or by using web sources. Before we start, let me summarize products available in OCI:

e Oracle analytics using built-in machine learning and artificial intelligence
to propose a robust solution for the company and offer better decision-making
opportunities. It covers Oracle Analytics Cloud, Oracle Big Data Service, Oracle
Big Data SQL Cloud Service, Oracle Data Science, Oracle Cloud Infrastructure
Data Flow, and many more.

e Application development environment pointing to the data-driven application
development simplifying the whole process. It covers API Gateways, Blockchain,

https://www.oracle.com/cloud/

16 Lab 1 — Oracle Cloud Infrastructure (OCI)

Data Science, Digital Assistants, Java functionality, Events Services, Mobile Hubs
or Oracle MySQL Database Service, Oracle MySQL Database Service (and many
more). Two solutions should be emphasized — Oracle Application Express (APEX)
and Visual Builder. These tools provide you with a complex environment to create
web or mobile-based applications based on the SQL, PL/SQL, or JavaScript
functionality. Thus, by using these tools, implementation is far easier ensured
by the rapid development. The solution can be created from evening to morning.

e Applied Software Technologies like Al, Blockchain, machine learning, data
science, digital assistants, etc.

e Compute — scalability reflecting the workload to ensure performance.

e Database — Autonomous Transaction Processing, Autonomous Data Warehouse,
Autonomous JSON Database, Database Cloud Service (Bare Metal / Virtual
Machine), Exadata Cloud Service, ...

e Integration (APl Gateway, Application Integration, Oracle GoldenGate, Oracle
Data Integrator, Oracle Cloud Infrastructure Data Integration, SOA Cloud Service).

e Observability and Management (Logging, Monitoring, Notifications, Resource
Manager, ...).

e Networking and Connectivity (DNS, E-mail delivery, FastConnect, Health Checks,
Load Balancing, Virtual Cloud Network, ...).

e Security, Identity, and Compliance.

e Storage (Archive Storage, Block Volumes, Data Transfer, File Storage, Local
NVMe SSD, Object Storage, Storage Gateway).

Oracle Cloud technology is widespread across the whole world, divided into commercial
and government types. In Europe, clouds are located in multiple cities, like Amsterdam,
London, Frankfurt, Ziirich, or Newport. New region centers opened in 2021 are in Sweden,
France, and Italy. Oracle is constantly expanding and opening new data centers within its
Oracle Public Cloud. Fig. 1.1 shows the reference of January 2022. More about the current
state can be tracked using the https://www.oracle.com/cloud/ web address.

January, 2022

LONDON @ STOCKHOLM
® AMSTERDAM

newporT @ B B ERANKFURT
@®ZURICH
[} @ MONTREAL ® MILAN
sanJose @ ‘.T°R°NT° MARSEILLE auncieong £
P};OENIX:. = BBy - e PEAA

@ JERUSALEM
@®ousal
ABU DHABI g\ migal
@ HYDERABAD

JEDDAH @

® SINGAPORE

® Commercial VINHEDO &
' Microsoft Interconnect Azure SAOPAULO®

@ SANTIAGO B sYONEY

@ MELBOURNE

100% renewable energy by 2025
Fig. 1.1: Cloud regions (source: Oracle Cloud presentation, © Oracle)

Oracle Cloud Infrastructure is prepared chiefly for the commercial and government
environment to use all the benefits. It is paid based on resource consumption. Thus, it can

https://www.oracle.com/cloud/
https://www.oracle.com/cloud/architecture-and-regions/

Lab 1 — Oracle Cloud Infrastructure (OCI) 17

lower the total costs and demands of the organization by shifting the environment and
administration to Oracle.

OCI has launched a significant project to offer cloud services to the students, as well.
Oracle Cloud Always Free version is provided to the students or for the testing environment
suitability. Services are time-unlimited with the following resource limitations:

e 2 Autonomous Databases limited by the 1 OCPU and 20GB of disc storage for each,
e Compute Virtual Machines (VMs),

e 2 Block Volume Storage — 100 GB in total,

e 10 GB object storage,

e 10 GB archive storage.

Offered free sources provide more than twice the capacity compared to Amazon Web
Services (AWS) (source: https://www.oracle.com/cloud/free/).

For this book, we will use Oracle Cloud Always Free option, which is implemented inside
the Oracle Cloud Free Tier, which provides you 30-day Free Trial. The 3008 free credits
limit the trial version, access to the wide range of Oracle Cloud services during the trial period
(containing Databases, Analytics, Compute and Container Engine for Kubernetes),
up to 8 instances across proposed services, and up to STB of storage.

So much for an introduction. Let’s get started creating an account and registering. We
will use the Oracle Cloud Infrastructure for studying SQL and procedural language PL/SQL,
so we will primarily use the Transaction Processing Database type.

Oracle Cloud Always Free option is available at the following web address:
https://www.oracle.com/cloud/free/

Fig. 1.2: The OR code of the Oracle Cloud website

https://www.oracle.com/cloud/free/
https://www.oracle.com/cloud/free/

18 Lab 1 — Oracle Cloud Infrastructure (OCI)

We will drive you through the whole process. To start the registration process, please
click on the “Start for free” button (fig. 1.3):

< C' | @ oracle.com/cloud/iree/ Bk (g = &

3 Apps D knizni W, ReadyCLOUD @) Knowledge and Inf. BRonis @ &% Ulohy- NIS- NISTa,

Oracle Live SOL [B] Ask Tom "LAST and,

See this page for a different country/region
Q_ Products Resources Support Events Developer

Cloud >

Oracle Cloud Free Tier

Try Always Free cloud services and get a 30-day trial

Build, test, and deploy applications on Oracle Cloud—for free. Sign up
once, get access to two free offers.

= into Orace o

@R statchat QF Contactorcall >

Fig. 1.3: Oracle Cloud — Free Tier, step 1

In the next screen (fig. 1.4), provided resources are summarized in the left part. The right
part consists of your registration information, namely: country, first name, surname, and
contact e-mail. Please fill in the required inputs.

- - — ~— e — — ~— ——3 - e oLEEES W w—

Oracle Cloud Free Tier Account information

Country/Territory

First Name Last Name

Get started wi

Always-free access to essential services:

Email
* Autonomous Database

¢ Virtual machines

» Object storage

Plus, $300 of credits for 30 days to use
on even more services:

Fig. 1.4: Oracle Cloud — Free Tier, step 2

Then, an e-mail confirmation will be sent to you.

o Email verification link sent
If you don't receive the emailed verification link in 01:52, you will have 1 more opportunities.

Fig. 1.5: Oracle Cloud — Free Tier, step 3

You have 2 minutes to verify the e-mail account by clicking on the link you receive there.

Lab 1 — Oracle Cloud Infrastructure (OCI) 19

ORACLE

Oracle Cloud Free Tier

Confirm your Oracle cloud account

Hello Michal,

You are receiving this message because you have requested an Oracle Cloud Account. To finish
creating up your Oracle Cloud Account, confirm your email address by clicking on this link

Please do not reply directly to this email
ORACLE

Cloud Inf Copyright ® 2020 Oracle. All rights reserved.
oud Infrastructure Contact Us | Legal Notices and Terms of Use | Privacy Statement

Fig. 1.6: Oracle Cloud — Free Tier, step 4

Then, you will be navigated to the web address, where the password, company, and home
region should be specified. Note that the password should be strong enough. It must contain
a minimum of 8 characters. At least one of them should be lowercase, uppercase, and special
character (except spaces, ~, <,>, or \). The password cannot contain your first name, surname,
or e-mail address for security reasons. The size limit of the password is 40 characters.

Cloud account name will be generated and provided to you, so please remember such
value (it can be changed for any available unique value).

The Home region defines the geographic location of the Oracle Cloud provided to you.
There, the resources will be created and allocated. Note that it is not possible to change it after
the registration process. For Central Europe, two choices are recommended — Netherlands
Northwest (Amsterdam) or Germany Central (Frankfurt). I will use the Frankfurt location.
However, the selection is total, up to you.

Zilinska univerzita v Ziline

kvetmichal40

Germany Central (Frankfurt)

° Your home region is the geographic location where your account and identity resources will be
created. It is not changeable after sign-up. See Regions for service availability.

Fig. 1.7: Oracle Cloud — Free Tier, step 5

By clicking on the See Regions link (https://www.oracle.com/cloud/data-regions/#emea),
it is possible to get more specific information about the available sources in each destination.
Currently, all Always Free Cloud Services are accessible at each location. For these labs,
Oracle Autonomous Transaction Processing, Oracle Autonomous Data Warehouse,
and Oracle Cloud Infrastructure Object Storage will be inevitable, supervised by the Oracle
Application Express (APEX) and SQL Developer Web.

https://www.oracle.com/cloud/data-regions/#emea

20 Lab 1 — Oracle Cloud Infrastructure (OCI)

Then, the address is required. The account is verified by using a mobile phone. Follow
the instructions and provide the system required codes. The system requires your bank
account. Do not worry; no charges will be applied. It is used for the possibility to transfer
the Always Free account to the more complex charged, anytime based on your requirement.

O Pay X

Oracle Cloud Free Tier

Verification Method Required

Credit Card

Fig. 1.8: Oracle Cloud — Free Tier, step 6

Finally, read the agreement carefully, confirm it and register your account by clicking
on the “Start my free trial” button (fig. 1.9):

By clicking Start my free trial , | agree to the terms and conditions of the Oracle Cloud Services
Agreement V040119 for Oracle Slovensko s.r.o., (also available here) and this order including
Service Description for Free Oracle Cloud Promotion Universal Credits - Part Number B88385.

Start my free trial

Fig. 1.9: Oracle Cloud — Free Tier, step 7

Now, your account is created so that you can enjoy the robustness of the cloud services.
Please, logon to the system (https://www.oracle.com/cloud/free/):

Fig. 1.10: The QR code of Oracle Cloud — Always Free login page

https://www.oracle.com/cloud/free/

Lab 1 — Oracle Cloud Infrastructure (OCI) 21

Oracle Cloud Free Tier

Try Always Free cloud services and get a 30-day
trial

Build, test, and deploy applications on Oracle Cloud—for free. Sign up once, get access to two free
offers.

‘ Sign in to Oracle Cloud |

Fig. 1.11: Oracle Cloud — Free Tier, step 8

Specify your Cloud Account Name — it has been generated during the registration process.
In my case, the Cloud Name is “kvetmichal”.

ORACLE
Cloud

Cloud Account Name 2]

kvetmichal

Forgot your cloud account name? Get help
Do you have a Traditional Cloud Account? Sign In
Fig. 1.12: Oracle Cloud — Free Tier, step 9

Click on the “Next” button and write your username and password specified during
the registration, as well. The username is the same as the e-mail account address (fig. 1.13).

ORACLE Cloud

kvetmichal

Oracle Cloud Account Sign In

User Name

Password

Fig. 1.13: Oracle Cloud — Free Tier, step 10

22 Lab 1 — Oracle Cloud Infrastructure (OCI)

Click on the “Sign In”. You are now connected to the Cloud. You will be navigated to the
main dashboard screen. At the top of the screen, resources, services, or documentation can
be searched. Then, the geographical location of the used Cloud is specified (in my case, it is
Germany Central (Frankfurt)). Then, some notifications can be present. Language can be set
to your mother language (Slovak or Czech language is also available). For this book, we will
use the English language.

The last button reflects your profile information.

search for resources, services, and documentation

Get Started

Collapse A

Quick Actions

COMPUTE AUTONOMOUS TRANSACTION AUTONOMOUS DATA WAREHOUSE
PROCESSING

Create a VM instance Create an ADW database
Create an ATP database
somns [o e

NETWORKING RESOURCE MANAGER OBIECTSTORAGE

Set upa network with a wizard Create a stack Store data

Friendly farmatting now available for

Fig. 1.14: Oracle Cloud — Home Screen

Home screen dashboard can always be obtained by clicking on the Oracle Cloud logo
button.
Profile info contains your identification, tenancy, user settings, etc.

Profile

oracleidentitycloudservice/:

Tenancy: kvetmichal
User Settings

Sign Out
Fig. 1.15: Profile

Note that the web address always consists of the region specification.

& C & cloud.oracle.com/?region=eu-frankfurt-1
25 Apps D kniznica Oracle Live SQL Ask Tom "LAST an| siow do | access th. B, ReadyCLOUD 4) Knowledgeand Inf.. B NS @ ;&% Ok
ORACLE Cloud Search for resources, services, and docul i Germany Central
Get Started Dashboard
Quick Actions Collapse A
COMPUTE AUTONOMOUS TRANSACTION AUTONCMOUS DATA WAREHOUSE
PROCESSING
Create a VM instance Create an ADW database
Create an ATP database
2.6 mins 3.5 mins Aways Free Ebgibie
NETWORKING RESOURCE MANAGER OBJECT STORAGE

Fig. 1.16: Web address — region

Lab 1 — Oracle Cloud Infrastructure (OCI) 23

Note that many sources, recommendations, examples, and discussions are available
in Free training from Oracle University (https://cloud.oracle.com/?tile=get-started-oracle-
university®ion=eu-frankfurt-1). In addition, there are also key concepts and terminology
(https://cloud.oracle.com/?tile=key-concepts-terminology®ion=eu-frankfurt-1),
introduction to APEX (https://cloud.oracle.com/?tile=intro-to-apex®ion=cu-frankfurt-1)
or Resource Manager (https://cloud.oracle.com/?tile=intro-resource-manager®ion=eu-

frankfurt-1). Such sources can be located in the bottom part of the Home screen.

= ORACLE Cloud Search for resources, services, and documentation Germany Central
Start [xplorimg Collapse A
Get Started
Key Concepts and Terminology Introduction to APEX m
Deploy Websites & Apps DOCUMENTATION NGICH vy Free Eigine
Explore Developer Tools To get started with Oracle Cloud Infrastructure, familiarize Oracle Application Express (APEX) is a low-code
yourself with some key concepts and terminology. development framework that enables you to rapidly build
Manage Bills modern, data-driven apps right from your browser - no

additional tools required. See how you can use APEX to
develop and deploy compelling low-code apps in minutes

Get Started with FREE training from Introduction to Resource Manager
Oracle University DOCUMENTATION (I

TRAINING AND DOCUMENTATION Resource Manager is an Qracle Cloud Infrastructure
service that allows you to automate the process of
provisioning your Oracle Cloud Infrastructure resources.
Use the sample solutions to learn more about the features
offered by this service.

Whether you are new to Oracle Cloud of an experienced
user, start or continue your learning journey here. Earn an
Explorer Badge or get certified!

Fig. 1.17: Exploring sources

Before we start with the database creation itself, it is necessary to list some used
terminology (note that the whole terminology can be found directly in the specified location,
we will name just the most important ones relevant for this book):

Region, availability domain

The region is a geographical location from which the resources are provided (e.g., virtual
cloud network). Each region consists of at least one availability domain (supervising,
e.g., compute instance). Each availability domain is independent, isolated from other
domains, fault-tolerant. Thus, configuring multiple availability domains can ensure high
availability and failure resistance.

Realm

The realm is a logical collection of regions. Each realm is isolated does not share any
data with any other. The tenancy is associated with just one realm and has access to the region
set belonging to the realm.

Console
Cloud console is a web source application providing access and management of the OCI.

Tenancy

The fenancy is a specific cloud repository, usually devoted to the organization or company
providing secure and isolated storage and processing partition. You can manage, create and
associate cloud resources and services across the tenancy.

Compartment
The compartment comprises cloud resources (instances, virtual cloud networks, etc.)
with specific privileges and quotas. It is rather a logical unit as a physical container.

https://cloud.oracle.com/?tile=get-started-oracle-university®ion=eu-frankfurt-1
https://cloud.oracle.com/?tile=get-started-oracle-university®ion=eu-frankfurt-1
https://cloud.oracle.com/?tile=key-concepts-terminology®ion=eu-frankfurt-1
https://cloud.oracle.com/?tile=intro-to-apex®ion=eu-frankfurt-1
https://cloud.oracle.com/?tile=intro-resource-manager®ion=eu-frankfurt-1
https://cloud.oracle.com/?tile=intro-resource-manager®ion=eu-frankfurt-1

24 Lab 1 — Oracle Cloud Infrastructure (OCI)

Note that Oracle provides you a tenancy after the registration, which is a root compartment
holding and managing all provided cloud resources. Then, you can create a resource
categorization tree. Each resource is associated with the compartment by definition. The core
principle is based on granting users only resources inevitable for their work, no more.

Virtual Cloud Network (VCN)
VCN is a virtualized network of the conventional network, including subnets, routers,
gateways, etc. It is located within one region and can spread multiple availability domains.

Instance

Instance is a compute host running in the cloud. Its main advantage is flexibility. You can
utilize the sources (physical hardware) on-demand to ensure performance, high availability,
robustness, to pass your set security rules.

Image

Image is a specific template covering the operating system and other software installed.
In addition, Oracle provides you with several virtual hard drives applicable to the cloud
system, like Oracle Linux, CentOS, Ubuntu, or Windows Server. The list and specification
can be found in the documentation:
https://docs.oracle.com/en-us/iaas/Content/Compute/References/images.htm.

Storage management

Storage management is an inevitable part of data processing and resisting and accessing.
Block volume is defined as a virtual hard drive providing persistent data storage space. Their
principles are similar to the hard drives in ordinary computers. It is possible to attach or
detach it on demand, even to another instance, without any data or application loss. Object
storage is a storage repository architecture available and accessible via web interface
anywhere. Physical data can have any structure and any type. The size is limited to 50 GB
per file. Object storage is a standard repository for backups or large data objects, which are
not commonly changed very often. The bucket is a lower architectural definition.
It is denoted as a logical container within the Object storage. Several buckets can be present
in any Object storage. The amount of the data in size and count aspect is unlimited.

Now, it is time to create the database and enjoy cloud resources.

Database creation
Please, connect to the Home screen of the cloud. There is alist of technologies and
resources available to you in the Quick actions menu (fig.1.18).

Quick Actions Collapse A
COMPUTE AUTONOMOUS TRANSACTION PROCESSING AUTONOMOUS DATA WAREHOUSE
Create a VM instance Create an ATP database Create an ADW database
2.6 mins R ssmins Abrays Free Eigitie 3.5 mins
NETWORKING RESOURCE MANAGER OBJECT STORAGE
Set up a network with a wizard Create a stack Store data
2:3 mins, 2.6 mins Atways Free Eigitie 26 mins
NETWORKING ORACLE CLOUD DEVELOPMENT KIT SEARCH
Set up a load balancer Set up an instance with developer tools Query all resources
5mins [avays Free cigoie | 10-15 mins Atways Free Eigitie

Fig. 1.18: Quick actions

https://docs.oracle.com/en-us/iaas/Content/Compute/References/images.htm

Lab 1 — Oracle Cloud Infrastructure (OCI) 25

Each name delimits the element, category, estimated time consumption for the creation
and mark, whether such resource is available in the Always Free option, or the specific
licensing is necessary. In this phase, we will create two Autonomous Transaction Processing
(ATP) databases. One will be used for the Student model. The second one will be used later
to deal with the Library. So click on the “Create an ATP database” button:

AUTONOMOUS TRANSACTION PROCESSING

Create an ATP database

3-5 mins Always Free Eligible

Fig. 1.19: Autonomous transaction processing

You will be navigated to the new window with the database parameter specification.
You have to define a compartment (you have just one, so the pre-selected variant is suitable).
Then, there is an input for the Display Name — user-friendly database name for easy
identification and Database Name (it can contain only letters and numbers. The first character
should be a letter. Note that the maximum size is 14 characters).

Provide basic information for the Autonomous Database

Compartment

<>

kvetmichal (root)

Display name

database for STUDENT mode|

A user-friendly name to help you easily identify the resource
Database name
studentDB

The name must contain only letters and numbers, starting with a letter. Maximum of 14 characters.

Fig. 1.20: Autonomous database definition

Then, the Workload Type should be selected. It depends on future usage. Data Warehouse
(DW) is suitable for complex evaluation and analytics, where the main emphasis is taken
on the data retrieval process. The amount of data stored inside is enormous. Update
operations are not present or are rare. In DWW, data are loaded in batches, and processing such
a procedure is not time crucial.

In contrast, the system contains several indexes, and also denormalized tuples and values
can be present to improve data retrieval efficiency, which is mainly highlighted. Transaction
Processing type is suitable for online short-running queries and transactions. It is based
on the data normalization and high concurrency of the processing. Built-in JSON type
representation is mainly associated with the document 4P/ or storage management in a JSON
format style. JSON type is now available in the Free Tier, as well. APEX workload type
is characterized by the storage for the APEX application development — data-driven system
creation and deployment. For this study, we will select the Transaction Processing type.

Then, select the deployment type, which can be either shared or dedicated. We will use
Shared Exadata infrastructure, which is free in our option (see Fig. 1.21).

Then, configure the database (OCPU and storage capacity), all options are pre-selected.
As already stated, the Always Free option is limited to one OCPU and 20 GB of storage (valid
at the time of writing this book). If paid option is chosen, the Autoscaling option can be used,
as well, by altering the system sources up to three times of the provisioned cores
and resources if the workload demands rise.

26 Lab 1 — Oracle Cloud Infrastructure (OCI)

Choose a workload type

Data Warehouse Transaction Processing JSON APEX

Built for decision support and data Built for transactional workloads. Built for JSON-centric application Built for Oracle APEX application

warehouse workloads. Fast quer- High concurrency for short-running development. Developer-friendly development. Creation and deploy-

ies over large volumes of data queries and transactions document APIs and native JSON ment of low-code applications, with
v storage. database included

Choose a deployment type

Shared Infrastructure Dedicated Infrastructure

Run Autonomous Database on shared Exadata infrastructure v Run Autonomous Database on dedicated Exadata infrastructure

Fig. 1.21: Database parameter definition

When writing this book, the current database version is 2/c. However, feel free to use
the newest one. It is also possible to choose at least one older version due to compatibility
reasons. Make sure that the Always Free selection is chosen.

Configure the database

Always Free (D
Show only Always Free configuration options

If your Always Free Autonomous Database has no activity for 7 consecutive days, the database will be automatically stopped. Your data will be preserved,
and you can restart the database to continue using it. If the database remains stopped for 3 months, it will be reclaimed. Learn more

Choose database version

I 21c z
Free Tier Autonomous Databases using Oracle Database 21c cannot currently be upgraded to paid instances
OCPU count Read-Only Storage (TB) Read-Only
1 0.02
Always Free Autonomous databases can utilize up to 1 core. The CPL core count cannot be adjusted Always Free Autonomous databases can utiize up to 0.02 TB (20 GB) of storage. The storage size
cannot be adjusted
Auto scaling

Allows sysiem to use up to three times the provisioned number of cores as the workload increases. Learn more

Fig. 1.22: Database version selection

The next step is to set administrator credentials. For the Always Free option, the username
is ADMIN, and it cannot be edited. Please, specify the password twice. Note that the password
must contain at least 12 characters (by not more than 30). It must have at least one uppercase,
one lowercase, and one number inside for security reasons. Password cannot contain double
quotes () or the word “admin” (or username generally).

Create administrator credentials @

Username Read-Only
ADMIN
ADMIN username cannot be edited.

Password

Fig. 1.23: Database administrator credentials

Follow the instructions and specify network access, which can be generally limited
to the IP address range. In our case, select the general option “Allow secure access
from everywhere”.

Lab 1 — Oracle Cloud Infrastructure (OCI) 27

Choose network access

Access Type
Secure access from everywhere Private endpoint access only
Restrict access to specified |P addresses and VCNs. v Restrict access to a private endpoint within an OCI VCN

Configure access control rules @

Fig. 1.24: Network access definition

Finally, choose the “License Included” option, whereas you do not have your own
licensing.

Choose a license type

Bring Your Own License (BYOL) License Included
Bring my organization's Oracle Database software licenses to the Database Subscribe to new Oracle Database software licenses and the Database
service. Learn more service

Fig. 1.25: Licensing

At the bottom, you can optionally Show Advanced Options to define tags allowing you
to organize and track resources in the tenancy. Such an element is not attractive for us.

End the specification process by clicking on the “Create Autonomous Database” button.
Now, it is almost done. Just wait a few minutes until the database and resources

are provisioned.
Create Autonomous Database Cancel

Fig. 1.26: Create autonomous database

Now, you should see the following screen. The abbreviation of the database type
is present in the left part — ATP representing Autonomous Transaction Processing.
The current status is below the signature, now shown in orange color (fig. 1.27) representing
the provisioning process.

= ORACLECl Search for resources, services, and documentation Germany Central (Frankfurt) v

database for STUDENT model

More Actions ~

Autonomous Database Information Tools Tags
General Information Infrastructure
Database Name: studentDB Dedicated Infrastructure: No

Workload Type: Transaction Processing

Compartment: kvet3 (root) Autonomous Data Guard C‘D

OCID: _iata5a Show Copy. Status: Disabled (7)

Created: Tue, Jun 29, 2021, 05:29:37 UTC

OCPU Count: 1 Backup

Auto Scaling: Disabled () Last Automatic No active backups exist for this
Backup: database

Storage: 20 GB

License Type: License included Manual Backup Store: Not Configured

Database Version: 21c
) Network
Lifecycle State: Provisioning
Instance Type: Free i Access Type: Allow secure access from everywhere

Mode: Read/Write Access Control List: Disabled

Fig. 1.27: Provisioning

28 Lab 1 — Oracle Cloud Infrastructure (OCI)

Provisioning is a process of creating and associating resources. In the right part,
the summary is present consisting of the database name, workload type, compartment,
and database system parameters.

Wait approximately 3-5 minutes until the database is available by replacing the status
with the “Available”, denoted by the green color (fig. 1.28). Now, the system is available
for management and processing.

Search for resources, services, and documentation Gemany Central (Frankfurt) v

Overview » Autonomous Database » Autonomous Database Details

database for STUDENT model

DB Cennection Performance Hub [Service Console Scale Up/Down More Actions »

Autonomous Database Information Tools Tags
General Information Infrastructure
Database Name: studentDB Dedicated Infrastructure: No

‘Workload Type: Transaction Processing

Compartment: kvet3 (root) Autonomous Data Guard ()

OCID: _iata5a Show Copy Status: Disabled (i)

Created: Tue, Jun 29, 2021, 05:29:37 UTC
OCPU Count: 1 Backup
Auto Scaling: Disabled (i)

Last Automatic No active backups exist for this
Storage: 20 GB Backup: database.
License Type: License included Manual Backup Store: Not Configured
Database Version: 21c

Network

Lifecycle State: Available

Fig. 1.28: Database availability status

The above screen shows the home screen for the created StudentDB database. The bottom
part contains usage resource statistics and metrics — CPU Utilization, Storage Utilization,
Sessions, Execute Count, Running statements, and Queued Statements. Returned results can
be filtered out based on the time intervals. Now, the graphs are empty, whereas no activity
has been done.

Resources Metrics
Start time: End time Quick Selects
Metiics Jun 20,2021 523:04AM (|| Jun29.20218:23:04AM | | Lastheur &
Backups (75
Key History (1) CPU Utilization (D) T o Storage Utilization () e
Refreshable Clones (0} Interval [1mre | Statisic [Wean v Interval [hos | Statistic e v
Work Requests (0) oo
a0
E @ + =
H o g zima H
& &
»
o
wzs on P 3 (540 0D ONS0 0NSS 06D 0GOS UED UGS 0GZD
e rC)
Sessions (@ Options = Exzcute Count (D) Options +
Imenval [Ameoe v | Sttiste [sn v Interval [tminas v | Statistie [San v
acn
4
a0
8 g =
25 GN30 0635 0S40 D45 OGNS0 0SSS OLDD 0GOS OGN0 GRS BGZD N LA URAG CodD 0645 CASO GBGG UBGO OBON D610 S D60
Tims (uTC) e wre)

Fig. 1.29: Resource statistics

29

Lab 1 — Oracle Cloud Infrastructure (OCI)

So, let’s return to the database Home screen. In the upper part, several buttons and tabs

are present, which will be consecutively described.

Overview » Autonomous Database » Autonomous Database Details

ATP

DB Connection

General Information

Database Name: studentDB

AVAILABLE
Fig. 1.30: Database home screen

Performance Hub

[= Service Consale
- elnmrrkmols & \ \

database for STUDENT model

Always Free

Scale Up/Down More Actions ¥

DB Connection provides you the client credentials and connection information to connect
to the cloud database. In addition, it will offer you the zipped file consisting of the Client
Credentials (Wallef) in an encrypted manner. We will use it to connect the SOL developer
client environment launched locally in the client computer.

Performance Hub consists of extended statistics monitoring activity like average active
sessions, SQL monitoring, Automatic Database Diagnostic Monitor (ADDM), Workload,

Blocking sessions, etc.

Performance Hub - database for STUDENT madel

Cuick Select Time Range Time Zons
Last Hour w | | Junzg, 2021 5:24:44 AM - 5:24:44 AM B ||utc Hide Activity Summary Reports ¥ | | Refresh
Activity Summary (Average Active Sessions) ()
Maximum Threads
2
W
| I 1| wuserio
W CPU
. A 4 R L .
05:30 AM 05:35 AM 05:40 AM 05:45 AM 0850 AM 0S:55 AM 0E00 AM 06:05 AM 06:10 AM DB:15 AM 06:20 AM
Jun 79, 2021 UTC
ASH Analytics SQL Monitoring ADDM Workload Blocking Sessions
Y Apphad View Options (F) E 1]
Average Active Sessions
AZH Dimensions Consumer Group ¥ Maximum Threads Total Activity E on (F) | Medium w7
1.0
08
s
o3
oo . L W Irazmal
06:20:00 AM DB20:40 AM 06:21:20 AM 06:22:00 AM D8:22-40 AM 0B:23:20 AM 06:24:00 AM D6:24:40 AM
Jun 28, 2021 UTC
SQLID * | by Consumer Group Columns ¥ (| " User Session ¥ | by Consumer Group GCowmns ¥ ||
sQLID Activity (Average Active Sessions) 5QL Plan Hash SGL Type User Sessian Astivity (Average Active Sessions) User Name Program
ihers <001 Cthars 0 03

Fig. 1.31: Performance hub

30 Lab 1 — Oracle Cloud Infrastructure (OCI)

Service Console provides you with the statistics needed for the administration. It focuses
on the activity and administration parameter definition. The service console is always
associated with the defined database. At the Administration level, the wallet
can be downloaded, resource management rules can be set, and administrator password
can be set. There, Oracle Machine Learning users accounts can be specified and managed.
The form to provide feedback to Oracle is present there, intending to give you the best
services and experience. The development part of the Service Console allows
you to download Oracle Instant Client, download SODA drivers, access the Oracle APEX,
SQOL Developer Web, RESTful services, etc.

Oracle Instant Client is a set of tools, libraries, and SDKs for building and connecting
applications. SOL *Plus tool is present there, and import and export functionality is executed
either in the client-side or cloud instance. Oracle strongly recommends using Data Pump
functionality for data import and export, which is done on the server-side, so there are
no additional demands on the internet connection. Thus, a large data amount
can be processed. Even if the connection fails during the execution, whereas the whole
process is done in the cloud environment, the client just supervises the activity and progress.
Libraries provide a layer for the API interface of various languages — PHP, Python, Node.js
and access for OCI, OCCI, JDBC, ODBC, and Pro*C applications.

We will use Oracle Instant Client for the access and import activity.

Simple Oracle Document Access (SODA) is a set of APIs for managing JSON documents
in the Oracle database. Drivers are available for Java, C, PL/SQL, Python, Node.js, and REST.

Oracle APEX is a low code application tool providing the environment for the data-driven
web application definition. The created application can be directly deployed in the cloud
environment. Access is then done via the web browser. It is optimized for desktop and mobile
systems, as well.

SQOL Developer Web provides a web-based interface for the object and data definition and
management, as well as the administration of the Oracle Autonomous Database. We will use
SOL Developer Web and a desktop variant of the product installed on the client-side.

Scale Up/Down Helg

To access all Autonomous Database features, upgrade the Autonomous
Database instance to paid.

OCPU count Read-Only Storage (TE) Read-Only

Auto Scaling

Fig. 1.32: Scalability definition

Scale-Up/Down allows you to react dynamically to the processing demands and workload
and optimize processing unit amount and storage demands to provide robust

Lab 1 — Oracle Cloud Infrastructure (OCI) 31

and performance-resistant solutions. Automatic scalability can be applied there, as well.
In that case, the number of CPUs can change dynamically up to 3 times the defined limit.
In the Always Free option, particular settings cannot be done, and only / OCPU and 20 GB
of storage can be used free.

The More Actions combo box button groups several activities, which can be done
for the defined database, like Start, Stop, Restart, Clone, Rename, or Terminate. ATP version
can be converted to the Autonomous JSON database. Reflecting the licensing, the license
type can be enhanced, or the management can be extended by shifting the option to the paid
type.

Overview » Autonomous Database » Autonemous Database Details

database for STUDENT model

DB Connection Performance Hub [Service Consale Scale Up/Down | More Actions » I

Stop
Autonomous Database Information Tools Tags

Restart
General Information
Database Mame: studentD3 Create Clone

Workload Type: Transaction Frocessing
Compartment: kvet3 (raof) Administrator Password
OCID: ..istafa Show Copy Ugdate Licznse Type
Created: Tue, Jun 29, 2021, 05:20:37 UTC —
OCPU Count: 1 Manage Encryption Key
Auto Scaling: Dizabled (7
- Rename Database
Storage: 20 GB
Lizense Type: License included
Database Version: 21c
Move R
Lifecycle State: Ausilable uE Resouree
Instance Type: Free -\E,- Add Taps

Mode: ReadWrite Edit

Terminate

Fig. 1.33: Available action list

Now, let’s describe the available tabs in the database Home screen. Autonomous
Database Information consists of the instance and database summary. Tools tab provides
you connection to the accessible application directly in the web browser. Namely, SQOL
Developer Web is a suitable solution for the data and object definition and enhancements and
for administering the database and instance itself. Oracle Application Express (APEX)
can be launched from such a repository, too. There are also Oracle Machine Learning (ML)
User Administration tools and SODA Drivers modules.

Search for resources, senvices, and documentation Germany Gentral (Frankfurt) “

Overview » Autanomovs Database » Autonomous Database Detaiks
database for STUDENT model

DB Connection | | Performance Hub | | [Service Console || Scale UpDown | | More Actions

Autonomous Database Information Tools Tags

Daiazase zdminisirat

(LIS Database Actions
Fig. 1.34: Main database administration tab

Oracle Application Express

32 Lab 1 — Oracle Cloud Infrastructure (OCI)

Now, choose the Tools tab and start SOL Developer Web by clicking on the Open
Database Actions button of the Database Actions type.

Search for resources, services, and documentation Germany Central (Frankfurt) v [

Overuiew » Autanomous Database » Autonomous Database Detais
database for STUDENT model

DB Connection | | Periormance Hub | | [5 Service Console || Seale UpDown | | More Actions +

Autonomous Database Information Tools Ta

Database administration and developer toats for Aut

Database Actions QOracle Application Express
Load, explore. transform, model, and catakog your data. Use an SOL worksheet Oracle Application Express (APEX) is 2 low-cods development platiorm that
build REST interfaces and low-code apps, manage users and connections, build enables you to build scalable, secure enterprise apps that can be deployed
and apply machine leaming modals. Legn more. anywhere. Learn mors

[F Open Database Actions [OpenaPEX

Fig. 1.35: Launching SOL Developer Web (1)

A new browser tab will be opened by requesting the username and password. In our case,
we will specify administrator user, set during the database definition and applied in the
provisioning process.

ORACLE’

Database Actions

Username

Fig. 1.36: Launching SQL Developer Web (2)

Thus, the username will be “admin” and use the password specified in the database
definition.

ORACLE’

Database Actions

Username

ADMIN

Password

Fig. 1.37: Launching SQL Developer Web (3)

Note, that the standard user is not allowed to access Oracle Developer Web.
The privileges can be maintained by the following script executed by the admin. Parameter
p_schema and p_url mapping pattern references the username of the particular user,
in the following case, the name is “Michal”.

Lab 1 — Oracle Cloud Infrastructure (OCI) 33

begin
ords admin.enable schema
(p_enabled => TRUE,
p_schema => 'MICHAL', -- username for the grant
p_url mapping type => 'BASE PATH',
p_url mapping pattern => 'michal’',
p_auto_rest auth => NULL
)7
commit;
end;

/

Click on the Sign in. Now, the SOL Developer Web environment is provided.

There are four categories there:
e Development — consisting of the SOQL definition environment, Data modeler,

JSON, REST, and APEX.
e Data tools — consisting of the tools for the data loading, catalog to understand

object dependencies, data insights, and business models.
e Administration — user and privilege management.
e Monitoring — performance analysis, statistics.

= ORACLE Database Actions

Development Data Toals

-
su SOL DATA MODELER DATALOAD

Execute queries and scripts, and relational diagrams for ess data from local files d
ar t: bjects or tabases

3 ResT @ BUSINESS MODELS

Deploy REST APIs for your database

outliers and Cre iness models for

JSON Document CON
hidden pattems in your data ance and analysis

A apex

Build web applications rapidly

Administration Monitoring

PERFORMANCE HUB

&, DATABASE USERS

ges and other
EST-enable

Fig. 1.38: SQL Developer Web — main screen
Click on the SQOL. Such an environment allows you to specify and execute SQL

commands.

34 Lab 1 — Oracle Cloud Infrastructure (OCI)

Development

create database objects

% ResT

Deploy REST APIs for your database

Database

A apex
Fig. 1.39: SOL definition module

!

The environment consists of three parts. The left part reflects individual objects
navigation and allows you to search for structure and stored types. The upper part is used
for the SOL statements definition, result set, or the information summary is then in the bottom
part.

= ORACLE Database Actions | SQL

Navigator ~ Worlsheets Worksheet] = O B &] fo v Consumer Group: <
ADMIN v Ll
Tables v

QueryResult Script Output DBMS Output Explain Plan Autotrace SQL History Data Loading

™

Fig. 1.40: SQL definition environment

Let’s write your first SOL statement obtaining the current server date:

select sysdate from dual; I

Sysdate is a function call providing you the server date and time. Note that it gives Date
data type. In DBS Oracle, it always consists of the Date and Time elements, as well.
So be aware of it when querying!

The dual table is a specific table present in the Oracle database. It has only one attribute
called Dummy, and the value is X. Its owner is the user SYS, and each user can select data
from it. It cannot be modified, and it is used for obtaining function results. Thus, it produces
the result just in one row.

Execute the query by clicking on the “Run statement” button @ or by pressing
the shortcut CTRL+Enter. The produced result set is above the script in a separate part.

Query Result | Script Output DBMS Output Explain Plan Autotrace 5QL History Data Loading

mr d » Execution time: 0.007 seconds

sysdate
1 06/29/21 06:31:21 AM

Fig. 1.41: Query result

Alternatively, the whole script can be executed by clicking the “Run script” B
or pressing F35.

Lab 1 — Oracle Cloud Infrastructure (OCI) 35

select sysdate from dual;

select user from dual;

The script result:

SYSDATE

2021-06-29T06:32:222

Elapsed: 00:00:00.003
1 rows selected.
USER

Elapsed: 00:00:00.007
1 rows selected.

Note that the function call User provides you the login of the currently connected session
user. In our case, we are connected as user “Admin”.

SQOL Developer, either in the web or desktop version, proposes a robust, user-friendly
environment for the SOL or procedural language (PL/SQL definition), administration, etc.
Moreover, it allows you to create a data model, either manually or reverse engineering,
to analyze existing systems and data dictionary.

SOL Developer can be launched locally in the desktop environment. In that case, you can
download the tool from the official site of Oracle. When writing this material, the newest
version is SOL Developer 21.4.3. However, feel free to download the most up to date here:
https://www.oracle.com/tools/downloads/sqldev-downloads.html.

Fig. 1.42: SQL Developer installation link

There are several versions for individual operating systems, so choose the best suitable
based on your environment. In the case of using Windows, I recommend downloading
the version including the Java Development Kit (JDK); otherwise, you have to install it
manually. SOL Developer is written in Java and does not need to be installed. Just download
the archive, extract it and store it in the file system. There is a file “SQL developer”, by which
the application is launched. So, download it and run.

https://www.oracle.com/tools/downloads/sqldev-downloads.html

36 Lab 1 — Oracle Cloud Infrastructure (OCI)

[Oradle QUL Developer : Welcome Page
Eile gt Wew pavgne fun Tem Jook Mindow felp
GLuEd 9® 0-0- & @&

e [op—r——

ORACLE’ 51
© SOL Developer

Daubase Connestion Getting Started

Communiey

¢ - Data modeling and database design

The power of SOL D

5 - REST Enable the Oracle Database

raiow = [o (@

Feature Screenshots

Tho s warke

Fig. 1.43: SQOL developer environment

Before we start, connecting to the cloud instance is necessary to access the sources
and database itself.

Click on the “gp” button in the left part (in the Connection list). The new window
is launched, requesting you to provide connection details. As already stated, credentials
to the cloud instance can be obtained by downloading the wallet from the Cloud console
or Home screen. Return to the database Home screen of the cloud environment. In the left
panel button list, select the Oracle Database and Autonomous Transaction Processing.

& Oracle Database

Databases
Analyfics & Al
Developer Services

Identity & Security

Observability & Management
Hybrid
Migration

Marketplace

Fig. 1.44: Cloud menu

Overview

Autonomous Database
Autonomous: Data Warehouse
Autonomous JSON Database:
Autonomous Transaction Processing
Autonomous Dedicated...
Bare Metal, VM, and Exadata
Exadata at Oracle Cloud
Exadata Cloud@Customer
External Database

Data Safe

GoldenGate

Operator Access Control

Related Services

APEX Appiication Development
Database Management
Migrations

Data Integration

Streaming

MySOL

Oracle NoS0L Database

Help
Autonomous Databases
Bare Metal and VM DB Systems

Choose the relevant database to be connected (in our case, we have just one database
to be reached). Click on its description (Display name).

Lab 1 — Oracle Cloud Infrastructure (OCI) 37

Create Autonomous Database

Display Mame State Dedicated OCPUs Storage [TE) Workload Type Autonomous Data Guard Created -
database for STUDEMNT » Auzil- - Transaction Tue, Jun 29, 2021,

No 1 0.027TB - X - :
mode! ahle Frocessing 05:20:37 UTC

Fig. 1.45: List of available databases

Then click on the DB Connection button and follow the instructions.

database for STUDENT model

DB Cennection Performance Hub [= Service Console Scale UpDown More Actions

A I I Aulonon& Information Tools Tags

General Information Infrastructure

E Database Mame: studentD2 Dedicated Infrastructure: Mo

Workload Type: Transaction Processing

Fig. 1.46: Obtaining DB Connection

Set the Wallet type to Instance wallet and just click on the Download Wallet. Instance
wallet is used for the specific database connection details definition, whereas the other option
(Regional wallet) covers all databases and is used for administration purposes.

Database Connection Help

*You will need the client credentials and connection information to connect to your database. The client
credentials include the wallet.

Download Client Credentials (Wallet)

To downlead your client credentials, select the type of wallet, then click Download Wallet. You
will be asked to create a password for the wallet.

Wallet Type (D)

Instance Wallet v

Download Wallet Rotate Wallet

Wallet last rotated: -

Fig. 1.47: Download wallet

A connection always uses a secure type. This file will be necessary to be associated with
the SQL Developer desktop connection details. Whereas some database clients will require
a wallet and password to your database, please specify the password twice and download it.

The name of the downloaded file archive contains two-part — keyword “wallet”

and identification of your database name. In my case, the name is “Wallet_studentDB” with
a .zip extension. You do not need to extract such a file. The whole repository is associated
with the connection directly. However, looking at the storage internally, the downloaded
wallet consists of several files. I will just mention the most relevant for this book:

e Tnsnames.ora — connection details — protocols, hosts, ports, etc. Note that the cloud
connection is enhanced by the five categories reflecting the importance (low,
medium, high, tp, and urgent).

e Sglnet.ora — wallet location and encryption types.

e FEwallet — encryption wallet details.

38 Lab 1 — Oracle Cloud Infrastructure (OCI)

1.1 SQL Developer connection specification

Return to the SOL Developer and define new connection parameters.

B New / Select Database Connection X
Connection Name Connection Det... Name | | |?|v Color
Database Type ‘DI acle i

User Info Proxy User

Authentication Type |Defau\t 5=

Username | | Role |daFauIt -
Password | | [[] Save Password
Connection Type |Basic -

Details Advanced

Hostname localhost

Part 1521

=) 51D xe

() Service name

Status :

Pomoc Save Clear Test Connect Zrudit’

Fig. 1.48: SQL Developer connection definition (1)

Connection name is necessary to be specified, by which it can be easily located
in the Connection list. The name is up to you. Database Type is Oracle. Optionally, you can
install several drivers to connect to MySQL, Postgres, etc. Let's leave the Authentication Type
to Default. Username is the login of the user associated with the database. In our case,
we will use user “admin”. Define the password specified during the database definition
and provisioning. Optionally, you can store the password by using the checkbox. Let remain
the Role to the Default value (you do not have granted particular privilege group,
like SYSDBA, SYSOPER, etc.). Connection Type selection should be “Cloud Wallet”.
In the Detail tab, navigate to the folder where the Oracle Cloud wallet is stored and save it.

B New / Select Database Connection X
Connection Name Connection Det... Name |c|oud_student_db_admin | E Color
Database Type ‘Dra(le s

User Info = Proxy User

Authentication Type |Defau\t 'l

Username |adm|n | Role |daFauIt =

Password |uo...u.uu.| | [Save Password

Connection Type |Cluud Wallet "

Details Advanced |Prnxy

Configuration File ‘C:\Wal\etfstudentDB‘ziD IV| Browse...

Service ‘studentdbfhigh hé

Configure 0SS Classic

Status :

Pomoc Save Clear Test Conneck Zrugit’

Fig. 1.49: SOL Developer connection definition (2)

Lab 1 — Oracle Cloud Infrastructure (OCI) 39

Test the connection by clicking on the Test button. In the left part, you should
see the status “Success”. Otherwise, the exception will be raised navigating you to the issue.
Solve the problem and try again. If the status is “Success”, click on Connect button.
The connection definition will be saved, and you will be routed to the SOL Developer
environment allowing you to access the defined database using the connection.

8 New / Select Database Connection X

Connection Name Connection Det. .. Name |(Ioud_student_dh_admin | F' Color

Database Type ‘OI acle e

User Info Proxy User

Authentication Type |Defau\t =

Username [admin | Role [defaur =

Password | | Save Password

Connection Type |Cluud Wallet
Details Advanced |Pro><y

Configuration File ‘C:\Wal\et_studentDB‘zlp |V| Browse...

Service ‘studentdb_high -

Configure 055 Classic

Status : Success

Pomoc Save Clear Test Connect Zrudit’

Fig. 1.50: SQL Developer connection definition (3)

The currently selected connection is visible in the right part of the screen, as well.
It is helpful in the case of using multiple connections in parallel. The service combo box
shows the list of connections loaded from the TNSNAMES.ORA is stored inside the wallet.
There are five types in general. Low, medium and high are primarily used for the data
warehouses, whereas #p and tpurgent focus on the transaction database service connection.
The differences are based on sources and parallelism used.

By default, the SOL Developer environment consists of two parts. The left part consists
of the Navigator, a list of connections, and other types made visible (in case of the following
figure, Reports are listed, as well, we will drive you through the reporting possibilities
later in the next chapter). The right part is used for the SOL and PL/SQOL code specifications.
After the execution, such part is divided, the upper part remains original, the bottom part
shows the results (similarly to the SOL Developer Web).

Let's write the following query and execute it. The command can be executed by clicking
on the “Run statement” button [or by using CTRL+Enter shortcut.

select sysdate from dual;

The whole (selected) script is executed by clicking on the “Run script” [& button
or invoking execution using the F'5 shortcut.

40 Lab 1 — Oracle Cloud Infrastructure (OCI)

Connections
+-RYHD

Ia Oracle Connections

-3 asterix_kvat

E}E asterix_lvet_eng

(-5 asterix_kvet1_TESTUCTOV
E}g asterix_lkvet3

: askerix_sys

asterix_system
asterix_system_TEST_UCTOW
asterix_systemORCLPDB
asterixPDB_blob_manager
asterixPDB_lvet_blob_PDB
asterixPDB_letisko
asterixPDB_prildad_db2
asterixPDB_soc_poistovna
asterixPDB_soc_poistovna_bc_small
asterixSYSDBA
cloud_student_db_admin
CLOUD_UNIZA_KVET3

+ CLOUD_LNIZA_STUDENTOL
-EJ cLouD_UNIZA_5YS

- KANGD

-3 kvetPDB_kvet1

E}g local_admin_pds

H—

“BRRR &Godu

Query Builder

select user from dual;

select sysdate from dual;

infsnfimfunfinfinfunfifenfifiofunio

&

o T =1
@Scrlpt output % | [Query Result

r % En a SGL | All Rows Fetched: 1 in 0,028 seconds
{} SYSDATE |
115.03.2021 09:37:51

Reports

All Reports

E}ﬁv Analytic View Reports
E}ﬁ Data Dictionary Reports
E}ﬁ Data Modeler Reports
B[OLAP Reparts

E}ﬁ TimesTen Reports
[-[E User Defined Reports

Fig. 1.51: SOL Developer environment

Do not be confused due to the different formats produced for the Date value. It depends
on the server or SOL developer session selection, respectively.
Create a new table named 74B containing only one numeric attribute /D:

Create table TAB(id integer);

CER-BARR Eodu

VWorksheet] Query Builder
Create table TAB(id integer);

avw _
[Elseript Output * | [Query Result x

a é B E E | Task completed in 0,27 seconds

Table TAB created.
Fig. 1.52: Table definition

Note that the font and size can be altered in the following menu context:
Tools => Preferences => Code Editor => Fonts:

Lab 1 — Oracle Cloud Infrastructure (OCI) 41

D Preferences X

Q Code Editor: Fonts

@ Environment

;i FontName: |DialogInput v
- Analytic View
=} Code Editor ["] Display Only Fixed-Width Fonts (may take some time)
Bookmarks FontSize: |16 |
Caret Behavior —
Completion Insight Sample Text: |The quick brown fox jumps over the lazy dog.
~- Display
m Sample Text in Selected Font and Size:
@ - Format The quick brown fox jumps over the lazy dog.

Line Gutter

PL/SQL Syntax Colors
Undo Behavior
Compare The guick brown fox jumps over the lazy dog.
Database

- Data Miner

Data Modeler

Debugger

External Editor

File Types

& - Change Management Parar

Merge

Migration

1 The quick brown fox jumps over the lazy dog.
)

The guick brown fox jumps over the lazy dog.

+

]

3

)

Pomoc oK Zrusit’

Fig. 1.53: Environment font specification

1.2 SQL*Plus command-line — SQL Client

Connection to the Cloud instance can be made by the console tool of the Instant Client
or sqlplus application itself. Oracle Instant Client can be downloaded from the following
website: https://www.oracle.com/database/technologies/instant-client/downloads.html

Fig. 1.54: The OR code of the Oracle Instant Client installation repository

Please, select the appropriate operating system version. It is available for Windows, Linux,
macOS, Solaris, HP, or ALX. Then, choose the newest version and download three packages
based on the name:

e Basic Package,

o SOL*Plus Package,

o Tools Package (including SQL Loader, Import, Export functionality, and Data
Pump tools).

Each file consists of one archive file with the .zip extension (for OS Windows). Extract
all downloaded files and copy the content to one common repository consisting of all files.
Inside the destination folder, several tools can be found, like Adrci, Exp, Expdp, Imp, Impdp,
Sqlldr or Sqlplus, and some others, however, the listed tools will be used. As stated,

https://www.oracle.com/database/technologies/instant-client/downloads.html

42 Lab 1 — Oracle Cloud Infrastructure (OCI)

connection to the database cloud instance can be made by using the sq/p/us command-line

tool. After launching it, username and connection details are necessary to be specified.
Username consists of two parts — login and connection details defined either by the full

(entire) connect string or by connect identifier pointing to the stored connect definition:

login@connect string
login@connect_identifier

B | C:\Users\Michal Kvet\Desktop\instantclient_19_8\sqlplus.exe

SQL*Plus: Release 19.0.0.0.0 - Production on Mon Mar 15 12:37:25 2021
ersion 19.8.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter user-name:

Fig. 1.55: SOL*Plus command-line connection specification

The login value is clear. It has been specified during the database definition or during
new user creation, respectively. For us, we have identified only one user called “admin”.
Connection details can be, in principle, specified by two alternatives, which
will be consecutively described.

The first alternative is associated with the full definition. The second alternative is based
on the already existing connection string reference.

1.2.1 Alternative 1 — full definition

To provide the ability to connect via full definition, Oracle wallet will be used. It consists
of several files inside the archive. We will need the file TNSNAMES.ORA containing
the connect string list and EWALLET with the encryption keys.

Structure of the TNSNAMES.ORA file takes the identifiers of the connection followed
by the inner definition (host, port, service name, and connection parameters and security
aspects).

| tnsnames.ora - Notepad - m] x
File Edit Format View Help

studentdb_high = (description= (retry_count=20)(retry delay=3)(address=(protocol=tcps)(port=1522)(host=adb.eu- A
frankfurt-1.oraclecloud.com))(connect_data=(service_name=fwuydcbkqbsqo83_studentdb_high.adb.oraclecloud.com))
(security=(ssl_server cert_dn="CN=adwc.eucom-central-1.oraclecloud.com, OU=Oracle BMCS FRANKFURT, 0=Oracle
Corporation, L=Redwood City, ST=California, C=US")))

studentdb_low = (description= (retry_count=2@)(retry_delay=3)(address=(protocol=tcps)(port=1522)(host=adb.eu-
frankfurt-1.oraclecloud.com))(connect_data=(service name=fwuydcbkqbsqo83_studentdb_low.adb.oraclecloud.com))
(security=(ssl_server_cert dn="CN=adwc.eucom-central-1.oraclecloud.com, OU=Oracle BMCS FRANKFURT, O=Oracle
corporation, L=Redwood City, ST=California, c=us")))

studentdb_medium = (description= (retry_count=2e)(retry_delay=3)(address=(protocol=tcps)(port=1522)(host=adb.eu-
frankfurt-1.oraclecloud.com))(connect_data=(service name=fwuydcbkqbsqo83_studentdb_medium.adb.oraclecloud.com))
(security=(ssl_server cert_dn="CN=adwc.eucom-central-1.oraclecloud.com, OU=Oracle BMCS FRANKFURT, 0=Oracle
Corporation, L=Redwood City, ST=California, C=US")))

studentdb_tp = (description= (retry_count=20)(retry delay=3)(address=(protocol=tcps)(port=1522)(host=adb.eu-
frankfurt-1.oraclecloud.com))(connect_data=(service_ name=fwuydcbkgbsqo83_studentdb_tp.adb.oraclecloud.com))
(security=(ssl_server_cert dn="CN=adwc.eucom-central-1.oraclecloud.com, OU=Oracle BMCS FRANKFURT, O=Oracle
Corporation, L=Redwood City, ST=California, C=US")))

studentdb_tpurgent = (description= (retry_count=20)(retry_delay=3)(address=(protocol=tcps)(port=1522)(host=adb.eu-
frankfurt-1.oraclecloud.com))(connect_data=(service name=fwuydcbkqbsqo83_studentdb_tpurgent.adb.oraclecloud.com))
(security=(ssl_server_cert_dn="CN=adwc.eucom-central-1.oraclecloud.com, OU=Oracle BMCS FRANKFURT, 0=Oracle
Corporation, L=Redwood City, ST=California, C=US"))) v

Ln 1, Col 1 100% Windows (CRLF) UTF-8

Fig. 1.56: TNSNAMES.ORA content — connection specification details

Lab 1 — Oracle Cloud Infrastructure (OCI) 43

Database connections are made based on the execution workload, so choose appropriate
and copy the definition (for the following part, high service type will be used). To allow
you to connect, it is necessary to extend it with the encryption keys. Without them, it would
be impossible to communicate — the whole communication is always strictly encrypted,
ensuring complex security. Thus, after the definition, add one new clause pointing
to the location of the keys (encryption keys are in the EWALLET file). So, take the wallet
archive, unzip it, and copy it to a separate folder. Extend the definition by locating encryption
keys:

(description=(retry count=20) (retry delay=3)
(address= (protocol=tcps) (port=1522)
(host=adb.eu-frankfurt-1.oraclecloud.com))
(connect data=(service name=
fwuydcbkgbsqo83 studentdb _high.adb.oraclecloud.com))
(security=(ssl server cert dn=
"CN=adwc.eucom-central-1.oraclecloud.com,
OU=0Oracle BMCS FRANKFURT,
O=Oracle Corporation,
L=Redwood City,
ST=California,
C=Us")))

Let the location of the e-wallet be: C:loracle wallet (use any address you want, do not
use diacritics or spaces in the path). Then, interconnect these elements by adding the
MY WALLET DIRECTORY clause with the pointer to the e-wallet directory. In my case,
it would look like the following:

I (MY WALLET DIRECTORY="C:\oracle wallet")

Finally, create the whole connect string by joining those elements:

(description=(retry count=20) (retry delay=3)
(address=(protocol=tcps) (port=1522)
(host=adb.eu-frankfurt-1.oraclecloud.com))
(connect data=(service name=
fwuydcbkgbsqo83 studentdb_high.adb.oraclecloud.com))
(security=(ssl_server cert dn=
"CN=adwc.eucom-central-1.oraclecloud.com,
OU=0Oracle BMCS FRANKFURT,
O=Oracle Corporation,
L=Redwood City,
ST=California,
C=Us")
(MY WALLET DIRECTORY="C:\oracle wallet")))

Take emphasis on the brackets, please. The above definition is a full connection
specification — connect string. To connect via command line, use your login followed
by the at (@) and connect string:

I login@connect string

44 Lab 1 — Oracle Cloud Infrastructure (OCI)

admin@ (description=(retry count=20) (retry delay=3) (address=
(protocol=tcps) (port=1522) (host=adb.eu-frankfurt-1l.oraclecloud.com))
(connect data=(service name=fwuydcbkgbsqo83 studentdb high.adb.oraclecloud.c
om)) (security=(ssl server cert dn="CN=adwc.eucom-central-
l.oraclecloud.com,OU=0racle BMCS FRANKFURT,O=Oracle Corporation, L=Redwood
City,ST=California,C=US") (MY WALLET DIRECTORY= "C:\oracle wallet")))

L= chal KvetyDesktophinstantclient_19_8\sqlplus.exe o

SQL*Plus: Release 19.0.0.0.0 - Production on Mon Mar 15 14:24:36 2021
'ersion 19.8.0.0.0

Copyright (c) 1982, 2028, Oracle. All rights reserved.

Enter user-name: admin@(description= (retry_count=20)(retry_delay=3)(address=(protocol=tcps)(port=1522)(host=ad
b.eu-frankfurt-1.oraclecloud.com))(connect_data=(service_name=fwuydcbkqbsqo83_studentdb_high.adb.oraclecloud.co
m)) (security=(ssl_server_cert_dn="CN=adwc.eucom-central-1.oraclecloud.com,0U=0Oracle BMCS FRANKFURT,0=Oracle Cor
poration,L=Redwood City,ST=California,C=US")(MY_WALLET_DIRECTORY="C:\oracle_wallet")))

Enter password:

Last Successful login time: Mon Mar 15 2021 10:30:50 +01:00

Connected to:
Oracle Database 21c Enterprise Edition Release 21.9.0.0.0 - Production

Ahoj Michal :)

PL/SQL procedure successfully completed.

SQL>

Fig. 1.57: Full connection

Similar to the SQL Developer, a script can be defined in such an environment. SOL
Developer is, however, significantly better in terms of user experience and user-friendly
environment.

SQL> select sysdate from dual;

Fig. 1.58: Command-line client environment

1.2.2 Alternative 2 — connect identifiers

As evident, the above principles are too complicated for daily activity. The definition
is complicated, so the user data must be stored somewhere to be copied. The second
alternative is based on the stored connect identifiers, which are then referenced. To do so,
download the wallet if you have not done it already. Then, extract the archive and copy
the content to the directory. In my case, I will use the folder path “C:loracle wallet”. Then,
you must create a system variable named TNS _4DMIN pointing to such a repository. System
variables can be specified. For Windows operating system, navigate to the Control Panel =>
System => Advanced system settings (in the left panel). Alternatively, you can type “path”
in the Start menu and then choose “Edit the system environment variables”. Another way to
open the System Properties window is to type “SystemPropertiesAdvanced.exe” in the Start
menu or in the Run window (opened by WinKey+R shortcut).

Lab 1 — Oracle Cloud Infrastructure (OCI)

45

B system

« ~ 4 3> Control Panel > All Control Panel Items > System

Control Panel Home

@ Device Manager
& Remote settings
& Advanced system settings

View basic information about your computer

Windows edition

Windows Server 2016 Standard

© 2016 Miaesoft Corporation. All ights reserved.

System

Processor,

Intel(Ry Xeon(R) CPU ES620 @ 240GHz 240 GHz

Installed memory (RAM): 48.0 G&

System type
Pon and Touck

64-bit Operating System, x64-based processor

Pun and Touch Support with 10 Touch Points

Camputer name, damain, and workgroup settings

Computer name:

Asterix

Fig. 1.59: Environment variable definition (1)

Click on the Environment Variables button:

System Properties
Computer Name Hardware Advanced Remote

You must be logged on as an Administrator to make most of these changes
Performance
Visual effects, processor scheduling, memory usage, and virtual memory

User Profiles
Desktop settings related to your sign-in

Settings ..
Startup and Recovery
System startup, system failure, and debugging information
Environment Variables...
oK Cancel Apply

Fig. 1.60: Environment variable definition (2)

Bl Windows Server- 2016

@chrange seiings

A new window will be launched consisting of a list of system variables. Click on the New
button to add a new environment variable.

Environment Vasiables.

User variables for kvet3

Variable Value

TEMP HUSERPROFILE¥\AppData\LocahTemp

™ HUSERPROFILE¥\AppData\LocahTemp

New. Edit ete

System varizbles

Variable Value

ComSpec CAWindows\system32\cmd.exe

NUMBER OF PROCESSORS 8

os Windows_NT

Path CAProgram Files (x86)\Commaon Fles\Orade\lavaljavapath:C/\or

PATHEXT COM; EXE: BAT: CMD; VBS: VBE: IS; JSE: WSF: WSH: MSC

PROCESSOR ARCHITECTURE AMDB4
PROCESSOR IDENTIFIER Intel64 Family 6 Model 44 Stepping 2, Genuinaintel

PROCFSSOR 1FVFL f s

Fig. 1.61: Environment variable definition (3)

46 Lab 1 — Oracle Cloud Infrastructure (OCI)

The variable's name is “TNS ADMIN” — the name is strict, be aware while specifying it.
Variable value is a path to the Oracle Wallet extracted folder (in my case:
C:\oracle_wallet).

New User Variable X
Variable name: TNS_ADMIN
Variable value: C:\oracle_wallet

Browse Directory... Browse File.. Cancel

Fig. 1.62: Environment variable definition (4)

The list of connect strings is located in the TNSNAMES.ORA file (such file name cannot
be changed!). Open such file, the name before the equality sign reflects the connect identifier,
you can change its name. The name should not contain spaces and special symbols and should
be unique.

The last step is the encryption key association. Open the file SOLNET.ORA inside
the extracted folder and modify the element WALLET LOCATION, part DIRECTORY. Use
the folder with the extracted wallet (in my case: C:\oracle_wallet).

File Edit Format View Help
WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA = (DIRECTORY="C:\oracle_wallet")))
SSL_SERVER_DN_MATCH=yes

Fig. 1.63: Oracle wallet location definition

Save the changes and try to connect.

In the Instant client, you have two options — specify the full connection details
(alternative 1) or use connect identifier. I have not changed the name of the identifier so that
I will use the original one — studentdb_high. In your case, use the name located in the
TNSNAMES.ORA file. The username of the Instant client will then be like the following:

login@connect identifier

admin@studentdb high

W1 CA\Users\Michal Kvet\Desktop\instantclient

19_Bsqlplus exe

: Release 19.0.0.0.0 - Production on Mon Mar 15 14:53:42 2021

Copyright (c) 1982, 2020, Oracle. All rights reserved.
Enter user-name: admin@studentdb_high

Enter password:
Last Successful login time: Mon Mar 15 2021 14:24:53 +01:00

Oracle Database 21c Enterprise Edition Release 21.0.0.0.0 - Production

PL/SQL procedure successfully completed.

SQL>

Fig. 1.64: SQL Instant client connection definition

Lab 1 — Oracle Cloud Infrastructure (OCI) 47

Note that during the password definition, the cursor does not move. Do not be stressed.
It will work correctly.

For now, open the enclosed file STUDENT DATA.SQL and execute the whole script.
It consists of the object table definitions, and data are consecutively loaded. I recommend
you study the code at least briefly. You can see that tables are created using Create table
command followed by the relationship definition used for the table interconnection —
references, joining. Then, individual rows are created invoking the Insert statement.
Such principles, syntax, and usage will be complexly described in the following sections.
However, in this phase, it is inevitable to load data to the table as quickly as possible to deal
with the example data.

The following Select statement can be used to get the list of tables created in your schema
(user account definition). Value of the table_name attribute will be selected from the object
tabs (tabs reflects the synonym to the data dictionary view (system table) user_tables
consisting of the table definition. More about data dictionary views can be found in chapter
Lab 14 — Data dictionary views):

select table name from tabs;

Note that all data in the data dictionary views are uppercase:

SQL> select table name from tabs;

SUBJECT PREF
RESULT_TAB
LOG_STUDENT
NEW_STUDENT

Fig. 1.65: Select statement result set

Schema of the table can be provided using the description command (desc). Table schema
defines the structure of the table — name of the attributes with their definitions (data types,
NULL / NOT NULLs, ...). More about the table structure can be found in chapter
Lab 4 — Data modeling and Lab 5 — Create, Alter and Drop commands.

desc table name;

SQL> desc personal_data

CHAR (11)
VARCHAR2 (15)

VARCHARZ (15)
VARCHAR2 (20)
VARCHAR2 (50)
CHAR (5)

NATIONALITY CHAR (2)

Fig. 1.66: Table description

In this part, it is also necessary to understand the differences between various data types.

48

Lab 1 — Oracle Cloud Infrastructure (OCI)

Tab. 1.1: Data types

Data type ‘ Special characteristics

Date and time spectrum in the HH:MI:SS

Date format (not the date only!)

Timestamp Contains da.te. and time (HH:MI:SS:FFFF)
up to 9 precision level

Char(x) String format with fixed size definition
— x characters exactly

Varchar2(x) String format with variable size

— maximum x characters

Integer, Long, Float, Double precision,
Number

Self-explanatory data types, integer
is a subgroup of number data type with
no fractional part

LOB

Large objects (BLOB, CLOB, NCLOB,
BFILE) for storing binary files (music,
photos, etc.) or complex textual data

To get the results of the simple Select statement, write the following code.
The aim is to get data values of the following attributes — personal_id, name, and surname.
It can be obtained from the table personal data, which schema has been described

in the previous code example.

select personal id, name, surname from personal data;

The provided result set is following:

SQL> Select

841106/3456 Michael
840312/7845 Jack
860907/1259 John
850130/3695 carol
841201/1248 Carol
830514/5341 Wiliam

Fig. 1.67: Select statement result set

personal_id, name, surname from personal_data;

Pearce
Smith
Young
Pearce
Pearce
Whittel

Notice that each SQL command must end with a semicolon (;). It is often repeated
the mistake of students — no data will be returned, whereas a command is not finalized

and thus impossible to be executed.

To get the results of the last command (usually stored in afiedt.buf file), slash (/) can be
used. Moreover, the last executed SQL command can be edited using the editor launched
using the ed command. Management inside the editor is based on previously described editor
principles. Notice that SQL statements are not case sensitive except data in dictionary views.
Mentioned editor data can hold only one command.

I afiedt.buf

Row 2

Col 1 8:11 Ctrl-K H for help

elect personal id, name, surname from personal data

Fig. 1.68: Modifying buffered statement

Lab 1 — Oracle Cloud Infrastructure (OCI) 49

Be aware, here, in the last command editor, the end of the statement is not delimited by
the semicolon but by a slash (/) located in the last row (as the only one character).

Moreover, this command can be used only if at least one SOL command has been executed
in the session. If not, you will get the following error information:

I SP2-0107: Nothing to save.

Launching the last statement from the buffer can be performed using the slash (/).
The default editor type can be changed using the following command in sq/plus (notice
the space before the underscore symbol).

I define _editor-editor_ name

The following command shows the example of assigning joe as the default editor
in sqlplus.

I define _editor=joe

Besides editor management and login using SQL *Plus command, all activities can also
be performed in the SQL developer tool.

1.2.3 Capturing activities in SQL

All performed activities can be stored using recording (capturing) technology. In that
case, the console output is also routed to the file using stream. First, starting recording is
provided using spool command followed by the file name (in SQL developer, usually full
path is used).

I spool file name

From that moment, all statements and results shown in the console are automatically
stored in the defined file until the process is stopped using the spool off command.

I spool off

So, let’s have the example of the recording. Start the process and write some SQL
commands (use the previously defined statement). Afterward, stop the process and show
the file data.

spool data output.txt
select personal id, name, surname from personal data;
spool off

The file can be edited using the ed command followed by the file name with extension:

I ed data output.txt

50 Lab 1 — Oracle Cloud Infrastructure (OCI)

SQL> Select personal_id, name, surname from personal_data;

Michael Pearce
Jack Smith
John Young

Frederico Ducato

SQL> spool off
Fig. 1.69: Spooling

Notice that if you omit the file extension, default extension */st will be used when
the recording process is started.

You can redirect the execution to the operating system commands (OS Linux) using the
host command. Otherwise, it would be necessary to exit SQL*Plus and execute such a
command in a Linux environment (determined by the § symbol).

host 1s file name

1.2.4 Working with Help

Connection to the database system allows you to use an embedded helper. To view
the basic Help menu, the command help should be used followed by the topic (category),
you are looking for some hints.

help topic

In the following example, the help for the starf command is shown.

help start

Runs the SQL*Plus statements in the specified script. The script can be
called from the local file system or a web server.

STA[RT] {url|file_name[.ext]} [arg ...]

where url supports HTTP and FTP protocols in the form:

http://host.domain/script.sql

Starts an Oracle instance with several options, including mounting,
and opening a database.

STARTUP options | upgrade_options

where options has the following syntax:
[FORCE] [RESTRICT] [PFILE=filename] [QUIET] [MOUNT [dbname]

Fig. 1.70: Help

Lab 1 — Oracle Cloud Infrastructure (OCI) 51

Despite that, it is strongly recommended to use official documentation for DBS Oracle
covering the latest patches (https://docs.oracle.com/).

1.2.5 Working with multiple commands

We strongly recommend writing commands to the files when dealing with multiple
commands as well as for dealing with the following labs.

The file can be created and edited either in the OS environment but also in the SQL *Plus.
The usage is the same. The first following solution describes the command in the OS.
The second one reflects the direct use in SQL*Plus. Notice that if you try open editor with
the file name (and extension as well) and such file does not exist, it is automatically created.
Vice versa, if it exists, it is opened in edit mode. We use joe editor in the OS environment
for explanation purposes, but feel free to use that one you prefer.

joe file name.sql (in OS Linux)
ed file name.sql (in SQL*Plus)
host joe file name.sql (in SQL*Plus, accessing Linux)

In the file, any SOL commands can be written and consequently started on the database
system server. Notice that individual commands must be ended with the semicolon (;). Editor
management is described in chapter 4.9.7 Working with directories and files (saving changes
can be done in joe using CTRL+K+X shortcuts).

Notice that the SOQL developer tool uses a more user-friendly environment, so file
management is far more manageable.

1.2.6 Comments

It is inevitable to comment on your code. One row comment is characterized by two
dashes (-) followed by at least one space. Multiple row comment starts with a slash (/)
followed by an asterisk (*) and at least one space or new line. The reverse order is used
to end multiline comment — at least one space (or newline) followed by asterisk and slash.

—-— one-row comment

/* multiple
line
comment

*/

The created file can be started in SOL *Plus to execute the commands written inside using
the start command followed by the file name and extension (it can be omitted if the extension
is *.sgl,). The first following command shows the syntax. The rest are examples. The last two
commands are equivalent. Notice that SQL statements are commonly written into the file
with the *.sg/ extension.

start file name.sql
start labl.sql
start labl

Currently, a connected username can be obtained using the following commands (dual
reflects special table and is described in chapter 2.2.2 Dual table).

https://docs.oracle.com/

52 Lab 1 — Oracle Cloud Infrastructure (OCI)

show user

Notice that the show user command is not an SOL command. Therefore, it is unnecessary
to end it with a semicolon (using it does not cause any error).

select user from dual;

1.2.7 Working with procedures and functions

The code of the methods (procedure, function) is stored in the files and consecutively
loaded into the system preceded by the compilation process. The compilation process
is a significant part of the loading, ensuring correctness. The code of the method is parsed
and stored in the database data dictionary. Thus, if the method is compiled successfully,
original code from the file is no longer necessary (it is possible to reconstruct code from
the data dictionary).

If you attempt to create a stored method, which cannot be compiled successfully, although
it will be loaded, the status of such method will be invalid and cannot be executed at all.
Transforming invalid object to valid is always performed by the compilation process. Vice
versa, the invalid object can originate from unsuccessful loading or by changing dependent
objects.

So, let’s have the simple procedure example stored in the file (first_procedure.sql).
The name of the procedure is proc_get row_number.

create or replace procedure proc_get row_number

v_count integer;
begin

select count (*) into v_count

from personal data;
dbms output.put line ('The number of the rows' ||
'in personal data table is: ' || v_count);

end;

/

Be aware that each procedure, function, trigger, or package must end with a slash (/) as
a separate character in the last line. It delimits the final separator, whereas multiple blocks
can be nested.

If you omit it, it will not be compiled, and the system will wait to add it. Inside
this procedure, the local variable v _count is defined for storing a number of rows
of the personal_data table. Such value is obtained using Select statement — result set (one
value) is stored in a defined local variable (select count(*) into v_count). Afterward, the value
of that local variable is printed on the console screen by calling the put line method
of the dbms_output package.

Launching the code from the file is performed in SQL*Plus using the start command.
Thus, in our case, the process will look like this, resulting in compilation error identification:

start first procedure.sql

Warning: Procedure created with compilation errors.

If errors are identified during the loading, the show err can obtain a list of the problems.

show err

Lab 1 — Oracle Cloud Infrastructure (OCI) 53

The output of the method looks like this. The numeric value in the first part of the line
expresses the line number, where the error is located. In our case, it is value “2”.

2/3 PLS-00103: Encountered the symbol "V_COUNT" when expecting one
of the following: (; is with authid as cluster compress order using
compiled wrapped external deterministic parallel enable pipelined
result cache

The symbol "is" was substituted for "V _COUNT" to continue.

Be aware that the line number in the file does not need to correspond to the line (in the
file) during the compilation!

It can be caused by other things by PL/SQOL optimize level. So, the real code in such line
can be obtained using the list <line_number> command (it can be abbreviated to /) command
— in our case, list 2 (12).

I list <line_ number>

I 12

The output of the method based on the previously defined procedure
proc_get_row_number will be following:

I v_count integer;

Thus, the error is located on line 2 — the code v_count integer;. The problem is based
on missing keyword before the second line command. Please add the word “IS™, save the file,
and compile it once again.

create or replace procedure proc_get row number
is

v_count integer;
begin

select count (*) into v_count

from personal data;
dbms output.put line('The number of the rows' ||
'in the personal data table is: ' || v_count);

end;

/

Now the procedure will be successfully compiled. Notice that if multiple errors have been
identified, always remove the problems up to down, whereas some problem corrections can
remove numerous consecutive errors.

If the procedure is created without compilation errors, the status will be valid and such
method will be possible to be executed (using execute command):

execute procedure_name

I execute proc _get row_ number

The result is following:

I The number of the rows in the personal data table is: 35

Executing function is similar, but the result must be assigned (e.g., to a local variable).
Notice that the output display must be enabled to see the results. The SERVEROUTPUT
setting controls whether SQL prints the output generated by the dbms output package

54 Lab 1 — Oracle Cloud Infrastructure (OCI)

from PL/SQL procedures to the environment. It must be enabled for the session
(or for the whole server) before the first execution of the dbms_output package (see chapter
9.5 Executing stored method). Otherwise, no output will be printed to the user.

set serveroutput on

1.2.8 Connection and session termination

Individual changes to the data must be confirmed using the commit command (transaction
is ended successfully). It ensures that data is durable and cannot be lost in any case. Thus,
it is better to do it relatively often. In the following section, each first part defines the syntax.
Then the server answer is listed.

commit;

commit complete.

The opposite of the commit command is a rollback, which removes all values changed
in the current transaction. It is related to the beginning point of the transaction.
The transaction starts automatically when connecting to the database or directly after ending
the previous one.

rollback;

rollback complete.

More about transaction management can be found in chapter 3.8 Transactions.
Disconnecting from the database is provided using the disconnect command.

disconnect;

Disconnected from Oracle Database 19c Enterprise Edition Release
19.0.0.0.0 - Production Version 19.3.0.0.0

Reconnecting or changing the user signed in the session can be ensured using the connect
command followed by the login and connect string defining database instance. Notice that
the connect string can be defined in the TNSNAMES.ora file located
in SORACLE _HOME/network/admin.

connect login@orcl;
connect login@xe;

In Cloud environment, the connection identifier is delimited name of the database
followed by the extension (low, medium, high, tp, tp_urgent):

connect login@library low;
connect login@student tp;

After work completion, command exit can be used to exit the SOL*Plus environment.
The same functionality is also provided by pressing CTRL+D keys. Notice that physical
implementation of the exi# command automatically invokes commit.

exit;

Lab 1 — Oracle Cloud Infrastructure (OCI) 55

Never turn off SOL*Plus (SQL Client, console) using the Close button of the window
(the cross of the right corner). This is not the correct completion of work. Changes are not
committed. Thus, after new login, executed not-committed statements will not be found in the
database. Moreover, if some table or row is locked, such state remains for a defined period,
even after re-login.

Consequently, you will not be able to access all data and work fully. It is evident that
Process Monitor (PMON) does not proactively control connected user processes to minimize
network and communication system load workload. However, if the user process does not
communicate during the defined time (does not send any request), the corresponding server
process is killed by the PMON, and used server resources are freed. It means that all work
is rollbacked, and locks are released.

1.3 Syntax symbols

The following chapters cover all main SQL commands extended by multiple examples
and characteristics. We will use the standardized syntax definition:

[] ...optional part

{ } ... multiple choices (one should be chosen)

| ... divisor of the choices in { }

< object name > ... the name of the object, which is replaced by the real reference,
like STUDENT for table name, etc.

These symbols should not be written explicitly in the statements. Instead, they only
describe the syntax possibilities.

On the other hand, standard parentheses () are part of the syntax. Therefore, they
must be part of the command.

As you noted above, any code or SQL command will appear in a red box in this book:

This is a line of code

The outputs from the code are displayed in either a gray box or a gray table:

This is a line of code output

COLUMN_1 COLUMN_2 COLUMN_N
B Value 1 Value 2 Value N

If you see a code in the text marked in a red dashed box with red font, we want to warn
you that the code is incorrect or otherwise erroneous:

This is a line of wrong code

Chapter content summary is listed in the following format:
Summary of the section

Please note that individual figures are not strictly referenced in the book. Instead, we use
the approach of the description strictly directly preceding the figures throughout the whole
book.

Lab 2 — Basics of data retrieval 57

Lab 2 — Basics of data retrieval

This lab introduces the main clauses of the Select statement definition. Projection can be
made by defining the list of attributes, expressions, or values in the Select clause. Selection
limits the number of rows part in the result set by applying conditions in the Where clause.

This chapter summarizes the person identification principles used in Slovak and Czech
region — personal_id, composed of the date of birth, gender and distinguishing part.

Individual queries can deal with the attributes, but also expressions and function calls can
be used. Section 2.3 proposes the summary of the most important methods, categorized into
the string, math, date and time and conversion function types.

Among the Select and Where clause, the focus is done on the table reference using the
relationships, operated by the Join, located in the From clause of the Select statement. If the
Join operation is not done properly across multiple tables, a Cartesian product combining all
data is present.

The value comparison across the membership in a set can be made by using IN or EXISTS
or their negative variants (NOT IN, NOT EXISTS). By using Join operations, duplicate values
can be present for particular rows, which can be limited by using the Distinct keyword in the
Select clause. It can also be generally used to remove duplicates from the set.

Finally, the importance of the aliases for the tables and attributes is discussed.

2.1 Introduction

Data manipulation is the central part of the user activities accessing the database. The user
connects to the database, gets and processes required data from the database. Therefore,
the main challenge is to select rows to be changed, deleted, or just retrieved. Usually,
the database consists of hundreds, thousands, or even more data rows, and the manual
accessing, and evaluation process would be complicated and time-consuming. Therefore,
the Select statement definition has been proposed allowing you to specify which data
you want as well as a form of the result set. Database system optimizer automatically
evaluates the defined query and provides the searching for you. The easiest way is to get
all data stored in the table, but commonly you want to get all the rows that satisfy a condition
or multiple conditions, even based on multiple tables. In this lab, a Select statement definition
with individual clauses is introduced supported by multiple examples qualifying result sets.

The Select statement is used to query the database and retrieve selected data that match
the criteria you specify. It has six main clauses for the command definition. Each clause has
many options, selections, parameters, etc. Individual clauses will be listed below, but each
will be covered in more detail later in this book.

Syntax of the Select statement is following:

SELECT [{ALL | DISTINCT}] columnl [, column2, ...]
FROM tablel [JOIN table2 {ON condition | USING condition} ...]
[WHERE conditions]
[GROUP BY column list]
[HAVING conditions]
[ORDER BY column list [{ASC | DESC}]];

58 Lab 2 — Basics of data retrieval

Please, separate each used clause to the new line and align the code. When using more
complex statements, such practice will be appreciated.

For consecutive data management, it is inevitable to describe principles of data
identification. It is done by using the primary key, which uniquely identifies each record
in a database table. The primary key (PK) must contain UNIQUE values and cannot hold
NULL. A table can have only one primary key, consisting of single or multiple fields
(composite primary key). In the model, the primary key element is signed as “PK”.
More about the primary key definition, management, and importance will be described later
in chapter 11.3.2 Primary key.

2.2 Projection, selection, column alias

The easiest Select statement does not contain any condition, and all attribute values
are obtained. In principle, it is possible to list all attribute names detached by colons (,),
but also asterisk (*) wildcard can be used, which lists all attributes based on the table schema
automatically (the order of attributes is delimited by the schema and can be gotten using
the description of the table — e.g., desc personal_data). Thus, the following two commands
are providing the same results. Naturally, if the attribute order is significant, a named notation
must be used.

select personal id, name, surname, street,
town, zip, nationality
from personal data;

select * from personal data;

The result set will look like this (export of SQL Developer tool):

PERSONAL_ID SURNAME ‘ STREET NATIONALITY
B 841106/3456 Michael | Pearce Kamenna 27 Banska Bystrica 97401 | SK
2| 840312/7845 Jack Smith Zelena 9 Nove Mestonad | g150; | g
Vahom
< 860907/1259 John Young Slnecne namestie Komarno 94501 | SK
“h 850130/3695 Carol Pearce Stred 49/7 Povazska Bystrica | 01701 | SK
S| 841201/1248 Carol Pearce Juh 2100/456 Trencin 91101 | SK
(01| 830514/5341 Wiliam Whittel Tahanovce 38/12 Kosice 04001 | SK

As you can see, some attribute values are denoted with the (null) values. Notice that such
value is not physically stored in the database, but it expresses undefined value — thus, there
is no address information for Simone Smith. In the command line (SOL Client), a NULL value
is modeled by an empty string representing the same fact.

PERSONAL ID NAME SURNAME STREET TOWN ZIP | NATIONALITY
| 845210/6525 Simone | Smith (null) (null) (null) | (null)

In the previous case, all data table rows have been selected. Where clause of the Select
statement can limit the result set based on defined conditions. In the following example,
we will list only persons whose first name is Michael. As we can see, four rows are selected.
Data are compared based on equality. Thus, also the font style should be highlighted (lower
/ upper case).

Lab 2 — Basics of data retrieval 59

select *
from personal data
where name = 'Michael';
PERSONAL_ID SURNAME STREET NATIONALITY
1 841106/3456 Michael | Pearce Kamenna 27 Banska Bystrica 97401 | SK
2| 830301/7789 Michael | Simson Lesna 7/12 Ruzomberok 03401 | SK
< 740210/6536 Michael | Flower (null) (null) (null) (null)
“| 880329/1233 Michael | Smith (null) (null) (null) (null)

Also, multiple conditions can be used cooperating based on OR or AND evaluation
techniques. When multiple conditions are used, parentheses usage is preferred. Thus,
in the following example, we will list only persons living in Zilina town. Moreover, the name
of the person must be “Jack”. The condition connector is AND (conditions must apply
at the same time). The second condition limits the number of data rows in the result set to 1.

select *
from personal data
where town = 'Zilina' and name = 'Jack';

PERSONAL_ID NAME SURNAME STREET NATIONALITY

1 791229/5431 Jack Robinson A. Bernolaka 14/20 Zilina 01001 SK

The order of the conditions to be evaluated is not essential, whereas a database query
optimizer can rearrange the order to speed up the evaluation by limiting the data amount
to be processed in the next step. Naturally, using parentheses forces the system to use user-
predefined order.

In the previous examples, condition Where removed data tuples, that do not meet
the conditions — relational algebra Selection operation has been used:

R4 R
) I?
R2 R>
The second relational algebra operation is just Projection, which removes some

attributes from the result set. The list of attributes, which values should be obtained, is defined
in the Select clause of the statement delimited by commas (,).

R R1
R2 R2

Pure Projection operation does not contain Selection inside.

Fig. 2.1: Selection

Fig. 2.2: Projection

60 Lab 2 — Basics of data retrieval

select name, surname
from personal data;

However, in real application usage, individual statements are usually created
by the combination of Selection and Projection.

select name, surname
from personal data
where town='Zilina';

As we can see, attribute names in the result set are the same as the attribute name
in the table definition. It is possible to rename them in the result set using aliases. The syntax
is highlighted.

select name as first name, surname as family name
from personal data;

FIRST NAME | FAMILY NAME

Michael Pearce

[

VA Jack Smith
47;7 John Young
|| Carol Pearce

In the standard environment, the attribute name must contain only one word,
but this restriction can be replaced by encapsulating the alias into the quotes ("' ")

select name as "first name", surname as "family name"
from personal data;

Keyword “A4S8” is optional and does not need to be used.

select name "first name", surname "family name"
from personal data;

However, some limitations must be described and followed. Otherwise, an exception will
be raised. For example, in principle, if the attribute name is changed (column alias is defined),
such alias cannot be used in the Where clause of the same Select statement, but the original
name must be used. The reason is, that the Where clause is evaluated during the first stage
of the processing. Vice versa, these aliases must be used for superior Select statements.

Thus, the first example is incorrect. The right solution is shown in the second example.

select name as first name, surname as family name
from personal data
where first name='Michael';

It is not possible to use defined alias in the Where clause of the same
statement:

ORA-00904: "FIRST NAME": invalid identifier

select name as first name, surname as family name
from personal data
where name='Michael';

As you can see in the result set, the original attribute name is renamed to first name.
The same principle is applied for surname as well.

Lab 2 — Basics of data retrieval 61

FIRST NAME | FAMILY NAME

Michael Pearce

1
72| Michael Simson

We will explain the structure, meaning, and importance of the personal id attribute
before the consecutive processing and the rest clauses explanation.

2.2.1 Personal_id structure

Personal_id refers to the birth number as the numerical identifier assigned to Slovakia
and Czech Republic people. Personal identification number belongs to the personal data.
Itis formed from the person's date of birth, gender, and the terminal digit, which is a
distinctive sign of people born on the same calendar day.

The first two digits of the birth number are the last two digits of the person's birth year.
The second two digits express the numeric designation of the month of birth of the person
(value is increased by 50 for women), the third two digits express the numerical designation
of the date of birth of the person in that calendar month. This is the example of the man
and woman:

90 06 23 / 1234 90 56 23 /1239
MAN WOMAN

Year = 90 Year = 90
Month = 6 Month = 6

Day = 23 Day = 23

The whole personal identifier should be divided by 7/ without remainder (this rule is not
strict, sometimes, it can happen that the division rule does not pass):

9056231239 / 11 = 823293749

2.2.2 Dual table

The Dual table is a special type of table consisting of one row and one attribute.
It is always present in the DBS, and such a table cannot be changed based on the structure
nor the data inside. In DBS Oracle, it is defined by a single VARCHAR2(1) attribute called
DUMMY, which carries the value “X”. Such a table is useful for obtaining pseudo column
values or results of the functions independent of the table data.

Let’s consider some examples. The first one returns the actual date and time. The second
one returns the value 20 based on the defined mathematical operator “+”. The last one returns
the length of the string, value /2. Notice that string value should be encapsulated
in apostrophes.

select sysdate from dual;

select 10+10 from dual;

select length('some text...') from dual;

2.3 Using functions

It is not necessary to work only with defined attributes themselves, but the conditions,
as well as the Select clause itself, can also consist of function results to be evaluated. This lab

62 Lab 2 — Basics of data retrieval

will only deal with system-defined functions; the most important ones will be described based
on parameters and usage. User-defined functions can also be part of the statements if some
prerequisites and conditions are met (user-defined function management is described in
Lab 9 — Procedures, functions and packages).

DBS Oracle provides a wide range of functions in the standard package for dealing with
values by obtaining their part, convert the value to another data type, or transforming output.
Such functions can be generally categorized into the following groups (Oracle
documentation categorization is used):

e String/Char functions,
e Numeric/Math functions,
e Date/Time functions,

e Conversion functions,

e Analytic functions,

e Advanced functions,

e Miscellaneous functions.

2.3.1 Character string functions

This category carries the functions dealing with strings. We will list the most important
ones with their characteristics and usage.

ASCII function

ASCII function returns the numeric representation of the character in the ASCII table.
The parameter of the function should be a single character. However, if multiple characters
are pushed, only the first one is evaluated.

select ASCII(single_character) from dual;

select ASCII('A') from dual;

CONCAT function

The Concat function allows you to connect (concatenate) two strings together.

select CONCAT (first_string, second_string) from dual;

select CONCAT (name, surname) from personal data;

The disadvantage of the mentioned function is that it can accept only two parameters,
thus if multiple strings need to be concatenated together, such function must be executed
multiple times, and the code is hardly readable or even adjustable. The previous example puts
two strings together without any space.

CONCAT(NAME, SURNAME)

1| MichaelPearce
72| JackSmith

<3| JohnYoung

Thus, the correct solution (with space) can look like the following:

select CONCAT (name, CONCAT(' ', surname)) from personal data;

Lab 2 — Basics of data retrieval 63

CONCAT(NAME,CONCAT(",SURNAME))

18 Michael Pearce
2| Jack Smith
kI John Young

To concatenate four string values, Concat function must be used at least three times:

I select CONCAT (CONCAT (CONCAT('A', 'B'), 'C'), 'D') from dual;

For definition and management simplification, function management definition provides
pipe (||) operator to concatenate any string count.

I select stringl || string2 [|| ... string n] from dual;

I select 'A' || 'B' || ' C' || 'D' from dual;

As you can see, constant strings must be delimited by the apostrophes (). In the English
language, however, such a symbol can also have a special denotation. Therefore, the system
must be able to distinguish whether the apostrophe character is part of the standard string
or should be treated as a delimiter. For these purposes, if the apostrophe is part of the string
text, it must be doubled. Both following examples provide the same results.

I select 'Let''s' || ' study Informatics' from dual;
select 'Let' || '"''"'" || 's' || ' study Informatics'
from dual;

LET"|""|'S"||'STUDYINFORMATICS'

1 Let's study Informatics

String character case management (LOWER, UPPER, INITCAP functions)

The size of the string can be transformed using three functions, which provide sufficient
power to ensure the correct string format to be stored in the database. Lower function converts
all characters in the specified string to lowercase. Vice versa, the Upper function converts
all characters to uppercase. Notice that characters, which are not letters (like numbers),
are not changed at all. Special functionality provides the InitCap function, which sets the first
character of each word to uppercase. The rest ones are lowercase. The principles are shown
in the following example:

select lower ('DATABASE SYSTEMS'),
upper ('database systems'),
initcap ('DAtabaSE SySTems')
from dual;

LOWER('DATABASESYSTEMS') UPPER('DATABASESYSTEMS') INITCAP('DATABASESYSTEMS')
database systems DATABASE SYSTEMS Database Systems

If there is a necessity to set only the first letter of the first word to uppercase,
a combination of the previously described functions can be used:

select upper (substr ('DAtabaSE SySTems', 1, 1)) ||
lower (substr ('DAtabaSE SySTems', 2))
from dual;

64 Lab 2 — Basics of data retrieval

LENGTH function
Length function returns the number of characters of the specified string.

select length(string value) from dual;

select length('some text...') from dual;

The value /2 will be returned in the previous example:

12

SUBSTR function
Substr function extracts a substring from the provided input string.

select substr(string, start_position [, length]) from dual;

The first parameter (string) defines the source string to be processed. The second
parameter delimits the starting position (start_position). Notice that the numbering in DBS
starts with 1. The last parameter (length) is optional and defines the number of characters
to be extracted. If the value of the third parameter is not defined, the rest part of the string
up to the end will be returned.

select substr(personal id, 5, 2) from personal data;

select substr(personal_id, 5) from personal data;

Let’s consider the results of the previous Select statements in comparison with the whole
personal_id value. The first Select statement returns the day sequence number of the birth.
The second one will start with day, followed by the slash and the rest part of the personal _id
value up to the end of the string.

PERSONAL_ID ‘SUBSTRG%RSOAML_HZ&E SUBSTR(PERSONAL_ID,5)

781015/4431 15 15/4431

791229/5431 29 29/5431

800407/3522 7 07/3522

810101/8079 1 01/8079
TRIM function

The Trim function removes all specified characters either from the beginning or from
the end of the provided string. The default option is BOTH. Using the LEADING keyword
sets the system to start with the beginning, whereas TRAILING starts from the end.
Parameter trim_character defines which symbol should be removed.

select TRIM([[LEADING | TRAILING | BOTH] trim character FROM] string)
from dual;

Generalization is the function Trim with only one string parameter, which ensures that all
whitespace characters are removed either from the beginning or from the end.

select trim(string) from dual;

Lab 2 — Basics of data retrieval 65

Let's consider the following example. The input string contains three spaces
from the beginning and four spaces at the end. The original string length is /8. The Trim
function removes those spaces, so the post-processed length is /1.

select length(' test string ') from dual;
18
select trim(' test string ') from dual;

test string

select length (trim("' test string 'y) from dual;

11

Be aware, such a function removes spaces only as the first or last letters. Thus, the result
of the following statement is the same as a solution without using the Trim function.
The reason is based on the first and last character — asterisk (*).

I select trim('* test string *') from dual;

* test string *

2.3.2 Numeric and Math functions

ABS function

This function returns the absolute value of the provided numerical input value
(num_input).

select abs(num_input) from dual;

select abs (125) from dual;

125

select abs (-125) from dual;

125

CEIL function

Ceil function returns the smallest integer value that is greater or equal to a defined number
(num_input).

select ceil(num_input) from dual;

select ceil(2.5) from dual;

3

select ceil (3) from dual;

3

select ceil(-2.5) from dual;

=2

66 Lab 2 — Basics of data retrieval

ROUND function

Round function returns a numerical input value (num_input) rounded based
on the defined number of decimal places (decimal places). If the second parameter
is omitted, the value is rounded completely. However, also the negative value of the second
parameter can be provided. In that case, it defines the position in the main part.

select round(num_input, [decimal places]) from dual;

select round(67812.345) from dual;

67812

select round(67812.345, 2) from dual;

67812.35

If the precision parameter (decimal places) value is negative, it defines the principle
of rounding the main part of the number. Thus, if value “-2” is defined, the value is rounded
based on the second value of the main part from the right part — see the example:

select round(67812.345, -2) from dual;

67800

The value “8” is rounded by the followed value 9:

select round(67892.345, -2) from dual;

67900

FLOOR function

Floor function returns the largest integer value equal or less than the defined number
(num_input).

select floor (num_input, [decimal places]) from dual;

select floor(2.7) from dual;

2

select floor(3) from dual;

3

select floor(-2.5) from dual;

=3

TRUNC function

The Trunc function has many variants. It returns truncated value to the defined number
of decimal places for numerical inputs. In comparison with the Round function,
this definition puts away decimal value.

select trunc(num_input, [decimal places]) from dual;

Lab 2 — Basics of data retrieval 67

select trunc(67812.345) from dual;

67812

select trunc(67812.345, 2) from dual;

67812.34

select trunc(67812.345, -2) from dual;

67800

The value "8" is truncated regardless of the following values:

select trunc(67892.345, -2) from dual;

67800

MOD function
Mod function returns the remainder of m divided by n.

select mod(m, n) from dual;

select mod (7, 3) from dual;

1

select mod (-7, 3) from dual;

-1

To get a real month of birth from the personal id attribute value, mod functionality
provides sufficient power. Consider the following definition. First of all, the month segment
is extracted and subsequently processed to remove the woman impact.

select mod(substr (personal id, 3, 2), 50)
from personal data;

2.3.3 Date and Time functions

Date attribute value management is a complicated process, which must highlight multiple
conditions to get desirable and correct results. First of all, the Date attribute value in DBS
Oracle always stores the date and the time sphere. So please, never forget it, it is essential.

Adding or subtracting numerical value from the Date expresses the number of days
(or its part).

select to_date('15.02.2021', 'DD.MM.YYYY') + 1 from dual;

TO DATE('15.02.2021','DD.MM.YYYY')+1

16.02.2021 00:00:00

Notice that the conversion function 7o _date in the example deals only with the day,
month, and year elements. In that case, conversion causes, undefined components
(hours, minutes, seconds) are replaced with zero values.

The result of subtracting two Date values is the number of days between them
(also with the decimal part). So, the result value will be “2”.

68 Lab 2 — Basics of data retrieval

select to date('15.02.2021', 'DD.MM.YYYY') -
to_date('l3.02.2021', 'DD.MM.YYYY")
from dual;

2 |

Direct transformation of the result to a number of months or years would be incorrect
because inexact values would be provided (some months have 30 days; some have 31 days.
Moreover, February is special). Therefore, for dealing with time, provided functionality does
not provide exact results (e.g., for flights or VISA, the exact age of the person must be
provided).

SYSDATE function

The Sysdate function has already been used in the previous example. It returns the current
system date and time on the local database. It does not have any parameters and reflects
the Date type as output format. The precision of the Date format is up to seconds
— DD.MM.YYYY HH24:MI:SS. Remember, that Date type value always stores the date
as well as time.

select sysdate from dual; |

27.02.2021 09:57:24

The format of the output of the Date functions and Date value management depends
on the actual system or session settings. To get the current format set for your session, query
NLS SESSION PARAMETERS view. To get the format of the server property, required
information can be obtained by querying the NLS DATABASE PARAMETERS view.
For both views, the parameter name is NLS DATE FORMAT. Notice that it reflects the data
dictionary view, where all values are uppercase (see Lab 14 — Data dictionary views).

select value
from nls session parameters
where parameter = 'NLS DATE FORMAT';

select value
from nls database parameters
where parameter = 'NLS DATE FORMAT';

Changing actual settings can be done by altering the session or system. Alfer command
is used (principles of Alter command can be found in chapter 5.4.2 Alter).

alter session set nls date format='format'; |

alter session set nls date format='DD.MM.YYYY HH24:MI:SS'; |

For the whole system property changing, use the previous command, but reflect “system”
instead of “session”.

SYSTIMESTAMP function

The Systimestamp function also returns the current system date and time, but also second
fractions and time zone can be provided. The output data type is Timestamp(n), where n

Lab 2 — Basics of data retrieval 69

defines the number of fractions of the seconds from the integer range <0 ; 9>. The default
value is 6, if the precision is not specified explicitly.

select systimestamp from dual;

02.03.17 11:15:52, 413000
ADD_MONTHS function

The Add_months function has two parameters — date value (date val) and a number
of months to be added (number _months) or subtracted. The result is the input date
with processed months. Such functionality can also be done explicitly by parsing the Date
attribute. However, the transition between years and months must be handled explicitly.

select add months(date val, number months) from dual;

select add months(to date('15.02.2021', 'DD.MM.YYYY'), 7) from dual;

ADD_MONTHS(TO_DATE('15.02.2021','DD.MM.YYYY"),7)
15.09.2021 00:00:00

select add months(to date('15.02.2021', 'DD.MM.YYYY'), =7) from dual;

ADD_MONTHS(TO_DATE('15.02.2021','DD.MM.YYYY'),-7)

15.07.2020 00:00:00

Notice that the function automatically correctly manages transitions through years
leap years...

select add months(to date('15.02.2021', 'DD.MM.YYYY'), 17) from dual;

ADD_MONTHS(TO_DATE('15.02.2021','DD.MM.YYYY'),17)

15.07.2022 00:00:00

The following example shows the principle of adding a month to the Date value regarding
the last day of the month. What will be the result if you want to add one month to 31.1.2017?
One month is added, so February is reflected, namely the last day of that month.

select add months(to date('31.01.2017', 'DD.MM.YYYY'), 1) from dual;

ADD_MONTHS(TO_DATE('31.01.2017','DD.MM.YYYY"),1)

28.02.2017 00:00:00

EXTRACT function

Extract function returns the defined subpart of the Date/Timestamp attribute value — day,
month, year, minute, hour, and second can be provided. However, using one function
execution, only one element can be provided. Notice the difference between Date
and Timestamp values. Using this function, the time spectrum can be obtained only
for Timestamp values. Extract from Date value can provide only day, month, and year.

select extract({YEAR | MONTH | DAY} from date_val) from dual;

70 Lab 2 — Basics of data retrieval

select extract({YEAR | MONTH | DAY | HOUR | MINUTE | SECOND}
from timestamp val)
from dual;

select extract (month from to date('15.02.2017', 'DD.MM.YYYY'))
from dual;

select extract(year from to date('15.02.2017', 'DD.MM.YYYY'))
from dual;

2017 |

select extract (minute from to_date('15.02.2017' 'DD.MM.YYYY'))
from dual;

ORA-30076: invalid extract field for extract source

select extract (minute from to_timestamp ('15.02.2017', 'DD.MM.YYYY'))
from dual;

LAST_DAY function

The Last day function returns the last day of the month based on the input Date value
(date_val).

select last day(date_val) from dual; |

select last day(to date('15.12.2017', 'DD.MM.YYYY'))
from dual;

31.12.2017

Naturally, it manages also leap years.

select last day(to_date('15.2.2017', 'DD.MM.YYYY'))
from dual;

28.2.2017 |

select last day(to_date('15.2.2016', 'DD.MM.YYYY'))
from dual;

29.2.2016 |

MONTHS_BETWEEN function

As the function's name indicates, the Months between function returns the number
of months between two defined dates. To get a positive value, the first parameter value
(date_vall) must be greater than the second parameter (date val?). If not, a negative result
will be provided.

I select months_between (date_vall, date_val2) from dual; |

Lab 2 — Basics of data retrieval 71

select months between(to date('15.12.2017', 'DD.MM.YYYY'),
to date('15.2.2017', 'DD.MM.YYYY'))
from dual;

10

select months between(to date('15.2.2017', 'DD.MM.YYYY'),
to date('15.12.2017', 'DD.MM.YYYY'))
from dual;

FL10

The result of such function can also be the real number:

select
months between (to date('15.12.2017 6:22:12', 'DD.MM.YYYY HH:MI:SS'),
to date('13.2.2017 5:13:12', 'DD.MM.YYYY HH:MI:SS'))
from dual;

10,066

Division the difference between two Date values by 30 does not provide relevant data
due to leap years and the number of days in an individual month. However, this function
is robust works correctly, so to get actual age, use this function result.

NEXT_DAY function

The output of the Next day function is the first weekday greater than the defined input
date (date_val).

I select next day(date_val, weekday) from dual;

Tab. 2.1: Weekday

Weekday Description

SUNDAY First Sunday greater than input date (date_val).
MONDAY First Monday greater than input date (date val).
TUESDAY First Tuesday greater than input date (date _val).

WEDNESDAY | First Wednesday greater than input date (date val).
THURSDAY First Thursday greater than input date (date_val).
FRIDAY First Friday greater than input date (date val).
SATURDAY First Saturday greater than input date (date_val).

For the illustration purposes, we will also get the day of the processed date. The date
of the first example is Wednesday, the second example deals with Sunday date:

select actual date,
to_char (actual date, 'DAY'),
next day(actual date, 'SUNDAY'),
to char (next day(actual date, 'SUNDAY'), 'DAY')
from (select to date('15.2.2017', 'DD.MM.YYYY') as actual date
from dual) ;

TO_CHAR NEXT DAY TO_CHAR
(ACTUAL_DATE,'DAY") (ACTUAL_DATE,'SUNDAY") (NEXT_DAY(ACTUAL_DATE,'SUNDAY'),'DAY")

ACTUAL_DATE

15.02.2017

00-00-00 WEDNESDAY 19.02.2017 00:00:00 SUNDAY

72 Lab 2 — Basics of data retrieval

select actual date,
to_char (actual date, 'DAY'),
next day(actual date, 'SUNDAY'),
to char (next day(actual date, 'SUNDAY'), 'DAY')

from (select to date('12.2.2017', 'DD.MM.YYYY') as actual date
from dual);

ACTUAL_DATE ~~ TO_CHAR NEXT_DAY TO_CHAR
e (ACTUAL_DATE,'DAY) (ACTUAL_DATE,'SUNDAY') (NEXT_DAY(ACTUAL_DATE,'SUNDAY'"),'DAY’)
ég:ggiﬁg” SUNDAY 19.02.2017 00:00:00 SUNDAY
TRUNC function

Trunc function dealing with Date type values removes all parts with smaller granularity
than defined. It consists of one obligatory and one optional parameter. The first one
is the Date attribute value (date val), the second one reflects the granularity (format).
If the second parameter is not defined, the default value for the day is used (time sphere is
removed in that case). Thus, smaller granularity values (day, hours, minutes, seconds) are
removed if the second parameter defines a month. The second parameter value can be DD,

MM, YY, HH, MI. Format unit (second parameter) can also be Q (quarter), W (week
of the month), WIW (week in the year), etc.

select trunc(date val, [format]) from dual;

Let’s assume actual time:

select sysdate from dual;

2017.03.02 12:04:36
e 4 0 T
558 585
8§ T 53

s 0

The following code shows the examples:

select trunc(sysdate) from dual;
select trunc(sysdate, 'DD') from dual;

2017.03.02 12:04:36 YYYY.MM.DD HH:MI:SS
4 o9 5 4 00T |
¢ &8 & 3 5 8 RESULT: 2017.03.02 00:00:00
>~ O oS 0
= g Q

select trunc(sysdate, 'MM') from dual;

2017.03.02 12:04:36 YYYY.MM.BB HH:MI:SS
NNy 4 0 T
¢ & &8 3 5 8 I—» RESULT: 2017.03.01 00:00:00
~ 8 -
= W0

select trunc(sysdate, 'YY') from dual;

2017.03.02 12:04:36 YYYY .MM DD HH:ME:SS
Y g Dy 5 0 T
85 8 8§ 8 § I—> RESULT: 2017.01.01 00:00:00
e S5
= 0

Lab 2 — Basics of data retrieval 73

What about the difference between the function result /ast day and getting last day based
on trunc and add _month function? Does it provide the same results? Let’s consider
the following examples. The first one is based on invoking the last_day function. Compared
to the second solution, the time spectrum is not trimmed away.

select last_day(sysdate) from dual;

LAST DAY(SYSDATE) ‘
31.03.2017 19:53:05

select TRUNC (ADD_MONTHS (sysdate,1l) , 'MM')-1 from dual;

TRUNC(ADD_MONTHS(SYSDATE,1),'MM")-1
31.03.2017 00:00:00

2.3.4 Conversion functions

Conversion functions are used for transferring the input value to another data type.
Most of them are called automatically by DBS (implicit conversions). However,
some transformations are recommended to be done explicitly to avoid future problems
with incorrect data processing. Moreover, explicit conversion gives performance benefits.

TO_CHAR function

To_char function converts the input value (date or numeric) into the string format.
Whereas the principles are different, we will describe them separately.

Conversion of the numeric value (num_val) into string format can also be done
automatically by implicit conversions called automatically by the server. However,
such a function can also be called explicitly to ensure that the value will be processed
and evaluated as a string data type value.

select to_char(num val, [format]) from dual;

To_char function dealing with numeric values can also accept the second parameter
— format, which is optional. In principle, it can influence the style of the returned string
format. It can take various format parameter values. We will mention the most important
of them. Value “0” returns leading zero values. Value “9” expresses specified format —
if the digit is not present, space will be used instead. Used Comma defines the position
of the comma in the output format. It is possible to define multiple commas constructing
the number format model.

select to char (123, '999999'), to char (123, '000000"),
to char (123456, '999,999")
from dual;

TO_CHAR(123,'999999") TO_CHAR(123,'000000") ‘ TO_CHAR(123456,'999,999")
123 000123 123,456

Parameter value “RN” transfers input value into Roman numerals.

select to_char (123, 'RN') from dual;

CXXIII

74 Lab 2 — Basics of data retrieval

To_char method can also be used for Date format models. For Date value conversions,
two parameters should be highlighted. The first value is the value of the Date or Timestamp
data type (date_val). The second parameter defines the format_mask. Some standard format
models are shown in the following table.

I select to_char(date_val [, format mask]) from dual;

Tab. 2.2: Format_mask

Abbreviation Meaning

Date:
DD Day of the month (01 up to 31)
Day Day in the week — the first letter is uppercase (e.g., Saturday)
MM Month (01 up to 12)
Month Name of the month, the first letter is uppercase
MON The first three letters from the month name (uppercase)
YY Year (00 up to 99)
YYYY Year (including century, e.g., 1999 or 1901)
RR Year (00 up to 99)
RRRR Year (including century, e.g., 2001 or 2002)
Time:
HH Hour (01 up to 12)
HH24 Hour (00 up to 23)
MI Minute (00 up to 60)
SS Second (00 up to 59)

The third parameter also characterizes the language used during the conversion (primarily
used, if text format should be provided).

I select to_char(date_val [, format mask] [, nls_language]) from dual;

This is an example of its usage:

select to_char(sysdate, 'DD.MM. (Month).YYYY HH24:MI:SS',
'nls_date language=English')
from dual;

TO_CHAR(SYSDATE,’DD.MM.(MONTH).YYYYHH24:M1:SS’,’NLS DATE_LANGUAGE=ENGLISH’)
14.10.(October).2021 14:21:27

select to_char(sysdate, 'DD.MM. (Month).YYYY HH24:MI:SS',
'nls_date_language=Slovak')
from dual;

TO_CHAR(SYSDATE,’DD.MM.(MONTH).YYYYHH24:MI:SS’,’NLS_DATE_LANGUAGE=SLOVAK’)

14.10.(Oktober).2021 14:21:40

Additional spaces can be removed by trimming the output. It can be done by extending
the format using “FM”:

select to_char(sysdate, 'FM DD.MM. (Month) .YYYY HH24:MI:SS',
'nls_date_ language=Slovak')
from dual;

Lab 2 — Basics of data retrieval 75

Never use substring functionalities (substr) to get elements from the date. It is incorrect
and hazardous. If the substr function is used, the input value must be a string.
Thus, an implicit conversion function from Date data type to Varchar2 data type is used,
and server/session date format is used. From that string, the defined substring is obtained.
Therefore, if the Date format was changed, an incorrect substring would be obtained because
of the element's position in the string. It significantly limits the applicability and deployment
options of the solution. Never do it. You simply cannot guarantee that the format will never
be changed.

Let’s consider the following example.

select substr(sysdate, 1, 2), sysdate from dual;

SUBSTR(SYSDATE,1,2) @ SYSDATE
15 15.08.2021 01:51:21

alter session set nls_date format='YYYY.MM.DD';
select substr(sysdate, 1, 2), sysdate from dual;

SUBSTR(SYSDATE,1,2) @ SYSDATE
20 2021.08.15

TO_DATE function

To_date function is similar to the To_char function but in the opposite direction. Value
is transformed from the string format into the Date type value. It consists of two parameters,
which should be mentioned — string value and the format, which carries the same principles
as the format in the To_char method. The optional nls_language parameter will be described
later.

select to_date(string val [, format mask] [, nls_language]) from dual;

Never let the system use Date implicit conversions. It can lead to incorrect data if the
predefined system time format is changed.

TO_NUMBER function

To_number function is used to transfer string value into the numerical value. It is usually
called automatically, if necessary.

select to_number (string val) from dual;

TO_TIMESTAMP function

To_timestamp function is used to convert a string (string val) into the timestamp data
type. This is also the second function, which is highly preferable not to allow to be executed
implicitly. The second parameter (format mask) of the function defines the format
of the string to be transferred. If omitted, the system-defined format is used. However,
it can cause problems — functions will not provide correct results if the format is changed
on the server. It also significantly limits the possibility to extend the application and put
it into another server. If the server time format is not the same, incorrect results will
be provided. See the following results. We use two system Date formats. Without using the
conversion function, wrong data binding will occur. In the first case, the first values delimit

76 Lab 2 — Basics of data retrieval

day followed by the month. In the second example, the order is reversed. DD defines the day,
MM reflects months, the year is expressed by YYYY, time reflects HH24 (24-hour format),
HH (12-hour format), MI (minutes), and SS (seconds). FF delimits fractions of the seconds.

select to_timestamp(string val [, format mask] [, nls_language])
from dual;

select to timestamp('2.9.2016 15:24:13.1', 'DD.MM.YYYY HH24:MI:SS.FF')
from dual;

select to timestamp('9.2.2016 15:24:13.1', 'MM.DD.YYYY HH24:MI:SS.FF')
from dual;

Multilanguage solution can look like this:

select to timestamp('2.March.2016 15:24:13.1"',
'DD.Month.YYYY HH24:MI:SS.FF',
'nls_date language=American')
from dual;

select to timestamp('2.marec.2016 15:24:13.1",
'DD.Month.YYYY HH24:MI:SS.FF',
'nls_date_language=Slovak')
from dual;

2.3.5 Advanced functions

CASE conversion function

Case function is a conditional type with the If-Then-Else functionality. DBS searches
for the first When ... Then branch, for which input expression (in_expr) is equal
to comparison expression (cond_expr, respectively val _expr) and returns the return_expr
for the particular branch. If none of the conditions meets, and the Else clause exists, then such
branch value (else expr) is returned. Otherwise, a NULL value is returned. Notice
that the Case function ends with the keyword “End”.

In principle, we can distinguish two types. The first one puts the condition inside each
When branch. The second one separates the expression to be evaluated, which is located
directly after the keyword Case.

CASE in_expr
WHEN val expr 1 THEN return_expr 1
WHEN val expr 2 THEN return_expr_ 2

WHEN val expr n THEN return_expr n
ELSE else expr
END

CASE
WHEN cond expr 1 THEN return_expr 1
WHEN cond _expr 2 THEN return_expr_ 2

WHEN cond_expr n THEN return_expr n
ELSE else_expr
END

Lab 2 — Basics of data retrieval

77

Let’s have a simple example to describe functionality. The aim is to get the status

of the student in text form based on the attribute status of the student table:

e student.status:

o

S = student (actual),

o E =ended successfully,
o A =aborted,
o X =fired due to disciplinary commission decision.

select student id,
case status
when 'S' then 'student'
when 'E' then 'ended successfully'
when 'A' then 'aborted'
when 'X' then 'fired - disciplinary’
end as student result
from student;
select student id,
case
when status='S' then 'student'
when status='E' then 'ended successfully'
when status='A' then 'aborted'
when status='X' then 'fired - disciplinary'
end as student result
from student;

The results are the same:

COALESCE function

Coalesce function has an unlimited number of parameters, which usually can hold NULL
values. It returns the first NOT NULL value from the list. If none of them is NOT NULL, there
is no other chance, a NULL value is returned.

STUDENT_ID STUDENT RESULT

550545 aborted
550020 student
501567 ended successfully
501319 student

I COALESCE (in_expr_ 1, in expr 2,

in expr n)

I select COALESCE (married surname, birth surname)

from person;

I select COALESCE (employee to,

sysdate) from employee;

DECODE function

The Decode function has similar functionality as the If-Then-Else conditional
processing. This function is used for data transformation. Principles are identical
to the previously mentioned Case function. This is the syntax of the Decode functionality

and an example of the gender and month transformation to the text format.

DECODE (in_expr, search 1, result 1 [, ...]
[, search n, result n]
[, else result])

78 Lab 2 — Basics of data retrieval

select decode (substr(personal id, 3, 2), '5', 'female',
'6', 'female',
'male')
from personal data;

select name, surname,
'Born in ' || decode (mod(substr (personal id, 3, 2), 50),
1, 'January', 2, 'February', 3, 'March',
4, 'April', 5, 'May', 6, 'June',
7, 'July', 8, 'August', 9, 'September',
10, 'October', 11, 'November', 12, 'December',
'unknown')
from personal data;

NULLIF function

Nullif function compares two provided parameter values (exprl, expr2). If the values are
the same, the NULL value is returned. Otherwise, it returns the first parameter value (expr1).
In principle, data types should be the same.

Due to the return value definition, the expr!/ expression cannot be NULL literal
(but the expression can hold NULL value).

select NULLIF (exprl, expr2) from dual;

select NULLIF (null, null) from dual;

ORA-00932: inconsistent datatypes: expected - got CHAR

Select NULLIF(1l, 1) from dual;

NULL

Select NULLIF(1l, null) from dual;

1

NVL function

NVL function allows you to substitute the input value (in_val) with (ret val) value,
if NULL value is encountered. If the in_val value is NOT NULL, the original value is returned.

select NVL(in_val, replace_val) from dual;

select NVL (1, 2) from dual;

1

select NVL (null, 2) from dual;

2

NVL2 function

NVL2 extends the possibilities of the previously described NVL function by another
attribute. The return value depends on the first parameter value (in_val). If it is NULL,
the third parameter value is returned (replace val NULL). Otherwise, the second parameter
value is used (replace_val NOT NULL).

Lab 2 — Basics of data retrieval

79

select NVL2(in_val, replace_val NOT NULL, replace_val NULL) from dual;

select NVL2 (1, 2, 3) from dual; |

: |

select NVL2 (null, 2, 3) from dual; |

3 |
USER function

The User function returns the login of the connected user to the actual session.
The function has no parameters.

select user from dual;

SYS CONTEXT function

Sys_context is a useful function that can provide you with information about the current

environment. It has been introduced in Oracle 8i version to replace the existing USERENV

function. It can accept several parameters and provide you with a range of information

like current user information, session information, services, or nls_parameters set

in the actual session. Individual parameter list evolves over the versions. Therefore, to be

sure, use the actual DBS Oracle documentation release.
There are syntax and some examples:

select SYS CONTEXT (namespace, parameter) from dual;

Tab. 2.3: Sys_context parameters

Parameter

CURRENT SCHEMA

Explanation
Returns the default schema used in the current schema

CURRENT USER

Name of the current user

CURRENT USERID

USERID of the current user

DB_DOMAIN

Domain of the database, from the DB DOMAIN
initialization parameter

DB_NAME

Name of the database, from the DB NAME initialization
parameter

DB_UNIQUE_NAME

Name of the database, from the DB UNIQUE NAME
initialization parameter

EXTERNAL NAME

External name of the database user

Name of the host machine from which the client has

HOST
connected
INSTANCE The identification number of the current instance
INSTANCE NAME The name of the current instance
IP ADDRESS IP address of the machine from which the client has
— connected
ISDBA Retqrns TRUE if the user has DBA privileges. Otherwise,
it will return FALSE
LANG The ISO abbreviate for the language
The language, territory, and character of the session.
LANGUAGE In the following format:

language territory.characterset

80 Lab 2 — Basics of data retrieval

Parameter Explanation

NETWORK PROTOCOL | Network protocol used

NLS CALENDAR The calendar of the current session
NLS CURRENCY The currency of the current session
NLS DATE FORMAT The date format for the current session
NLS DATE LANGUAGE | The language used for dates

NLS TERRITORY The territory of the current session
SERVER HOST The hostname of the machine where the instance is
- running
SESSION USER The database username of the user logged in
SID Session number
Source: https://www.techonthenet.com/oracle/functions/sys_context.php
I select SYS_CONTEXT ('USERENV', 'IP ADDRESS') from dual;
I select SYS CONTEXT ('USERENV', 'CURRENT SCHEMA') from dual;

2.4 Managing NULL values

If the attribute has no value, it can be said that it is NULL or contains NULL.
Such undefined value can be associated with any data type for any column,
which is not restricted to be NOT NULL (e.g., primary key) by definition. It denotes
that actual value is either not known or not meaningful. Several functions have been
introduced to deal with NULL values, to replace undefined values with another real value
in the reports, like NVL, DECODE, CASE, COALESCE, ... Comparison to the nullity
in the conditions must be done using the IS NULL or IS NOT NULL keywords.

select 1 from dual
where null is null;

select 1 from dual
where 1 is not null;

Be aware, it can never be compared to the equality using the mathematical operator =,
!=, <> and so on, because conditions would always be evaluated as NULL and routed
to the ELSE clause of the evaluation processing.

select 1 from dual
where 1 = null;

select 1 from dual
where 1 <> null;

select 1 from dual
where null = null;

select 1 from dual
where null <> null;

All of these four commands return no data:

I no rows selected

Lab 2 — Basics of data retrieval 81

Consider the following table consisting of multiple examples characterizing
the evaluation condition when NULL values are provided.

Tab. 2.4: NULL value evaluation

Input value (in_val) Condition Evaluation result

5 in val IS NULL False
5 in_val IS NOT NULL True
NULL in val IS NULL True
NULL in_val IS NOT NULL False
5 in_val = NULL NULL
5 in_val < NULL NULL
NULL in_val = NULL NULL
NULL in_val < NULL NULL
NULL in val=35 NULL
NULL in val <>5 NULL

As you can see, equality or non-equality evaluation always results in a NULL value.

Therefore, remember that any arithmetic expression containing a NULL value is always
evaluated as NULL. Thus, all operators (except concatenation) return NULL values when
using the NULL value operand.

select 1 + null from dual;

NULL

The concatenation of the strings works a bit differently. In that case, the NULL value
represents the empty string. Thus, the original string is returned if two string values
are concatenated, one of which is NULL. If both of them are NULL, the returned value is
NULL. So, to conclude, if the string consists of at least one character, concatenation will
replace NULL values with the empty string. However, if all operands are NULL, then a NULL
value is returned.

select 'string text' || null from dual;

string text

select null || null from dual;

NULL

2.5 Comparing strings (equality, operator Like)

Condition management based on string values can be done either as equality of the whole
value or just its part passing specific delimitation. To provide such functionality, simple
conditional evaluation can be done using equality or non-equality definition. Generally,
either two string variables (column values) can be evaluated and compared together, or also
constant string can be used, which is bordered by the apostrophes. The following example
shows how to list only persons whose name is “Michael”.

select name, surname
from personal data
where name = 'Michael'; -- 4 rows selected.

82 Lab 2 — Basics of data retrieval

Then, a similar Select statement is used, but the non-equality is tested. What about
the number of rows selected and the cardinality of the table? Is there any problem?
If so, why?

select name, surname
from personal data
where name <> 'Michael'; -- 38 rows selected.

The first Select statement gets 4 rows. The second Select statement returns 38 rows.
However, the total number of rows in the personal_data table is 43. Thus one row is missing.
Where is the problem? Look at the model and schema of the table. Sure, the problem resides
in the attribute definition, whereas it can hold NULL values. In that case, if the row tuple
consists of a NULL value for the attribute name, it does not pass the condition to be part
of the first result set, neither the second one. To see the problem explicitly, extend the first
Select statement by NULL value evaluation condition. As you can see, the result set will
be extended by one row. And that’s the solution.

select name, surname
from personal data
where name = 'Michael' or name is null; -- 5 rows selected.

Comparison of the string format data values can also be made using the Like operator.
In that case, individual characters can be modeled, respectively replaced during
the evaluation by the wildcards. Two types can be distinguished:
e Percentage (%), which characterizes any string length (also empty string is
covered).
e Underscore (), which delimits precisely one character.

Let's consider the following example. The first Select statement will return all names
and surnames of the people whose first name starts with “Carol”. So, if “Caroline” is present
in the database, such rows will be listed, too.

select name, surname
from personal data
where name like 'Carol%';

If you want to get the name list (name, surname) of the persons whose first character
of the name is “J”, multiple solutions can be used (Like operator vs. substr function).

select name, surname
from personal data
where name like 'J%';

select name, surname
from personal data
where substr(name, 1, 1) = 'J';

However, if you want to limit the result set to only name list of the persons, whose first
character of the name is “J”, but the length of the name is 4 (John and Jack are present,
but Jacob not), if you use substr function, it must be then extended by the second condition
managing string length.

select name, surname
from personal data
where substr(name, 1, 1) = 'J' and length(name) = 4;

Lab 2 — Basics of data retrieval 83

Like operator can provide such requirements using only one condition based on defined
wildcard underscore ().

select name, surname
from personal data
where name like 'J Ug

These wildcards can be used anywhere in the string, so if you want to get the list
of persons (name, surname) whose name contains the character “o”, the solution can look
like the following:

select name, surname
from personal data
where name like '%o%';

In the previous case, the character “o0” is inside the name, but the name cannot start
with that character (whereas the value for the name starts with an uppercase character). To get
the right solution, process the string value regardless of the size of the character
(by using the lower function):

select name, surname
from personal data
where lower (name) like '%0%';

The problem of the Like operator is just management of the underscore and percentage
sign inside the string (as a standard character) to the evaluated. In that case, it is necessary
to differentiate between attribute value and part of the Like operator itself by using the Escape
clause of the operator. Let’s have the table Tab_like with one attribute (str) holding these
three values:

o abcd f
e abcdef
e abcd fgh

The aim is to evaluate the fifth character of the string. Following Select statement will list
the first and the last value, whereas it requires the fifth character to be underscore irrespective
of the string length. Thus, the percentage symbol is considered as part of the Like operator,
while the underscore is considered as standard string character (it is preceded by escape
separator). The solution looks like the following:

select * from tab like
where str like 'abcd_%' escape '\';

The last possibility for dealing and comparing string values is based on regular
expressions.

2.6 Using Order By clause

The result set of the defined Select statement is not automatically sorted. Data are returned
based on their location in the memory or physical storage. Using Order By clause allows
you to sort the data either ascending (by using ASC keyword (default option)) or descending
(by using DESC keyword). Naturally, multiple elements can be listed delimited
by the comma. The element name in Order By clause can be either original name, or column
alias can be used, if defined, too.

84 Lab 2 — Basics of data retrieval

order by column_list [{ASC | DESC}] [, ...]

select name, surname as familyname
from personal data
order by familyname, name;

select name, surname as familyname
from personal data
order by surname, name;

Moreover, also sequential numbers (order) of the element in the Select clause can be used.
So, it is sorted based on the surname (second attribute of the Select statement) followed
by the attribute name.

select name, surname
from personal data
order by 2, 1;

In DBS Oracle, the result set can also be sorted by using attributes not listed in the Select
clause. However, it is not a general rule for the whole database system spectrum.

select name, surname
from personal data
order by personal_id;

As described sooner, undefined values — NULL — cannot be compared, which also affects
the Order By clause. By default, when comparing, NULL values are considered the highest
values, so they are listed first for descending sort and last for ascending sort. However, such
an approach can be changed by using NULLS FIRST or NULLS LAST keywords.
Thus, in the first and second examples, NULL values will be listed at the end, the third
and fourth examples, NULL values are listed first.

select field id, specialization id, field name, spec_name
from st field
order by spec name, field name;

select field id, specialization id, field name, spec_ name
from st field
order by spec name DESC NULLS LAST, field name;

200 3 Information systems Information and communication systems
200 1 Information systems Decision support systems

200 2 Information systems Applied informatics

202 0 Computer engineering (null)

200 0 Information systems (null)

102 0 Management (null)

201 0 Information management | (null)

select field id, specialization id, field name, spec_name
from st field
order by spec name NULLS FIRST, field name;

select field id, specialization id, field name, spec_name
from st field
order by spec name DESC, field name;

Lab 2 — Basics of data retrieval 85

FIELD_ID | SPECIALIZATION_ID ‘ FIELD_NAME SPEC_NAME

101 0 Computer engineering (null)

202 0 Computer engineering (null)

100 0 Informatics (null)

201 0 Information management | (null)

200 0 Information systems Applied informatics

102 0 Management (null)

200 3 Information systems Information and communication systems
200 1 Information systems Decision support systems

2.7 Table joining

In the previous definitions, we have dealt only with attributes based on one table.
Generally, listed attributes can be from any table. For these purposes, it is necessary
to highlight the relationships between the tables to connect tables together. Joining is based
on a primary key (described in chapter 2.1 Introduction and chapter 4.4 Entity-relational
conceptual model) of the referenced table and foreign key.

A foreign key is a key used to link two tables together. It is a field (or collection of fields)
in one table that refers to the primary key of another table (or can hold a NULL value,
if not constrained). The table containing the foreign key is called the child table, and the table
containing the primary key is called the referenced or parent table. More about primary
and foreign keys can be found in Lab 4 — Data modeling.

Several opportunities and switches are influencing the Join type. In this section, we will
deal only with INNER Join. Other options will be provided in chapter 8.6 Extended versions
of table joining.

This is the syntax of the Join operation.

select ...
from table namel [{ INNER | {LEFT | RIGHT | FULL} [OUTER] }] JOIN
table name2 { ON(joining conditions) | USING(column_list) }
[{ INNER | {LEFT | RIGHT | FULL} [OUTER] }] JOIN
table namen { ON(joining conditions) | USING(column list) }

The following figure shows the graphical representation of the relational algebra
operation Join.

R4 R2

Rs

Fig. 2.3: Relational algebra operation Join

Inner Join selects all rows from both tables if they match the joining criterion (foreign
key references the primary key of another table). Thus, if you inner join the table
personal_data and student, no information about the persons who are not students (or have
never been) will be listed. Notice the cardinality of the following Select statements.

86 Lab 2 — Basics of data retrieval

The cardinality of the second Select statement (distinct keyword remove duplicates)
is smaller than the cardinality of the third statement, whereas each person can be listed
multiple times in the student table. Moreover, a person does not need to be listed as a student
(the difference between statement 1 and statement 2). On the other hand, the third and fourth
statement cardinality is always the same. A student cannot exist without personal data
information (obligatory membership of the relationship — as a consequence, attribute
personal_id in table student is NOT NULL).

Inner Join Type

Fig. 2.4: Inner Join

select personal id from personal data; -- 35 rows selected.

select distinct personal id from student; -- 33 rows selected.

select personal id, student id
from personal data join student using(personal id);
-- 37 rows selected.

select personal_ id from student; -— 37 rows selected.

When tables are joined together, ON or USING keywords must be used to define joining
criteria. ON keyword can be used anytime. USING keyword can be used only if the names
of the primary and foreign key attributes are the same. Also, notice the difference in the result
sets. When ON is used, individual attributes to be joined are present from both tables.
The difference between them is based on the table origin. Therefore, table names or table
aliases must be used to differentiate them. Both values expressing personal id
(from personal_data as well as student table) are always the same.

select name, surname, student.personal id, personal data.personal_ id
from personal data
join student on(personal data.personal id = student.personal_id);

NAME SURNAME PERSONAL_ID PERSONAL ID_1

Michael | Pearce 841106/3456 841106/3456
Jack Smith 840312/7845 840312/7845
John Young 860907/1259 860907/1259
Carol Pearce 850130/3695 850130/3695
Peter Roger 781015/4431 781015/4431

Vice versa, by using USING keyword, the output set consists of such attributes only once,
so table names nor aliases for such attributes can be used. Highlight the following example
and compare it to the previous one.

select name, surname, personal id
from personal_data join student using(personal_ id) ;

Lab 2 — Basics of data retrieval 87

NAME SURNAME PERSONAL ID

Michael | Pearce 841106/3456
Jack Smith 840312/7845
John Young 860907/1259
Carol Pearce 850130/3695
Peter Roger 781015/4431

If the Using clause for table joining is used, a particular attribute CANNOT be prefixed
by table name or table alias.

select name, surname, personal_id
from personal_data join student using(personal_ id) ;

select name, surname, student.personal id
from personal_data join student using(personal_ id) ;

Generally, any number of tables can be joined together. The order of the joining
is commonly not important and database optimizer selects the most suitable plan
for the execution.

Be aware of the primary key definition, specifically when dealing with composite primary
keys. The whole primary key must be joined, otherwise, a Cartesian product (system
combines each element of the first table with each element of the second table, see chapter
2.8 Cartesian product) will be created. Thus, if you want to list each student's field name and
specialization name, table s¢_field and student must be joined together based on the composite
primary key.

When USING keyword is used, individual attributes are delimited by the comma (,).

select student id, field name, spec name
from student join st_field using(field id, specialization_ id);

When the ON keyword is used, joining conditions are delimited by the AND.

select student id, field name, spec name
from student join st _field on (st_field.field id = student.field id
AND
st _field.specialization_id = student.specialization id);

Be effective when joining tables. The fundamental principle is straightforward — avoid
not necessary JOINs. It can significantly impact the performance, mainly if the amount
of data is relatively high.

Let's consider the following example. We want to list students and their registered
subjects, where the number of credits (ects) is not the same as studying plans. Therefore,
student identifier, subject identifier, and values of credits (expected and real) are selected.
In the following example (fig. 2.5), three tables are joined together — student, subject,
and subject_year.

88 Lab 2 — Basics of data retrieval

‘ STUDY_SUBJECTS |

9= SCHOOL_YEAR __ Number(4,0) NN (PK)

a= STUDENT_ID Number(6,0) NN (PFK)

4= SUBJECT_ID Char(4) NN (PFK) | s studied SUELECT

e Char(5) Fry po2=t9d | 192 SUBJECT D Char(d) NN (PK)
characterizes

‘ SUBJECT _YEAR ‘

4= SCHOOL_YEAR Char(d) NN (PK)

9= SUBJECT_ID Char(4) NN (PFK)

9= GUARANTEE Char(5) (FK)
ECTS Number(3,0) NN
SEMESTER Char(1) NN
ENDING_TYPE Char(1) NN

Fig. 2.5: Data model — Study_subjects, Subject, Subject year

select student id, subject id,
study subjects.ects as real ects,
subject year.ects as expected ects
from study subjects join subject using(subject id)
join subject_year using (subject_id)
where subject year.school year = study subjects.school year
and study subjects.ects != subject year.ects;

The results are correct; however, do you need any data from the subject table? The answer
is NO. Therefore, do not join it:

select student id, subject id,
study subjects.ects as real ects,
subject year.ects as expected ects
from study subjects join subject year using(subject id)
where subject year.school year = study subjects.school year
and study subjects.ects != subject year.ects;

Referenced values are composite, therefore put school year management to the JOIN
operation.

select student id, subject id,
study subjects.ects as real ects,
subject year.ects as expected ects
from study subjects join subject year using(subject id, school_year)
where study subjects.ects != subject year.ects;

2.8 Cartesian product

A Cartesian Join or Cartesian Product is a join of every row of one table to every row
of another table (fig. 2.6). This happens typically when no matching join columns are
specified, or you refer to an incomplete key. For example, if table A with 100 rows is joined
with table B with 1000 rows, a Cartesian Join will return 100,000 rows.

Lab 2 — Basics of data retrieval

89

Cartesian product

_—— 1

1512

1319

P111
P103
P102

1512 P111
1512 P103
1512 P102
1319 P111
1319 P103
1319 P102

Fig. 2.6: Cartesian product

A Cartesian product may indicate a missing join condition. A query must have at least
(N-1) join conditions to prevent a Cartesian product, where N is the number of tables
in the query. The visual denotation of the Cartesian product is following:

R+

N

R3

R>

Fig. 2.7: Relational algebra operation — Cartesian product

The composite primary key is significant for joining. The whole primary key definition
must be used. Otherwise, a Cartesian product is generated. What will happen if you want
to get the full name of the field and specialization of this study? The correct solution looks
like this (USING / ON) — 37 rows are selected.

select * from student join st_field using(field id, specialization_id);

STUDENT_ID ‘

FIELD_NAME

SPEC_NAME

27
28
29
30
31
32
33
34
35
36
37

500425 Information systems Information and communication systems
500426 Information systems Information and communication systems
500427 Information systems Information and communication systems
500428 Information systems Information and communication systems
500429 Information systems Information and communication systems
500430 Information systems Information and communication systems
500431 Computer engineering | (null)

500432 Information systems Information and communication systems
500433 Information systems Information and communication systems
500438 Information systems Applied informatics

500439 Information systems Applied informatics

If you omit one attribute, the following data are produced, which are incorrect (such
students do not study all specializations in the defined field at all). Therefore, be strictly
aware, when joining composite primary key tables. 88 rows were selected, although table

student contains only 37 rows!

90

Lab 2 — Basics of data retrieval

select * from student join st field using (field id);

STUDENT _ID

FIELD_NAME

SPEC_NAME

7k 500433 Information systems | Applied informatics
7T 500433 Information systems | Decision support systems
L 500433 Information systems | (null)
? 500438 Information systems | Information and communication systems
? 500438 Information systems | Applied informatics
LRI 500438 Information systems | Decision support systems
? 500438 Information systems | (null)
L 500439 Information systems | Information and communication systems
L0 500439 Information systems | Applied informatics
? 500439 Information systems | Decision support systems
i 500439 Information systems | (null)

However, sometimes, the Cartesian product can be useful. The following example shows
all subjects, which can be registered for any student. It is necessary to distinguish between
attributes “name” from the table subject and personal_data. Therefore, the table name must
prefix the attribute name.

select personal data.name, surname, personal id, subject_id,
subject.name
from personal data, subject;

2.9 SETs operations (IN, EXISTS)

Controlling the existence or non-existence of the particular data in another table
or the named set can be done using set definition, which is consequently compared
to the defined attribute expression. When the named list is used, individual values are listed,
enclosed by the parentheses, and delimited by commas.

select name, surname
from personal data join student using(personal_id)
where class in (1, 2, 3);

Set can be, however, also formed by the nested Select statement. Such a solution is mainly
used to evaluate the data existence in another table based on referential integrity (primary
and foreign keys). Notice that existence determination and evaluation can also be processed
using table JOINing. However, it is not so effective due to a more significant amount of data.
Vice versa, evaluating non-existence cannot be managed by table Inner JOINing at all,
whereas we would lose the data we are searching for. Therefore, set operations using IN
and EXISTS have been proposed with also their negative meaning — NOT IN / NOT EXISTS.

Let’s have a simple example to get a named list of the persons who have never studied
anything — data about the person are not referenced in the student table. To write such a query,
several operations are performed. Therefore, we will describe principles step by step.
First of all, realize that the tables personal data and student cannot be joined together using
the personal id attribute (we are looking for rows, which cannot be joined ©).
Thus, get the list of the personal_id values, which are part of the student table. The proposed
design would look like this:

select personal id from student;

Lab 2 — Basics of data retrieval 91

Then, get the name list of the persons from the personal data table.

select name, surname from personal data;

Now, link two proposed Select statements together. What does it mean that person has
not studied yet? His personal id value is not present in the student table. Thus, the solution
can look like this:

select name, surname
from personal data
where personal id NOT IN (select personal id
from student);

That’s the first working solution. Individual personal id attribute values are compared
together. It can be, however, rewritten by using the NOT EXISTS set operator. In that case,
the solution can look like the following. Whereas no direct comparison is made

[T L)

from the inner Select clause, constant string “x” is used.

select name, surname
from personal data
where NOT EXISTS
(select 'x'
from student
where personal data.personal_ id = student.personal_id);

Be aware, never forget to add the Where clause, which compares the values from the main
and nested Select statement using IN set operator. It is inevitable, and many coders forget
to code it. However, it leads to incorrect data. If the connection between both Select
statements is not present, all table data will be listed or none. In principle, if the table student
is empty, data about all persons will be listed. Vice versa, if table student consists of at least
one row, none will be listed. Let’s consider, therefore, the following example. There is
no connection between individual Select statements. Thus, no rows will be selected, whereas
we have some data portions in the student table. Be aware. It is an example of incorrect usage,
do not use it like this.

select name, surname
from personal data
where NOT EXISTS (select 'x'
from student) ;

Generally, operator /N can always be rewritten to EXISTS operator, but it is not valid
from the opposite side. If multiple attributes need to be evaluated (e.g., composite primary
key), EXISTS set type should be used. The following example is correct.

select field name, spec_name
from st field
where NOT EXISTS (select 'x'
from student
where st field.field id = student.field id
AND
st field.specialization_id = student.specialization_id);

Notice that new releases of the DBS Oracle allow you to compare multiple attributes
by using IN set. However, it is not standard functionality, and many other database systems
do not support it.

92 Lab 2 — Basics of data retrieval

-- ONLY IN NEW ORACLE DBS RELEASES:
select field name, spec name
from st field
where (field id, specialization_id) NOT IN

(select field id, specialization_id from student);

Controlling the existence and management of composite primary key must be done
as the whole set. It cannot be handled by multiple single element sets. The characteristics
and differences are shown in the following example. Let’s have two tables consisting of these
data (fig. 2.8). Both tables have two attributes, and the aim is to find the combination of

values from table 72, which are not present in table 771.

VALI VAL2

T1

Fig. 2.8: Set comparison

As you will see in the following part, such a solution is not correct at all.

T2

select *
from T2
where vall NOT IN (select id from T1)
and val2 NOT IN (select id2 from T1);

First, let’s evaluate the first condition: vall NOT IN (select id from TI). In this case,
the third (vall=3 ; val2 = 3) and forth (vall=4 ; val2 = 2) rows of the table 72 meet
the condition. Then, evaluate the second condition based on attribute val2: val2 NOT IN
(select id2 from T1). All values of the attribute val2 are present in table 7/ — attribute id2.

Therefore, no rows would be selected. Mapping is shown in fig. 2.9.

VALI VAL2

T1

Fig. 2.9: Set comparison

T2

A different situation arises if the pair is compared using one condition NOT EXISTS.
In this case, values (/,/) and (2,2) are present. However, the combination of values (3,3)
and (4,2) are not present. Thus, the result of the following query is (3,3) and (4,2).

Such values are compared as a pair, not separately.

Lab 2 — Basics of data retrieval 93

select *
from T2
where NOT EXISTS (select 'x'
from T1
where vall = id
and val2 = id2);
VALI VAL2
1 1
2 2

Please note that working with the set /N does not work correctly by comparison of NULL
values.

As mentioned earlier, NULL values cannot be compared directly using mathematical
operators. Let’s have the table contact consisting of the contacts of the persons
in the personal_data table. The structure of the contact table row is following:

Name Null Type
CONTACT ID NUMBER
PERSONAL_ID CHAR (11)
TYPE CHAR (1)
VALUE VARCHARZ2 (50)

If the foreign key value (attribute personal id of the contact table) can contain NULL
values, incorrect results will be provided using set type IN. Consider that three people
do not have contacts. Some of them have multiple. Moreover, two contacts are stored without
personal_id reference. Therefore, the following Select statement will provide no data.

select *
from personal data
where personal_id NOT IN (select personal_id
from contact);

To get correct results, NULL values must be removed, either by the Where clause
or by the transformation to another existing value (NLV, CASE, DECODE, ...).

select *
from personal data
where personal_id NOT IN (select personal_id
from contact
where personal id IS NOT NULL) ;

PERSONAL ID NAME A SURNAME | STREET NATIONALITY
B 921225/7452 Sim Eas Kolarovce 12 Kolarovce 01401 | SK
1| 830324/7887 Daniel Gomes Razusa 40/10 Prievidza4 | 97101 | SK
< 860103/2238 John Young Bratislavska cesta 2 | Zilina 01001 | SK

When the EXISTS set type is used, NULL values are not problems because of the Where
clause definition, which automatically removes such non-joinable NULL data.

94 Lab 2 — Basics of data retrieval

seleee *
from personal data
where NOT EXISTS
(select 'x'
from contact
where contact.personal id = personal data.personal id);

PERSONAL_ID SURNAME | STREET NATIONALITY
B 921225/7452 Sim Eas Kolarovce 12 Kolarovce 01401 | SK
"I 830324/7887 Daniel Gomes Razusa 40/10 Prievidza4 | 97101 | SK
< 860103/2238 John Young Bratislavska cesta 2 | Zilina 01001 | SK

2.10 Managing duplicate values

Duplicate value management is a significant part of data management. A person can study
multiple times (can be present in the table student numerous times), each subject can be
studied more than once by the same person (if the previous attempt to pass the exam failed).
Distinct keyword removes the duplicate tuples from the output.

The following example shows the principles of using the Distinct keyword applied
to the result set before returning to the user.

Let’s consider the following example, person Jack Robinson is listed multiple times:

select name, surname, personal id
from personal data join student using(personal id);

NAME SURNAME PERSONAL ID

Peter Roger 781015/4431
Jack Robinson 791229/5431
Jack Robinson 791229/5431
Jack Robinson 791229/5431

To remove the duplicate data tuples from the result set, the distinct keyword can be used.
In that case, Jack Robinson will be listed only once, whereas it reflects the same person
(the same personal_id value). If the values of personal id were not the same (they would be
only namesakes — same name and surname), these data would both be in the result set.

select distinct name, surname, personal id
from personal data join student using(personal id);

NAME SURNAME PERSONAL _ID

Peter Roger 781015/4431
Jack Robinson 791229/5431
Mark Bailey 800407/3522

The previous result set will consist of the name, surname, and personal_id of the persons
who started studying at least once. The person will be listed only once, regardless
of the number of his data in the student table. Thus, such Select statement can be rewritten
using set operators providing the same results. Solution:

select name, surname, personal id
from personal data
where personal id IN (select personal_id
from student);

Lab 2 — Basics of data retrieval 95

select name, surname, personal id
from personal data
where EXISTS (select 'x'
from student
where
student.personal id = personal data.personal id);

However, if you remove the personal id attribute and apply the rule for duplicate tuples
removing, incorrect data will be provided due to namesakes — in the result set, e.g. person
Milan Clarke is listed only once, although it references two persons with the same name
and surname — they have different personal id attribute values.

select distinct name, surname
from personal data join student using(personal id);

Milan Clark 840409/7900 .
Milan Clarke
Milan Clark 840410/6777

Fig. 2.10: Select statement result set

So to conclude, the distinct keyword is vital for the processing, but be aware of using
the unique identifier to remove possibilities to get non-reliable data. If you want to use
the Distinct operation without providing personal_id to the result set, two phases must be
done. Firstly, remove duplicates dealing with the trinity (name, surname, personal id),
then list just the first two attributes by nesting the query.

2.11 Table alias

Besides the attribute (column) alias, also table name can be aliased to simplify the naming
and improve code readability. In the previous chapter, if the attribute must be enhanced
by the table name (to distinguish which attribute is involved), the fully qualified name has
been used — the name of the attribute has been preceded by the table name.

select name, surname, personal id
from personal data
where EXISTS
(select 'x'
from student
where student.personal_id = personal_data.personal_id);

The alias name can be placed directly after the name of the table. It replaces the original
table name in the defined query. Therefore, alias must be used instead of the original table
name itself. Let’s consider the following examples:

select name, surname, s.personal id
from personal data p join student s on (p.personal id = s.personal id);

select name, surname
from teacher £ join study subjects ss on (t.teacher id = ss.lecturer)
where ss.school year = 2008;

select p.name || ' '|| p.surname as student,
t.name || ' '|| t.surname as teacher
from personal data p join student s using(personal id)
join study subjects ss using(student id)
join teacher t on (ss.lecturer = t.teacher id);

96

Lab 2 — Basics of data retrieval

Be aware if table alias is defined, original table name cannot be used at all.
So, the following example will raise an exception:

se

lect name, surname, student.personal id
from personal data p

join student s on (personal data.personal id = student.personal id);
2.12 Practice

1. List all the data about the students.

2. Select the name list of the second-class students.

3. Select the name list of the students born in 1985 — 1989 (year).

4. Select the name list of the students who study in the detached office in the Slovak
town Prievidza (the second character of the studying group is “P”).

5. Order the previous results based on surname.

6. Select the name list of the students studying the subject “BI06” and sort them.

7. List all combinations of the lecturer / subject _id. Remove duplicates.

8. Extend the previous Select statement by the name of the teacher and the name
of the subject.

9. Select the name list of the lecturers for subjects taught during the second class
of the bachelor study (the number of field id belongs to <100, 199>).

10. Select the subject names that are studied by the student “Smith”.

11. Get the number of the rows in the table “study subjects”.

12. Select the name list of the people studying the subject “Database systems”.
Distinguish the different school years.

13. Select the name list with the date of birth.

14. Select the number of the student's credits with student id = 500439 based
on the successfully passed exams.

15. Select the name list of the students in the second class together with their actual age.

Dealing with the Cartesian product
(Solution code is described at the end of this lab):

1.
2.

Get the list of all subjects, which each person can register during the study.
For each student (actual or ended successfully), list all the subjects which can be
registered to him — only those can be selected, which have not been passed
successfully yet. For simplicity, evaluate the subject passing based on exam results.
e student.status:

o S =student (actual),

o E =ended successfully,

o A = aborted,

o X =fired due to disciplinary commission decision.

Extend the previous solution by covering the ending type of the subject:
o attribute ending type of the subject _year table:
o B =exam + accreditation to exam,
o E=exam,
o S =semester only (no exam).

Lab 2 — Basics of data retrieval 97

Cartesian product — solutions
1. Get the list of all subjects, which each person can register during the study.
The solution is based on using two tables — personal _data and subject without any
JOINs. Do not forget to use column alias and attribute qualified name.

select pd.name as name, surname, subject id,
subj.name as "NAME OF THE SUBJECT"
from personal data pd, subject subj;

2. For each student, list all the subjects, which can be registered for him — only
those can be selected, which have not been passed successfully yet. For
simplicity, evaluate the subject passing based on exam results.

Also, table personal data and subject is used without any JOINs. Then,
two conditions are evaluated. The first one is characterized by the set type IN
to ensure that the person is an actual student (status='S").

personal id IN (select personal_id
from student
where status = 'S')

The second condition limits the list of the subjects possible to be registered
by a particular person. The linking is based on the personal id attribute, whereas
the subject can be passed only once by one specific person regardless of the number
of his studies (actual or correctly ended). Thus, if some subject has been passed
successfully, it cannot be registered later by the same person (if the referenced study
has been either completed (status='E’) or stated as an actual student (status='S")).
The passed exam, in this case, is delimited by the exam result — 4, B, C, D, and E.

NOT EXISTS (select 'x'
from student stud join study subjects ss using(student id)
where pd.personal id = stud.personal id
and subj.subject id = ss.subject id
and ss.result in ('A', 'B', 'C', 'D', 'E'")
and status in ('S', 'E'));

Thus, the complete Select statement can look like this:

select pd.name as name, surname, pd.personal_ id,
subject id, subj.name "NAME OF THE SUBJECT"
from personal data pd, subject subj
where personal id IN (select personal_ id
from student
where status = 'S'")
and NOT EXISTS
(select 'x'
from student stud join study subjects ss using(student id)
where pd.personal id = stud.personal id
and subj.subject id = ss.subject id
and ss.result in ('A', 'B', 'C', 'D', 'E")
and stud.status in ('S', 'E'));

3. Extend the previous solution by covering the ending type of the subject:
e attribute ending_type of the subject_year table:
o B =exam + accreditation to exam,
o E=exam,
o S =semester only (no exam).

98 Lab 2 — Basics of data retrieval

In this case, the condition to evaluate the subjects is more complex. In principle,
three situations based on ending type can occur, which must be handled:
1) Subject ends with semester only (ending type ='S’). In this case, if the student
has a value of sign_date, the particular subject is passed successfully.

I ending type = 'S' and sign date IS NOT NULL

2) Subject ends with exam only (ending type = 'E’). In this case, two spheres
must be managed — exam result and exam date must be filled. For exam results,
only values 4, B, C, D, and E are suitable.

ending type = 'E'
and sign date IS NOT NULL
and result in ('a', 'B', 'C', 'D', 'E')

3) Subject ends with the exam as well as accreditation to the exam. In that case,
exam_date and sign_date must be filled. Moreover, correct exam results must
be provided — only values 4, B, C, D, and F are suitable.

ending type = 'B'
and sign date IS NOT NULL
and exam date IS NOT NULL
and result in ('A', 'B', 'C', 'D', 'E")

All other cases are considered as an unsuccessful subject ending.

So, the complete solution can look like this. Notice that the tables study subjects and
subject_year can be directly joined without dealing with the subject table. However, be aware
of two attributes to be joined together (subject _id and school year). Reference to the outer
Select statement is done using the subject_id attribute. Therefore, the ON option must be used
for JOIN.

select pd.name as name, surname, pd.personal_ id,
subject id, subj.name "NAME OF THE SUBJECT"
from personal data pd, subject subj
where personal id IN (select personal id
from student
where status = 'S')
and NOT EXISTS
(select 'x'
from student stud
join study subjects ss using(student id)
join subject year sy on(ss.subject id = sy.subject id
and ss.school year = sy.school year)
where pd.personal id = stud.personal id
and subj.subject id = ss.subject id
and status in ('S', 'E'")
and ((ending type = 'S' and sign date IS NOT NULL)
or (ending type = 'E'
and sign_date IS NOT NULL
and result in ('A', 'B', 'C', 'D', 'E'))
or (ending type = 'B'
and sign_date IS NOT NULL
and exam date IS NOT NULL
and result in ('A', 'B', 'C', 'D', 'E')))

Lab 3 — Insert, Update, Delete statements and transactions 99

Lab 3 — Insert, Update, Delete statements
and transactions

This lab deals with the data manipulating operations modifying the database. Namely,
adding new tuples is operated by the Insert statement, which can be specified explicitly by
listing values (loading one row per command) or composed by the Select statement.
The Update statement modifies the existing rows. The Delete statement removes the rows from
the tables. The key fact is that each command can reference only one table, thus, no Joins are
available there!

The second part of the chapter deals with the referential integrity operated by the primary
and foreign keys. These are the core elements dealing with the integrity and availability to
interconnect multiple tables.

Whereas each statement is part of the transaction, after the processing, it must be ended
either by approving it (making the data changes durable and available across multiple
sessions and transactions) or by refusing it (getting original data states).

3.1 Introduction

Data manipulation language (DML) is a family of syntax command elements covering
Insert, Update, Delete and Select statements. In this lab, we will deal with destructive
operations, which modify data stored in the database. However, also Select statement will
be used as part of the conditions. It is necessary to emphasize that Insert, Update, and Delete
can always manage ONLY ONE TABLE. If the condition is based on another table,
the nested Select statement must be used (operated by the IN or EXISTS operation
set reference). Once again, no join operators can be used inside destructive DML. Insert
statement is used for adding new row tuples to the database. The Update reflects changing
existing values and Delete removes rows from the database (always the whole row!).
The next part describes the syntax, possibilities, and principles of usage.

3.2 Insert statement

insert into table name[(list of attributes)]

{

values (list of_ values)

select ...

};

Above, Insert statement syntax is defined, where list_of attributes represents the list
of attributes, the order is essential and reflects the appropriate values inside the list_of values
set. The clause list_of attributes is optional. If not written explicitly, the order is defined
by the table definition (desc table name), and all attribute values must be added
(with the assumption that they are not set using a trigger). By using the Insert statement,
at least NOT NULL values without default values must be defined directly. Moreover,
constraints must be met (primary key; the foreign key must reflect the primary key (or unique
index, respectively)). Otherwise, the data will not be inserted.

100 Lab 3 — Insert, Update, Delete statements and transactions

Primary key is a specific set of attributes associated with the table, which uniquely
identifies each record in a database table. The primary key (PK) must contain UNIQUE
values and cannot hold NULL. A table can have only one primary key, consisting of single
or multiple fields (composite primary key). It must be also minimal (by removing any
attribute from the primary key set, aspect of uniqueness would be lost). More about the
primary key definition, management, and importance will be described later in chapter 11.3.2
Primary key.

When dealing with the Insert statement, it is necessary to distinguish the usage
and limitations of the Values clause in comparison with the Select statement inside it. Values
clause is used for adding specific values explicitly — constant strings. One statement with
a Values clause can add only one row. Using the Select clause allows you to Insert the result
set of the Select statement into the table. One statement with used Select statement can add
multiple rows to the table. Be aware, do not combine the Values clause with Select inside one
statement, although it is possible to define it like that in some cases.

3.2.1 Insert— values type

Let’s get the structure of the personal data table using the desc command.

I desc personal data

Name NULL? Type
PERSONAL 1D NOT NULL CHAR (11)
NAME VARCHAR2 (15)
SURNAME VARCHAR2 (15)
STREET VARCHARZ2 (20)
TOWN VARCHARZ2 (50)
Z1P CHAR (5)
NATIONALITY CHAR (2)

In the first type of statement — the order of inserted attributes is not managed explicitly.
In that case, the order, number, and data types are delimited by the table structure
definition. Therefore, values, which should not be inserted, must be set as NULL explicitly.
Naturally, it is possible to define NULL value only if no specific (NOT NULL) constraints
are defined.

insert into personal data
values ('905612/8576', 'Michael', 'Flower', null, null, null);

If the list of attributes is noted, the order of values (list_of values) must be the same
as the order of attribute definition in the list_of attributes. Thus, the attribute values of street,
town, zip, and nationality are not specified in the following example. Therefore, they will
be set to NULL automatically (generally, default value can be specified to replace undefined
value).

insert into personal data(name, surname, personal id)
values ('Michael', 'Flower', '905612/8576'");

Be aware. One Insert-values statement can insert ONLY ONE ROW to ONE TABLE.
There are no JOINs allowed.

Lab 3 — Insert, Update, Delete statements and transactions 101

3.2.2 Insert— Select type

The disadvantage of the Insert-values statement type is that it can insert only one row
to the table. Thus, if we have an auxiliary table with data to be inserted into the main table,
it would be necessary to create one new statement for each row. Although it can be done
relatively simply by statement generation, it is unnecessary to do it as explained. In addition,
it would be complicated, time-consuming, and resource-demanding. Instead, we can use
the Insert-Select statement type to solve the problem, which allows adding multiple rows
to the table by one statement, based on another table data. In this case, again, it is possible
to put data only to one table. Thus, no JOINs are allowed (only in the embedded Select
statement).

Insert statement using auxiliary table can look like this:

insert into personal data(name, surname, personal id)
select name, surname, pid
from student_results
where result in ('p', 'P'); -- passed

Notice that there is no Values clause.
It is also possible to combine Select statement results and constants:

insert into student (student id, personal id, field id, specialization id,
status, class, first date)
select st id, pid, field, specialization, 'S', 1, sysdate
from student results
where result in ('p', 'P'):;

Let's have the following example. We will describe what to do and how to get the desired
results step by step. The aim is to add to all Informatics students in the first class all obligatory
subjects for them in the academic year 2016/2017.

So, get the first class student set (field id is 100, specialization_id is 0):

select student id
from student

where class = 1
and field id = 100
and specialization id = 0;

Get the list of subjects, which should be added to students:

select sy.subject id, sy.school year, guarantee, ects
from st program stp JOIN subject year sy ON
(stp.subject_id = sy.subject id
and
stp.school year = sy.school year)
where class = 1 and school_year = 2016
and field id = 100 and specialization id = 0
and mandatory type = 'M';

Creating a list of all students and subjects, which should be assigned to them. Notice that
the Cartesian product is used. Legitimate usage is, naturally, allowed. Thus, two Select
statements are merged. Student data are shown in bold.

102 Lab 3 — Insert, Update, Delete statements and transactions

select sy.subject_id, sy.school year, guarantee, ects, student id
from student s, st program stp JOIN subject year sy ON
(stp.subject id = sy.subject id
and
stp.school year = sy.school year)
where stp.class = 1 and stp.school year = 2016
and stp.field id = 100
and stp.specialization id = 0
and mandatory type = 'M'
and s.class =1
and s.field id = 100 and s.specialization_id = 0;

Now, such data can be inserted into the study subjects table.
The complete solution can look like this — the previously defined Select statement
is encapsulated into the Insert statement.

insert into study_ subjects(subject id, school_year, lecturer, ects,
student_id)
select sy.subject id, sy.school year, guarantee, ects, student id
from student s, st program stp JOIN subject year sy ON
(stp.subject id = sy.subject id
and
stp.school year = sy.school year)
where stp.class = 1 and stp.school year = 2016
and stp.field id = 100
and stp.specialization id = 0
and mandatory type = 'M'
and s.class =1
and s.field id = 100 and s.specialization id = 0;

3.3 Update statement

update table name
set attribute = value
[, attribute2 = values2 ...]
[where conditions];

Using the Update statement, we can modify multiple rows and multiple attributes
in one statement. Like other DML statements, only one table can be modified by one
statement. Thus, if two tables are to be updated, at least two statements must be defined.

No JOINs are allowed there. Thus, if the condition must be evaluated based on other table
data, the subquery must be defined.

If new values are in the auxiliary table, the subquery can be used in the SET clause.

Be aware, do not forget to add conditions to avoid data loss. Moreover, all new values
should be present in the auxiliary table. Otherwise, they will be replaced by NULL values.

Let's have the following example. We will change the attribute value for the directly
defined row by the primary key. The solution can look like the following. Two attribute
values will be changed (status, final_date). How many rows will be changed? No more than
one, because of the condition in the Where clause — student id is a unique identifier. If such
a student does not exist, no rows will be affected. When multiple attributes are updated, these
values are delimited by a comma (,), the keyword Set is used only once.

Lab 3 — Insert, Update, Delete statements and transactions 103

update student
set status = 'a’',
final date = sysdate
where student id = 12345;

Changes can be based on conditions outside the table. In that case, a nested Select
statement based on /N or EXISTS must be used. In the following case, status and final date
attribute values will be changed for students who graduated last year. The condition is based
on the graduate students table. Therefore, a nested Select statement must be used.

update student
set status = 'E',
final date = sysdate
where student id IN (select id
from graduate_students
where year = to_char(sysdate, 'YYYY') - 1);

Also, the new value can be obtained from the Select statement. However, do not forget
to link data together (by the Where clause, s.student id references the table row
to be updated). It will ensure that no data will be lost, whereas auxiliary table new_student
does not need to store the same for the students.

update student s
set st group = (select new group
from new student new
where new.student id = s.student id)
where exists (select 'x'
from new_student new
where new.student id = s.student id);

However, how to update data based on the composite primary key? The evaluation based
on another table should cover several conditions, which MUST be evaluated as one
composite condition (never try to evaluate composite conditions separately, incorrect results
will be provided). Thus, consider the following example. We want to set the value
of the first_date attribute to actual time for students studying Informatics:

update student
set first date = sysdate
where first date is NULL
and (field id, specialization_id)
IN (select field id, specialization_id
from st field
where field name = 'Informatics'
and spec_name is null);
-- ONLY IN NEW RELEASES OF THE DBS ORACLE!!!

Notice that mentioned syntax is not part of the SOQL norm. Therefore, it cannot be used
in almost all database system types. However, new versions of the Oracle database systems

offer that functionality.

104 Lab 3 — Insert, Update, Delete statements and transactions

The universal solution uses subquery based on EXISTS keyword:

update student s
set first date = sysdate
where first date is NULL
and exists (select 'x'
from st field stf
where field name = 'Informatics'

and spec_name is null
and stf.field id = s.field id

and stf.specialization id = s.specialization_id);

1t is a significant fault and produces incorrect data (for further information, see chapter
2.9 SETs operations (IN, EXISTS)).

update student
set first date = sysdate
where first date is NULL
and (field id) IN (select field id
from st field
where field name = 'Informatics'
and spec name is null)
and (specialization_id) IN (select specialization_id
from st field
where field name = 'Informatics'
and spec_name is null);

I Be aware, never separate composite primary key into separate conditions!

3.4 Delete statement

delete from table name
[where conditions];

One statement can delete data only from only one table. If the Where clause is omitted,
all table data are deleted. Be aware of respecting referential integrity (by default, you cannot
delete the row with a primary key if other data rows reference it — e.g., you cannot delete
person, if he is referenced in the Student table. Similarly, student cannot be deleted if any
particular student_id is referenced by the Study subjects table).

If the condition to be evaluated is based on data from another table, a subquery should
be used.

Consider the following examples. All data will be deleted:

I delete from study subjects;

Rows are deleted based on the same table condition:

delete from study subjects
where student_id in (12345, 13627);

Rows to be deleted are based on another table conditions:

delete from subject year
where student id in (select student id
from student
where status = 'A');

Lab 3 — Insert, Update, Delete statements and transactions 105

If the condition is based on multiple columns, the order and correct treatment
are inevitable. The previous example is based on only one column — student id. The same
result will be reached by using EXISTS principle:

delete from subject year
where exists (select 'x'
from student s
where status = 'A'
and subject_year.student_id = s.student id);

However, suppose the condition based on referencing another table composite primary
key. In that case, it must be handled as one condition and managed using EXISTS set operator:

delete from student s
where EXISTS (select 'x'
from st _field stf
where field name = 'Informatics'

and spec name is null

and s.field id = stf.field id

and s.specialization id=stf.specialization_id)

and student id not in (select student id
from study subjects);

3.5 The order of operations

Changes performed on data should meet the correct order of operations to reflect
consistency. References (foreign keys) should always cover the existing primary key!

3.6 Foreign key definition

The foreign key's value should point to the associated primary key value or NULL value.
However, it is not inevitable to reflect the primary key in general. Also, unique index
reflection is satisfactory. These rules managing order of operations must be met:

o Insert statement (+ load) — associated primary key must be inserted sooner than
the reference to it by a foreign key.

o Delete statement — Foreign key values must be deleted sooner than the row
with the referenced primary key.

fab_B
b A g= 1d2 Integer NN (PK) tab C
9= id1 Integer NN (PK) o= — — @@= id1 Infeger (FK) po— — — — — edq_71d3 Integer NN (PK)
= id4 Integer (FK) d= id2 Integer (FK)

tab_E
d= id3 Integer NN (PFK)
g= id4 Integer NN (PFK)
g= id2 Integer (FK)

fab D o — — - — — - [S |
d= 1d4 Integer NN (PK)
I

Fig. 3.1: Data model

Tab. 3.1 consists of the provided operation order evaluated by the possibility to do that.
Reference model is shown in fig. 3.1.

106 Lab 3 — Insert, Update, Delete statements and transactions

Tab. 3.1: Operation order possibilities

Order ‘ Insert ‘ Delete ‘
Tab A, Tab B, Tab C, Tab D, Tab E | NO NO
Tab A, Tab D, Tab B, Tab C, Tab E | YES NO
Tab E, Tab C, Tab B, Tab D, Tab A | NO YES
Tab D, Tab A, Tab B, Tab C, Tab E | YES NO

3.7 Changing the primary key value

Primary key values are usually set based on sequence using triggers. In that case,
the primary key does not have special denotation, and it is not necessary to update it.
A typical example can be student id — a simple numeric value. However, it can also have
a special meaning. A typical example can be found in the personal data table. The primary
key consists of a personal_id attribute, which includes birth date information. If there is any
mistake in the Insert statement execution (clerical error), it is necessary to update it later.
However, it must be done to emphasize references — foreign key (in table student). It is not
possible to write a direct update statement, whereas the personal _id attribute in the student
would point to a non-existing row in the personal data table, which is not permitted
and would cause raising an error.

update personal data
set personal id = '810701/8079'
where personal id = '810101/8079"';

SQL Error: ORA-02292: integrity constraint (STUDENT ENG.SYS C0010300)
violated - child record found

02292. 00000 - "integrity constraint (%$s.%s) violated - child record
found"
*Cause: attempted to delete a parent key value that had a foreign
dependency.
*Action: delete dependencies first then parent or disable constraint.

Therefore, the natural question is based on the correct order of operations to reflect
the necessary change. For the illustration, take the following example.
The aim is to correct the personal id value.
Preliminaries:
1. To change the primary key in the personal data table, the foreign key in the table
student must be changed sooner.

2. Foreign key — personal id attribute can be changed only to the existing value,
not NULL mark.

The method for changing the personal_id attribute value is, therefore, as follows:

1) Create a copy of the personal data with the updated primary key version. Thus,
the concerned person will be temporarily stored twice. No problem, it is done
inside the transaction (see section 3.8), so it is not visible to any other users /
sessions / transactions.

insert into personal data
select '810701/8079', name, surname, street, town, zip, nationality
from personal data
where personal id = '810101/8079';

Lab 3 — Insert, Update, Delete statements and transactions 107

Change the reference in the student table to the corrected version of the personal id
value.

update student
set personal id = '810701/8079'
where personal id = '810101/8079"';

Remove the original person from the personal data table.

delete from personal data
where personal id = '810101/8079"';

3.8 Transactions

Each performed database request (query) is encapsulated by the transaction, although you
have not perceived it yet. The transaction ensures atomicity, consistency, isolation,
and durability (ACID). Thanks to that, it is still an easy way to get the original values before
approving any change. On the other hand, when any change is approved, it cannot be
reversed. Such activity is controlled by the Transaction Control Language (TCL), consisting
of these commands:

e Commit — approving (confirmation) transaction. All changes are durable without
the possibility of getting rid of changes. It is provided by reflecting all changes
to the physical redo log file by the Log Writer background process. If the system's
crash occurs, it is possible to reconstruct data using stored log files.

e Rollback — getting the changes back.

e Savepoint — Savepoint command does not end the current transaction, but it creates
a point to which the transaction can be reversed. At the end of the transaction,
all Savepoints are removed automatically.

Notice that the Exit command of the SQL*Plus (SOL Client) automatically executes
Commit. Therefore, never shut down the environment tool (console) by clicking on the cross
in the right part of the window.

Be aware each DDL (and also DCL) statement automatically generates the Commit
command. It cannot be changed. Principles will be described later.

Let’s have the following example describing the management of the transaction
and consecutive value stored.

create table Tabl (id integer);
insert into Tabl values (1) ;
insert into Tabl values (3);
insert into Tabl select id+1l from Tabl;
commit;
-- Commit complete.
select * from Tabl order by 1;

What about the values stored? Attribute id will hold these values: /,2,3,4. If you rollback
the transaction, the same results will be obtained. Why? Because no change has been made
since ending the previous transaction. However, let’s insert one new row (/D value = 10).
What will happen if you select all data from the table?

108 Lab 3 — Insert, Update, Delete statements and transactions

insert into Tabl wvalues (10);

select * from Tabl;

Naturally, the inserted value will be present. Thus, the output will consist of /,2,3,4
and /0.

What will happen if you rollback the transaction? Value /0 will be removed.

rollback;

select * from Tabl;

However, notice that there is also isolation characteristic of the transaction. Thus,
no other transaction will see the values before the successful end of the transaction.
Moreover, the transaction manager ensures that no data can be lost after transaction Commit.

Such a principle is described in the following example. Let’s us assume two sessions
of the same user, who has created a previous table (7abl) with defined values (/,2,3,4).
From session I, the user adds a new row using the Insert statement with value 700.
As you can see. Such row is not visible in session 2 until the transaction approving (commit).
Similarly, if session I deletes some rows from the database, they will still be visible
and available in session 2 until the successful end of the transaction (commir).

The order of operations of the following example is essential and reflects the sequence
from top to bottom.

Tab. 3.2: Transaction management

Session 1 Session 2

Insert into Tabl values (100);

Select id from tabl;
--1,2,3,4
Select id from tabl;
--1,2.3.4,100
Commit;
Select id from tabl;
--1,2,3,4,100
Delete from Tabl where id=100;
Select id from tabl;
-1,234

Select id from tabl;

Lab 3 — Insert, Update, Delete statements and transactions 109

Session 1 Session 2
--1,2,3,4,100
Commit;
Select id from tabl;
--1,234

As already mentioned, always remember that each DDL and DCL commands generate
Commit automatically.

insert into Tabl values (20);
create table Tab2 as select * from Tabl;

-- commit is generated automatically
select * from tabl;

Thus, now, if you write the Rollback command, nothing will happen. Value 20 cannot be
removed at all (the transaction has ended successfully).

rollback;

select * from Tabl;

3.9 Practice

3.9.1 Insert statements

1. Insert the following data into the particular tables (personal data, student,
study subjects). Set the values, which are not stated explicitly, to NULL, if possible,
or propose appropriate values based on integrity constraints.

Personal_id Name Surname Student id Class St group Field / specification f::;‘?ge‘l
BI11 (2013),
. Informatics, without BI02 (2015),
875622/2134 | Martina | Plush 123 1 571012 specification BEOI (2014),
BEO1 (2015)
Information systems, 1108 (2012),
890422/8454 | Peter New 90 2 5ZSA21 Applied informatics 1107(2007)
. . Computer engineering, BHO01(2009),
906212/4797 | Emily Smith 23 3 5ZP031 wiant spesienion BF08(2009)
' . BI11(2006),
§85121/3767 | Bella | Gloth | 8 3 szio3p | Mnformatics, without BHI8(2009),
specification

Fig. 3.2: Input data

Notes:
e Attribute values lecturer and ects should be set using subject year table
(use the value for the highest school year, if not stored for a particular year).

110

Lab 3 — Insert, Update, Delete statements and transactions

e The first two rows of the table should be inserted using the Insert-values statement
type.

e For loading the third and fourth row, use the defined tables person (personal
and student data) and subject pref (the list of subjects, which should be added
to the appropriate person). Download script for these two tables from the USB
medium or server (student_pref script.sql), respectively. Execute the file (copy the
code to the SQL developer and execute it).

insert into personal data(name, surname, personal id)
select name, surname, pid from person;

e If you are using local server, the particular source table can be present
in the different schema (owned by the different user). To reference another user
table, the fully qualified name should be used — the table name must be prefixed
by the name of the owner schema (in the following case, the username is kvet _eng).
Particular data are available on the USB medium or server storage, respectively.

insert into personal data(name, surname, personal id)
select name, surname, pid from kvet_eng.person;

2. Insert the information about the new teacher — name: Michael, surname: Flower.
Set the personal identifier to the maximal assigned value increased by one.

3.9.2 Update statements

Change the surname of the person “Peter New” to “Peter Old”.

Change the name of the person with student id = 8 to Susanne.

Change the assigned subject B//1 to BI0I only for the first-class students.

Change the department to DI to all teachers without assigned value.

Change the class to the value increased by one to students with status “S”, but only
those, that are not in the last class (bachelor — 3 classes, engineering study —
2 classes). Change also the st_group. Moreover, use only one statement to perform
the requirements.

il

Structure of the st_group:

5 z S A 2 2
Faculty workplace field specialization class group id
Notices:
Get substring: substr(value, from, [size])
String concatenation: 'Hello' || ' world.'
Bachelor study: st field € <100; 199> 3 classes
Engineering study: st_field € <200; 299> 2 classes

3.9.3 Delete statements

1. Delete the subject BEO! for a student with student id = 123.
2. Delete the subject BI0] for all students with the st group 521022.
3. Delete all data about students whose registration year was not later than 2008.

Notes:
e To get the date part units, both solutions are equivalent.

http://www.vyznam-baby-mena.com/n/Susanne

Lab 3 — Insert, Update, Delete statements and transactions

111

select

from

to_char(sysdate, 'DD') as day,
to_char(sysdate, 'MM') as month,
to_char(sysdate, 'YYYY') as year
dual;

select

from

extract (day from sysdate) as day,
extract (month from sysdate) as month,
extract (year from sysdate) as year
dual;

Lab 4 — Data modeling 113

Lab 4 — Data modeling

This lab deals with the data modeling principles. The first part describes system analysis,
design and technical design. Creating a proper data model is crucial for consecutive
processing, whereas any change requires rewriting code, optimization, etc. Thus, there should
be a strong focus on that.

The logical database layer consists of the tables and relationships between them. It can
be expressed by the linear notation, occurrence diagram, script, or data model. The set of
attributes forms each table, the tuple can be unique identified by the primary key. References
between the relationships are made by relationships. The foreign key is the reference value to
the particular primary key or unique constraint generally. A special type is made by the
recursive (self) relationship referencing the same table. For each relationship, it is necessary
to manage the following categorization: type (identifying or non-identifying), cardinality (1:1,
I:N, and M:N creating associative entity) and membership (mandatory or optional
characterized by the possibility to hold NULL value for the foreign key).

The data modeling theory is then supervised by the Toad modeler providing the tool for
creating and maintaining data model in a graphical format using wizards generating the
script for various database system types. Thus, it is not only focused on the DBS Oracle.

4.1 Introduction

If we want to design a complex information system, the process must be done
in the defined sequence of steps, which should also be technically supported to get the desired
benefit. Nowadays, there are multiple tools used for such a process and are called Computer
Assisted Software Engineering (CASE). They support the design process itself as well
as offer techniques for appropriate documentation maintenance. Individual CASE tools may
differ in detail, depending on the used methodology.

The design is usually done in these three steps — system analysis, system design,

and technical design.
System analysis

System model

System design

System specification

Technical design

Fig. 4.1: System analysis, System design, Technical design

4.1.1 System analysis

The analysis determines requirements for the system and, on its basis, also a model
of the information system is specified. After the specification of the system is implemented,
a technical design of the system is carried out, which includes software and hardware
requirements for the system.

114 Lab 4 — Data modeling

4.1.2 System design

The design process includes a database design as well as a design of application software
and software design to access data stored in the database. Principles are shown
in the following figure, which groups data and functional analysis.

Data modelling Process modelling
Editing the data

model according to
the process model

Data model
transformation to
the database

Fig. 4.2: System design

4.1.3 Technical design

The technical design defines data structures and ways to access data depending
on the particular application, operating system, etc.

In some methodologies, processes of creating a data model and creating a functional
model are separated into two parts, the development of which take place in parallel because
they influence each other. The design of the data model is based on user requirements, which
are mainly in the form of forms and output assemblies. Part of this process is also the analysis
of existing models and related data structures.

Functional modeling often introduces requests for additional data objects definition
and handling related to the processing of requests themselves.

The proposed data model is the result of data and functional modeling that interact
with each other over the system's entire life cycle.

4.2 Creating data model

As already described in the previous sections, designing a data model concerning
application requirements is necessary. From a general point of view, it is first required
to identify and solve a conceptual model represented by a conceptual scheme
that is subsequently transformed into a logical scheme. The logical diagram generally
illustrates a value-oriented data model, in which links between objects are already expressed
regarding ensuring data integrity, data model normalization, etc. The implementation
of the data model itself is created in the physical design process, which results in the physical
(internal) schema of the data model. This schema is deployable and contains a detailed
specification of data structures, a way of implementing data types, data organization, and data
access methods.

Lab 4 — Data modeling

115

Application
requirements

Data
design

Conceptual
design

Conceptual schema

Logical design

Logical schema

Physical design

Physical schema

Structure of the database
and relevant documentation

Fig. 4.3: Creating a data model

The following figure illustrates the process of creating a data model from the user
specification with emphasis on forms and output sets, through the creation of the conceptual
data model, the data model itself up to the internal data model. User requirements are defined
by forms and output assemblies representing a set of user views on the data. From those,
a conceptual data model is created in the conceptual design process, represented by the E-R
diagram, in our case. The conceptual data model is mainly transformed through higher-level
languages to describe data objects (SQL, C language, COBOL, ...). E.g., in a relational data
model, there will be a relational scheme relating a set of tables, references, and integrity
constraints between them. The data themselves are stored in database files with a defined
organization (index files, index-sequence files, B-trees, inverted files, ...) that are available
independently of used the data manipulation commands.

116

Lab 4 — Data modeling

A Mrm

Conceptual design

PERSONAL DATA

&= PERSONAL_ID Char(11)

STUDENT STUDY SUBJECTS)
@ STUDENT 1D Number(5,0) NN {PK) la= SCHOOL YEAR Number(d,0) NN (PK)
NN (PK) &= PERSONAL_ID Char(11) NN (FK) la= STUDENT_ID Number(6.0) NN (PFK)
is |&=FIELD_D Number(3.0) NN (FK) |(ygie o pjects|# SUBJECTID Char(4) NN (PFK)
L — .oqé SPECALIZATIONID Number(3.0) NN (FK) [} fé= LECTURER Char(5) (FK)
Ed
" field studies
+ is studied
ST_FIELD T
4= FIELD_ID Mumber(3,0) NN (PK) [SUBJECT |
@= SPECIALIZATION_ID MNumber(3,0) NN (PK) |¢= SUBJECT_ID Char(4) NN (PK)

Logical design

Physical design

Fig. 4.4: Design

Lab 4 — Data modeling 117

4.3 Conceptual modeling

Transforming information into data and description of the data importance in the database
is one of the most comprehensible formalizable components of each DBS. The data
themselves, such as "/5.5.2017", "1333", "4602", etc., provide no more information value
that it reflects the "date", "number", "subject identifier". However, in principle,
it is challenging, even impossible, to judge that it is the exam date of the student Jacob Waxel
from the Database systems subject.

Basic knowledge of how to interpret data in a database is stored in a database schema.
An example of such a scheme is the following, where study subjects is the schema's name,
school year, student id, subject_id, etc., are attributes — the name of the data items to be
stored in the database.

study subjects(school year, student id, subject id,
lecturer, result, exam date, sign date, ects)

STUDY_SUBJECTS

@= SCHOOL_YEAR Number(4,0) NN (PK)
@= STUDENT_ID Number(6,0) NN (PFK)
@= SUBJECT_ID Char(4) NN (PFK)
@= LECTURER Char(5) (FK)

Fig. 4.5: Study subjects table

However, the database user will not know whether it reflects a registered subject
of the full-time or postgraduate course, whether a person with a given personal number
is a student of the first year or another, or whether that subject is compulsory for him or not.

Conceptual models are based on attempts to create a data description in the database —
conceptual schema, which is independent of the physical storage of the database.
This description should draw the conceptual user view on that part of the real world as closely
as possible.

Conceptual models mainly highlight concepts close to the conceptual point of view,
like entity, object, relationship, attribute, property, and so on.

Each conceptual model deals with the following issues:

e Data structure — From this point of view, it is necessary to identify all objects and
their properties, including a description of structures for expressing relationships
between objects.

e Data manipulation — It is appropriate for each data model and part to design a set
of permissible operations over a given data object.

e Integrity constraints — For each object, its properties, and relationships between
objects, it is necessary to define a set of integrity constraints that limit the basic
properties of data objects.

In most cases, the first and third issues are dealt with in detail, data manipulation
is resolved at the lower level.

118 Lab 4 — Data modeling

4.4 Entity-relational conceptual model

Definition of the Entity-relational (E-R) conceptual model — The E-R conceptual
model (abbreviated E-R model) is a set of concepts and terms that help describe the user's
application on the conceptual level of abstraction to specify the structure of the database
subsequently.

The E-R model is particularly suited to designing a database schema to access a top-down
solution, but it does not mean that it is not possible to create a bottom-up system model.

When designing a system, based on detailed knowledge of modeled reality:

e Entity types are identified as sets of objects of the same type.

e Relationship types are identified to which entities of the identified types can enter.

e Based on an appropriate level of abstraction, attributes to each type of entity
and relationship are added, which describe the properties of relationships and
entities:

o SURNAME (descriptive type) of the PERSON (entity type).

o PERSONAL ID (descriptive type) of the PERSON (entity type).

o EXAM DATE (descriptive type) when a particular STUDENT (entity)
passed the exam from the defined SUBJECT (entity) and the RESULT
(relationship description type) itself.

e Multiple integrity constraints are identified, expressing the conformation accuracy
of the model with reality.

Entities:

STUDENT, SUBJECT, PERSONAL DATA, ...

Relationships:
STUDENT (entity) STUDIES (relationship) SUBJECT (entity), ...

Attributes:
NAME, SURNAME, PERSONAL ID, ...

Integrity constraints:
PERSONAL _ID value is the identifier of the PERSONAL DATA table, ...

Definition Entity — Entity (entity) is a real-world object capable of independent existence
and can be uniquely differentiated from other objects.

Definition Relationship — A relationship is a connection between two (or more) entities
(can be of the same type).

Definition Descriptive type value — Is the value of the descriptive type — we will
understand a simple data type — a pair (set of values and set of operations) under
the descriptive type.

Definition Attribute — Attribute is a function result associated with the entity
or relationship, which expresses the essential property of an entity type, relationship type.

Definitions for the entity, relationship, and attribute are not so strict. There
is no unambiguous rule to classify data as an entity or relationship. Often it depends
on the analyst's point of view. The indicator may be that in terms of entities, a user often uses
nouns while verbs are characteristic to describe relationships.

Lab 4 — Data modeling 119

4.4.1 Identifying key

As already mentioned, each entity should be uniquely identified in the system. A student
can be identified by parents, personal_id, student id, etc.

Primary key is a specific set of attributes associated with the table, which uniquely
identifies each record in a database table. The primary key (PK) must contain UNIQUE
values and cannot hold NULL. A table can have only one primary key, consisting of single
or multiple fields (composite primary key). It must be also minimal. More about the primary
key definition, management, and importance will be described later in chapter 11.3.2 Primary
key.

4.5 Conceptual schema notation in E-R model

Three types of notations can be distinguished:
e Linear text notation,
e E-R diagram,
¢ Combination of previously proposed types.

4.5.1 Linear notation

The syntax of the linear notation is expressed in the following schema (fig. 4.6).

Entity t
e g mame |H(O- ey J @

|_attribute_|

&
<

Relationship type entity name entity name
o e

&
<

Fig. 4.6: Linear notation

Entity: STUDENT#STUDENT ID, CLASS, ST GROUP, ...
SUBJECT(#SUBJECT _ID, ...)
Relationship: SUBJECT REGISTRATION(STUDENT, SUBJECT)

4.6 Type diagram / Occurrence E-R diagram

Type diagram is a more valuable and often used diagram in comparison with Occurrence
E-R diagram, which shows individual entity and relationship possibilities.

120

Lab 4 — Data modeling

4.6.1

Type diagram

REGISTRATION

REGISTER

A

STUDENT

> SUBJECT

Fig. 4.7: Student — Subject — registration

4.6.2 Occurrence E-R diagram
STUDENT REGISTRATION SUBJECT
1512 Matiasko ® @ 1108 Discrete simulation
/. BIO1 Informatics 1
® BIO2 Informatics 2
1319 Flower @ @® II15 Data structures 2
— @ [PAl Internet of things 2
—® BH04 Digital systems

Fig. 4.8: Occurrence diagram

4.7

Attributes

In the previous text, we introduced a basic definition of the attribute and key, which
can be considered as a special set of attributes, but the entity and relationship types
are described only if each part of descriptive attributes is assigned and described (entity
and relationship). Now, let's deal with only atomic (or simple) attributes that give each entity
(relationship) no more than one (nonseparable) value.

For each entity type, a separate attribute table should be created. It includes these parts:

the name of the attribute,

the attribute fype, in the case of the atomic attribute. It reflects the value set
(domain) and the set of operations that can be used to the value set. Within this
definition, the size of the space (in characters) can be specified, which occupies the
outer representation of the attribute value,

the flag specifying, whether the attribute is key (it is part of the identification
(primary) key),

the flag characterizing, whether the particular attribute can hold empty value.
It is interpreted as "undefined", "unknown", etc., and modeled using NULL value.
the flag characterizing whether a particular attribute must have a unique value
(UNIQUE, DISTINCT) or not.

Lab 4 — Data modeling 121

All elements describing the entity type except the attribute name are the integrity
constraints defined for the attribute.

CASE modeling tools (such as Toad Modeler, SQL Developer Data Modeler, Erwin, etc.)
allow you to display attribute names, defined data types, and possibly some integrity
constraints in the graphical view of entities. Consequently, the graphic design might not be
complemented by a linear notation. However, for large models, the display of the attributes
is not noticeable by the model itself. Therefore, it is often more suitable to display entities
such as named rectangles and attribute definitions and their characteristics to delimit by the
linear notation or by using special tables provided by the CASE tools. Fig. 4.9 shows only
primary keys, Fig. 4.10 reflects just the entities.

| STUDY_SUBJECTS \
‘ﬂ;—»SCHOOL_YEAR Number(4,0) NN (PK)

@= STUDENT_ID Number(6,0) NN (PFK)
@= SUBJECT_ID Char(4) NN (PFK)

Fig. 4.9: Study subjects table

(STUDY_SUBJECTS)

Fig. 4.10: Study subjects table

Entity attribute view in spreadsheet form can be following (Toad Modeler, described
in detail later):

=2 Entity Properties — O X
Caption Name
[sTUDY_SuBJECTS | = [sTuDY_SuBJECTS |
After Script Notes I SQL Preview 1 Relationships 1 Inner Script 1 Physical Properties 1 Table Properties 1
General Attributes 1 Keys 1 Indexes I Check Constraints I Triggers 1 Permissions 1 To Do I Before Script 1
K... Caption Name Data Type pl p2 Not Null Comment Status
€ SCHOOL_YEAR SCHOOL_YEAR & Number(4,0) 4 0 ®
€ STUDENT_ID STUDENT_ID & Number(6,0) 6 0
€ SUBJECT.ID SUBJECT_ID & Char(4) 4
¢ LECTURER LECTURER Char(5) 5]
RESULT RESULT & Char(1) 1]
EXAM_DATE EXAM_DATE & Date]
SIGN_DATE SIGN_DATE Date]
ECTS ECTS Number(2,0) 2 0]
< >
Add
Add Edit Delete H ¥
L Generate Cancel Apply Help

Fig. 4.11: Entity modeling in Toad Modeler

122 Lab 4 — Data modeling

4.7.1 Non-atomic attributes

The conceptual model may not be limited to using atomic attributes only. In some cases,
it is advisable to create structured attributes (e.g., address, subject identifier, study group
number ...). In some cases, it is even reasonable to record several values within one attribute
(e.g., authors of the publication). In these situations, it is important how the analyst
determines attribute properties, which will be respected throughout the application.

4.7.2 Group attributes

A typical candidate for group attribute is the ADDRESS. Generally, this attribute
can be split into these parts:
e street name,
e house number,
e the name of the town,
e the name of the country.

Attributes that have such a structure will be called group attributes. Their structure does
not need to be single-level; attributes can create a hierarchical structure similarly known
as a record in programming languages. The group attribute value is created by compounding
attribute values from several components. A linear description of a group attribute may look
like this:

ADDRESS (COUNTRY, TOWN, STREET, NUM)

Group attributes are helpful if we need to access individual components in some cases,
but also the whole attribute in other cases. If we always approach only individual elements,
it is not effective to associate them with the group.

4.7.3 Multiple value attributes

Another example of using a non-atomic attribute is just AUTHOR of the entity type
TITLE. One title can have several authors, and such limitations cannot be defined in advance.
Some conceptual models allow using multivalued attribute definition with variable volume.

STUDENT

Fig. 4.12: Student model

Lab 4 — Data modeling 123

Commere
STUDY SUBJECTS
EXAM DATE @

Fig. 4.13: Study _subjects model

STUDENT [STUDY_SUBJECTS |
@= STUDENT_ID Number(6,0) NN (PK) g~ SCHOOL_YEAR Number(4,0) NN (PK)
4= PERSONAL_ID Char(11) NN (FK) 4= STUDENT_ID Number(8,0) NN (PFK)

4= SUBJECT_ID Char(4) NN (PFK)
= LECTURER Char(5) (FK)

4= FIELD_ID Number(3,0) NN (FK)

3= SPECIALIZATION 1D Number(30) NN (FK) | , Sudies_sublects

is_studied

SUBJECT
4= SUBJECT_ID Char(4) NN (PK)

Fig. 4.14: Study subjects table model

4.8 Relationships and integrity constraints

As stated in the previous section, connections between entities are modeled
by the relationships that express some kind of integrity constraints — namely —
the cardinality of relationships as well as the entities belonging to the relationships.
Important factor is also relationship type in terms of identification / non-identification.

4.8.1 Identifying and non-identifying relationship

Identifying relationship is a relationship where the key of the master entity is required
for the child entity identification. The primary key of such entity is partially (or entirely
(fully), if 1:1 cardinality is used) composed from the foreign key and is denoted by the PFK
symbol (primary foreign key). Thus, once again, a child entity cannot be uniquely identified
without a parent. e.g., the driver of the car cannot be identified only by the license plate,
whereas several drivers can use the common vehicle.

Identifying relationship is modeled using a solid line. The model in the following
diagram uses identifying relationship.

124 Lab 4 — Data modeling

| RENT_BOOKS |
4= BORROW_DATE Date NN (PK) ST
4= READER_ID Integer NN (FK) a= BOOK_ID Integer NN (PK)
4= BOOK_ID Integer NN (PFK) | is_lended |** LE\LCEEW wteg;f(102) zz (FK)
umper| .,
4|7 2
STATUS Char(1) NN

Fig. 4.15: Rent_books, Book model

A non-identifying relationship covers the situations when the primary key attributes
of the parent must not become the primary key attributes of the child.

The non-identifying relationship is modeled using the dashed line. The model
in the following diagram uses a non-identifying relationship.

[RENT_BOOKS ‘
READER 4= BORROW_DATE Date NN (PK)
9= READER ID Integer NN (PK) has 4= READER_ID Integer NN (FK)
4= pERSON_”:) Char(11) NN (FK) + o WBOOKJD Integer NN (PFK)
VALID_FROM Date NN
STATUS Char(1) NN

Fig. 4.16: Rent_books, Reader model

Non-identifying relationship can be, generally, enclosed by the integrity rule, specifying,
whether the foreign key value can hold undefined (NULL) value or not. For identifying
relationship, whereas the foreign key is part of the object identification (primary key),
optionality cannot be applied.

4.8.2 Relationship cardinality

The cardinality of a relationship is an integral limitation that expresses the permissible
number of entities in a relationship.

Cardinality 1:1

Cardinality 1:1 is an integrity restriction that expresses the relationship between
a maximum of one entity and a maximum of one entity of another, respectively of the same
type, e.g., teacher can supervise only one subject, the subject is supervised by only one
teacher.

TEACHER SUPERVISES SUBJECT
P. Martincova @
K. Matiasko ® ® A602
H. Froncova [@ P415
J. Slavik ® ® P301
® V502

Fig. 4.17: Cardinality 1:1

The relationship in the data model is represented by the value 1.

Lab 4 — Data modeling 125

TEACHER
SUBJECT
TEACHER ID __ Char(5 NN (PK
9= SUBJECT ID __ Char(d) NN (PR) - — — —H* - ars) FK)
4= SUPERVISOR Char(5) NN (FK)

Fig. 4.18: Cardinality 1:1

Cardinality 1:N
Relationship cardinality 1:N is an integrity restriction that expresses the relationship
between a maximum of one entity and N entities of another, respectively, of the same type.
Relationship 1: N corresponds to the following study rules:
e afeacher can teach more than one subject,
e the subject is taught by a maximum of one feacher.

TEACHER TEACHES SUBJECT

P. Martincovd @

K. Matiasko ® ® A602
H. Froncova [@® P4l5
® V502

/o P103
M. Kauki& e PN
\o P303

Fig. 4.19: Cardinality 1:N

Notice that relationship type /:N generally includes occurrences of 7:0, 0:1, and 1:1,
as well. Some of these relationships may be ruled out by stricter rules, e.g.:
e cach feacher must learn more than one subject,
e cach subject is taught by only one teacher.

The “broom” symbol represents the relationship in the data model.

TEACHER
SUBJECT
TEACHER ID __ Char(s NN (PK
9= SUBJECT ID __ Char(4) NN (PR B — — T = ars) (P
3= SUPERVISOR Char(5) NN (FK)

Fig. 4.20: Cardinality 1:N

In relationship /:N, the direction is significant. In our example, the direction is defined
by (one) teacher to (many) subjects. 1:N relationship cardinality opposite direction — (one)
subject to (many) teachers would express differently formulated study rules.

Cardinality M:N
Cardinality M:N of the relationship is an integrity constraint that expresses
the relationship between M entities of one type and N entities of another, respectively
of the same type.
The relationship cardinality M:N corresponds to the following study rules:
e ateacher can teach more than one subject,
e the subject can be taught by more than one teacher.

126

Lab 4 — Data modeling

P. Martincova @

TEACHER TEACHES

J. Slavik [

M. Vajsova .\
K. Matiasko [

H. Froncova [

S. Kovalik :/o
M. Faktor []

SUBJECT

P301
P201
A602
P415
P103
P202
P303
P101
V502

Fig. 4.21: Cardinality M:N

Notice that the relationship cardinality M:N also generally includes cases of 7:0, 0:1, 1:1,
and /:N (or N:I) relationships. The following figures show how we record the cardinality
of the relationship to the E-R diagram. For a /:N relationship, it is efficient to name
the relationship type. The name represents the direction from the master entity to the slave
entity, so in the proposed figures, the relationship name is TEACHES, not IS TAUGHT.

TEACHES

1 1

Fig. 4.22: Cardinality M:N

TEACHES
1 N
I:'N | TEACHER SUBJECT
TEACHES
M N
M:N TEACHER SUBJECT
TEACHES
TEACHER |® ®| suBIECT
TEACHES
TEACHER |@ SUBJECT
TEACHES

—>| SUBJECT

Fig. 4.23: Cardinality M:N

The cardinality of the relationship is sometimes expressed by claiming that the entity
of one type uniquely (does not) determine(s) the entity of the second type, or that the entity
of one type is (is not) a determinant of an entity of the second type.

4.8.3 Decomposition of the M:N relationship cardinality

We can say that the design of the conceptual scheme is independent of the subsequently
used data model. Still, it should be remembered that most database systems cannot express

Lab 4 — Data modeling 127

M:N relationships directly. Other reasons force us to know how to divide relationships M:N
into two type /:N relationships.
A common mistake is to assume that decomposition can be done as in the following

figure!
M N
a) STUDENT SUBJECT
b ! N

STUDENT SUBJECT

e

Fig. 4.24: Incorrect modeling

The relationship in the previous diagram (first part) is of the M:N relationship type
meaning that there is no functional dependence between the student types of STUDENT
and SUBJECT in either direction. However, the second part of the diagram denotes
that the relationships SUB_ST imply the functional dependence of STUDENT
from SUBJECT (the instance of the entity type SUBJECT is the determinant of the instance
of the entity type STUDENT), relationship S7 SUB implies functional dependence
in the opposite direction. Thus, both diagrams clearly show that they express different
situations.

To obtain and set correct cardinality, it is advisable to use the occurrence diagram.

SUBJECT STUDENT
A602 ® 1381
1333
P402 ® 1103
P211 ° \ 1320

Fig. 4.25: Cardinality M:N

It is easy to understand that the relationship STUDENT — REGISTRATION is of type
I1:N and that the relationship SUBJECT — REGISTRATION is also type I:N.
By transforming the E-R diagram into an occurrence diagram, we obtain the graph shown
in the following figure. The defined new entity type (REGISTRATION) can be denoted
as the intersection entity type.

| SUBJECT | | REGISTRATION

STUDENT

Fig. 4.26: Cardinality M:N

128 Lab 4 — Data modeling

4.8.4 Associative entity

During the process of data modeling, it is often necessary to decompose the relationship.
It causes the creation of a particular type of entity representing the relationship.
If the relationship has M:N cardinality and defined attributes, it is always necessary to create
such entity directly in the E-R model.

The following figure shows the relationship with M:N cardinality type.

Fig. 4.27: Study subjects table as an associative entity

And the created model with associative entity looks like this:

SUBJECT

STUDENT

Fig. 4.28: Study subjects table as an associative entity

Thus, entity study subjects in the model is an associative entity between student
and subject entities:

STUDENT | STUDY SUBJECTS
4= STUDENT 1D Number(6.0) NN _(PK) 9= SCHOOL YEAR __ Number,0) NN (PK)
9= PERSONAL_ID Char(11) NN (FK) a= STUDENT_ID Number(6,0) NN (PFK)
4= FIELD_ID Number(3,0) NN (FK) _ = SUBJECT_ID Char(4) NN (PFK)
4= SPECIALIZATION_ID Number(3.0) NN (FK) | fludies_sublects |o | ecTURER Char(5) (FK)

T

is_studied

SUBJECT
d= SUBJECT_ID Char(4) NN (PK)

Fig. 4.29: Study_subjects table as an associative entity

In some cases, even despite the cardinality /:N, it is preferable to model this relationship
using an associative entity. This is especially true in situations where instances of entities
would be very extensive in memory space requirements.

A typical example can be in the library sphere — students may borrow books —
and the system deals with only currently rent books with no history.

Lab 4 — Data modeling 129

STUDENT M BORROW N Book

Fig. 4.30: Student, Book table, and associative entity Borrow

STUDENT
3= STUDENT_ID __ Integer NN (PK) BOOK
NAME Varchar2(30) NN 4= BOOK_ID Integer NN (PK)
SURNAME Varchar2(30) NN NAME Varchar2(30) NN
ST_GROUP Char(6) NN

| BORROW |
9= STUDENT_ID Integer NN (PFK)
4= BOOK_ID Integer NN (PFK)

g= BORROW_DATE Date NN (PK)

Fig. 4.31: Student, Book table, and associative entity Borrow

4.8.5 Membership types

Membership in a relationship is an integrity constraint that expresses the necessity
of existence, respectively possibility of the non-existence of an entity of one type
in relationship to the presence of an entity of another type.

We have shown two different ways in which entities can enter a relationship. Some
organizational rules of a modeled reality determine that each occurrence of an entity must be
involved in the relationship. Some other cases allow existing entity-type objects outside
the relationship. Entity types that are involved in the relationship are named as members of
the relationship. Regarding the above-defined concept, we are talking about obligatory and
optional membership.

Mandatory membership in a relationship is an integrity restriction that expresses the need
for an entity of one type concerning the existence of an entity of another type.

Optional membership in a relationship is an integrity constraint that states that an entity
of one type may not exist concerning the existence of an entity of another type.

Let's have a simple example based on two tables — teacher and department. The teacher
is determined by his feacher_id and is dedicated to the department delimited by its name.

In the first example, /:N relationship cardinality is used with mandatory membership
types. It means that each teacher must be dedicated to the department. In other words,
the teacher cannot be inserted without reference to the department.

TEACHER
DEPARTMENT 4= TEACHER ID __ Integer NN (PK)
d= DEPT_ID Integer NN (PK) L+ — — g« DEPT_ID Integer NN (FK)

Fig. 4.32: Department, Teacher table

The rule is covered by using a defined relationship, in which the foreign key is stated
as NOT NULL.

130 Lab 4 — Data modeling

TEACHER
DEPARTMENT @= TEACHER_ID __ Integer NN (PK)
9= DEPT_ID Integer NN (PK) L+ — — }g= DEPT_ID Integer NN (FK)

Fig. 4.33: Department, Teacher table

On the other hand, there may be situations where it is appropriate to define a feacher
without a link to the department. In that case, optional membership must be defined, which
allows putting the NULL value as the foreign key. Naturally, it can be done only
if the relationship is non-identifying. In the data model, it is expressed by the circle near
the department entity (notice that the position of the circle may vary based on the used
modeling tool).

TEACHER
S @= TEACHER_ID __ Integer NN (PK)
@@= DEPT_ID Integer NN (PK) Lop— — _%% DEPT_ID Integer (FK)

Fig. 4.34: Department, Teacher table

4.8.6 Multiple relationships between same tables

A particular case of relationship management covers the situation that multiple
relationships are defined within the same tables. In this case, each relationship covers one
connection type. In the following example, the first relationship describes the student,
the second one leader (tutor) of the thesis, and the third defines a reference to the opponent.
For these purposes, multiple relationship term is used. Furthermore, these relationships
can have different cardinalities.

1 @ 1
PERSON | @ N_ | DIPLOMA THESIS
1 OPPONENT N

Fig. 4.35: Multiple relationships

Person and diploma_thesis tables with regards to relationships can be modeled like this.

PERSON DIPLOMA_THESIS

Fig. 4.36: Multiple relationships

Principles of data management and retrieval are described in chapters Lab 2 — Basics of
data retrieval and Lab 8 — Advanced techniques of data retrieval.

Lab 4 — Data modeling 131

4.8.7 Recursive (self) relationships

It is often necessary to model the relationships between entities of the same entity type.
In this case, we refer to the self-relationship. This type of modeling is used to provide
hierarchical relationships between entities, e.g., employee hierarchy, parent-child
relationships, etc.

1
PERSON

T

An example of the model representation is the following. Notice that the foreign key
attribute names must be renamed (mother_id, father id).

Fig. 4.37: Recursive relationship

PERSON_REC
@= PERSON_ID Integer NN (PK)
g= MOTHER_ID Integer (FK) o _
d= FATHER_ID Integer (FK) |5 - I
NAME Varchar2(30) NN I
SURNAME Varchar2(30) NN b
T '

Fig. 4.38: Recursive relationship

4.9 Data modeling in Toad Modeler tool

There are several tools for creating data models. For our purposes, we will use Toad
modeler, which offers various possibilities for making models and enables accurate changes
to data structures across multiple platforms (Oracle, MySQL, MS SQL, DB2, etc.).
Furthermore, it allows you to construct data models cither explicitly or based on the existing
system using reverse engineering, compare and synchronize models, quickly generate
complex SQL /DDL, create and modify scripts, and reverse and forward engineer both
databases and data warehouse systems.

(source: https://www.toadworld.com/products/downloads?type=Freeware&download=toad-
data-modeler)

Fig. 4.39: OR code to the Toad modeler installation source

https://www.toadworld.com/products/downloads?type=Freeware&download=toad-data-modeler
https://www.toadworld.com/products/downloads?type=Freeware&download=toad-data-modeler

132 Lab 4 — Data modeling

4.9.1 Environment settings

The process of the installation is straightforward, and it is not necessary to described it
step-by-step. Then, after launching software and attempt to create a new model, the target
database must be chosen. In our case, we will use the Oracle database (version 19¢), but
generally, it can generate a script for any database system.

New Model

Model Name

Oracle 19¢

Physical Data Model Universal Data Model Logical Data Model

&d Amazon Redshift 1.0 1] Microsoft SQL Server 2016 &d PostgreSQL 1(
i Amazon Aurora MySQL 5.6 il Microsoft SQL Server 2017 &d PostgreSQL 1
&d Amazon Aurora PostgreSQL 9.5 1l Microsoft SQL Server 2019 ad PostgreSQL 12
i DB2 v.9.7 (LUW) i MySQL 5.5 d SQLite 3.7

i DB2 v.10.1 (LUW) 1 MySQL 5.6 &d Sybase ASE 1!
i DB2 v.10.5 (LUW) i MySQL 5.7 &d SAP ASE 16.0
i DB2 v.11.1 (LUW) i MySQL 8.0 &d Sybase 1Q1 15.2
i DB2 v.11.5 (LUW) (1] Oracle 11g Release 1 a4 SAP SQL Anyy
24 DB2 2/0S v.11 1] Oracle 11g Release 2 24 Teradata 13.0
24 EDB Advanced Server 10 il Oracle 12¢ Release 1 24 Vertica 8.0

d Greenplum 4.2 il Oracle 12¢ Release 2

&d Ingres 9.3 & Oracle 18¢

&d Ingres 10.0 & Oracle 19¢

&4 Microsoft Access 2007-2019 & Office 365 i PostgreSQL 9.2

48 Microsoft Azure SQL Database V12 2d PostgreSQL 9.3

@ Microsoft SQL Server 2012 2d PostgreSQL 9.4

@ Microsoft SQL Server 2014 2d PostgreSQL 9.5

< >
Add/Remove Databases.. I:‘ Show Enabled Databases Only Cancel

Show Supported Databases Only @

Fig. 4.40: Selecting target database

Then, the drawing canvas is created and enabled, which allows you to create the data
model.

Lab 4 — Data modeling 133

:g Toad Data Modeler 7.2 [Unsaved Model]
File Edit View Objects Layout Model Tools Macros Settings Window Help

b & b ~ 2 | B -3 - @3- -8 B % Bk & @B P

Ty Lo B B w JOR = EE'

RE Oracle 12¢c Release 1 * l RE Oracle 12¢c Release 1 * Oracle 19¢* *

Physical Model Explorer, Object Viewer | Allltems *|
Physical Model Explorer * |Object Viev ¢ | *

= &1 Oracle 19¢ ~

& Workspaces
= Entities

(1.1

Relationships
Views
Procedures

Functions

(L I

Categories
@ Defaults
Fig. 4.41: Drawing canvas

The central part of the modeling management is just the Model Objects panel:

s
|

L 1]

Fig. 4.42: ERD Objects

(1) entity

(2) non-identifying relationship

(3) identifying relationship

(4) M:N cardinality relationship (associative entity is created)
(5) self-relationship

4.9.2 Entity management

After selecting entity option (1) and clicking on the canvas, the new entity is created.
Individual properties can be changed after double-clicking on it — attribute definitions
with their constraints. Each entity is directly mapped into the table definition and must have
a unique name. For the naming, the first character must be a letter (The Unicode definition
of letters includes Latin characters from a through z, from A through Z, and letter characters
from other languages). Also, underscore (), at sign (@), and hash sign (#) are allowed.
Other characters can be a numeric value or dollar sign ($). No special characters,
supplementary characters, and spaces are allowed.

134 Lab 4 — Data modeling
T2 Entity Properties — [X
Caption Name
[PERSONAL_DATA | '= PERSONAL_DATA |
After Script Notes I SQL Preview I Relationships 1 Inner Script I Physical Properties I Table Properties
General Attributes Keys Indexes I Check Constraints | Triggers Permissions I To Do I Before Script
« K. Caption Name Data Type pl p2 Not Null Comment Statu
% PERSONAL_ID PERSONAL_ID % Char(11) 11 ®
NAME NAME @ Varchar2(15) 15] ®
SURNAME SURNAME i Varchar2(15) 15] ®
STREET STREET Varchar2(20) 20] @
TOWN TOWN Varchar2(50) 50] ®
2P 2P Char(5) 5] ®
NATIONALITY NATIONALITY Char(2) 2] ®
< >
Add
Add Edit Delete a ¥
a Generate Cancel Apply Help

Fig. 4.43: Entity modeling

Each entity consists of at least one attribute, but generally, it has multiple attributes,
also with a unique name (naming convention is the same as table name definition principle).
Attributes can be added by clicking on the “4ADD” button. It is also possible to “EDIT”
the existing definition or to “DELETE” some attributes. Individual attribute definitions are
in data grid consisting of these characteristics:

e Key.

e Name / Caption.

e Datatype + size demands.

e NOT NULL flag.

e Unique flag.

e Description (comment).
K... Caption Name Data Type pl p2 Not Null Comment Status
® PERSONAL_ID PERSONAL_ID & Char(11) 1 ®

Fig. 4.44: Attribute modeling

Lab 4 — Data modeling

135

For the table study subjects, the data grid looks like following:

D b D D X

. Caption
SCHOOL_YEAR
STUDENT_ID
SUBJECT_ID
LECTURER
RESULT
EXAM_DATE
SIGN_DATE
ECTS

Name
SCHOOL_YEAR
STUDENT_ID
SUBJECT_ID
LECTURER
RESULT
EXAM_DATE
SIGN_DATE
ECTS

Data Type

& Number(4,0)
@ Number(6,0)
i Char(4)

@ Char(d)

@ Char(1)

@ Date

@ Date

@ Number(2,0)

L LI - = R

p2
0
0

Not Null

OOHOR

Comment Status

Fig. 4.45: Study _subjects table definition

When managing attributes, the following form will be available. Attribute definition
adding or editing can be done using the first tab of the form:

Name
| - \SCHOOLJEAR

Caption
\SCHOOLJEAR

General ICheck Constraints | Foreign Keys} Permissionsl Notesl Identityl Virtual Column Edition

Data Type Domains

| @MNumber(x,y) v | . v
Precision Scale

4 jC |

Default Value Default Rule

| | []OnNull |- None — ~

Primary Key Not Null Dgnique (New AK)

Comment

Fig. 4.46: Attribute definition

Each attribute must have its unique name (ATTRIBUTE NAME and CAPTION).
Both mostly hold the same value. However, in some cases, they can differ. The difference
of the values is mainly identified if the foreign key attribute is renamed or if several attributes
would have the same values.

For the script generation, the relevant attribute parameter is just its name.

Moreover, each attribute must have an associated data type (several data types available
with some differences between individual database system types depending on the dialect).

The primary data type categories are:

e string,
e numeric,
e date.

Characteristics are described in chapter 5.2 Data types.

136 Lab 4 — Data modeling

For each attribute, three checkboxes are available:

e Key (should be selected if the attribute is part of the primary key) — each table must
have no more than one primary key, which can also be composite (consists of
several attributes).

e NOT NULL (should be selected if a no-undefined value can be used).

e Unique (should be selected if the particular attribute values must be unique).

[]Primary Key [|Not Null [] Unique (New AK)
Fig. 4.47: Attribute definition

Notice that the primary key is always UNIQUE, but as the whole set, no individual
attributes forming it, thus for study subjects table, trinity {school year, subject id,
student _id} is UNIQUE.

o If {school year} was unique, it would cause that only one subject and only one
student can register in a particular school _year.

o If {subject_id} was unique, it would cause that only one student can register for it,
regardless of the school year.

o If {student _id} would be unique, it would cause that he can register for only one
subject, regardless of the school year.

o If the pair {school year, subject_id} was unique, it would cause that each subject
in each school year can be registered by only one student.

o If the pair {student id, subject _id} was unique, it would cause that each subject
can be registered by one student only once (he cannot repeat the subject).

o Ifthe pair {school_year, student_id} was unique, it would cause that each student
in each school year can register for only one subject.

Thus, the correct solution is the unique trinity.

Attribute definition can also be enhanced by default value and check constraint (column,
user integrity, see Lab 11 — Relational integrity). The default value is used if no value for the
particular attribute is specified. Notice the difference between NULL values, it is not the same
in this case. Principles are demonstrated in the following example.

Let’s have a simple table 71 consisting of two attributes — ID, ID2. Let’s have attribute
ID?2 enhanced by the default value.

create table T1(id integer, id2 integer default 1);

Then, insert two rows into the table and care about the real data stored in the database.
As you can see, generally (across multiple database systems), default value is used only
if no data is used. If a NULL value is explicitly defined, the default value is not used.
The reason is that it has been user-specified, although it holds an undefined value.

insert into T1 values (3, null);
insert into T1(id) values (2);

select * from T1;

3 (null)
2 |1

In DBS Oracle, such an option was valid prior the version /2c. The default value would
not be applied for the NULL value specification. By introducing 12¢ version, a new clause

Lab 4 — Data modeling

137

has been introduced — default on null, extending the default section specification. In that case,

also explicitly defined NULL values can be replaced by the default option specification.

drop table T1;

create table T1(id integer, id2 integer default ON NULL 1) ;

insert into T1 values (3, null);
values

insert into T1 (id)

(2);

select * from T1;

ID ‘IDZ

3 1
2 1

Check constraint reflects user-defined domain (data type sub-category) and is explained

in chapter 11.7 Domain integrity.

4.9.3 User-defined domain

User domain definition borders the value set based on the defined data type. Generally,
the integer value can also be negative. However, for salary, it is not suitable to use a negative
value. Therefore, it is possible to define own domain by limiting values, which can particular

attributes hold.

The domain itself is a set of scalar values of the same data type.
Toad modeler allows the user to define domain by selecting Model => Model Items =>
Domains from the main menu.

ﬁgDomaMS

Filter!

Caption

Add

Edit

Name

¥+

Delete

"

Data Type

pl

p2

Cancel

Status

Apply

Fig. 4.48: User-defined type

Generally, the domain is similar to the core data type, but check constraint is defined
for the possible value limitation. For demonstration purposes, let’s create a new domain
characterizing price. It can hold any real value, which cannot be negative. Let’s name

it “price_domain”. Click on the add and specify the name and data type.

138

Lab 4 — Data modeling

E Domain Properties - £

Dor

aint

Caption

General |Che|::k Constraintsl To Dal Used inl Notesl

Name

|priDe7domain |

‘prioeidomain

Data Type

Default

= Number

Default Rule

|— None —

Encryption Specification

Cancel Help

Apply

Fig. 4.49: Domain definition

The suitable data type is “number”
Constraints tab. Next, name the constraint

. Value set definition is defined in the Check
(in the General tab) and navigate the SQL tab.

Lab 4 — Data modeling 139

%2 Check Constraint Properties - £ — O X

Domain: price_domain %

General I saQL] Notes]

Caption Name

‘Check_price | - ‘Check_price

Check Constraint Rule

‘—— None — v |

[| Deferrable
D Deferred
[] Disable
[]No Validate

[|Rely

Generate

> OK Ok+Add Cancel Apply Help

Fig. 4.50: Check constraint — General tab
DDL check constraint for the attribute looks like following:

create table Check tab(price number check (price > 1));

Therefore, Toad modeler allows you to use its internal macro — <% ColumnName%>,
which ensures that a particular value is replaced by the appropriate attribute name during
the SQL script generation. Therefore, the Check constraint definition for the price_domain
can look like the following. It is written to the SQL tab of the Check constraint definition.

I <%ColumnName%> >= 0

140 Lab 4 — Data modeling

%2 Check Constraint Properties - E - O X
Domain: price_domain E%
General SQL INotesl
Ep
1 [€%ColumnName%> >= 0 ~
]
< >
b Ok+Add Cancel Apply Help

Fig. 4.51: Check constraint — SOL tab

Define the check constraint very carefully (no spaces can be used for macro)
because the Toad modeler does not check syntactical correctness during the SQL script
generating process. It can cause significant problems when using such a script in the database
server.

Other examples of check constraints are the following. In principle, it can use whatever
simple condition.

<%ColumnName%> in ('T', 't', 'F', 'f') --> boolean data type definition |

<%ColumnName%> between 1 and 1000 |

substr (<%¥ColumnName$%$>,1,1) = upper (substr (<%¥ColumnName%$>,1,1)) |

Then, the user-defined domain can be associated with the attribute by the Domains Select
list.

Lab 4 — Data modeling 141

72 Attribute Properties - KVET_ENG.STUDENT - O X
Caption Name
[cLASS |~ |cLass |

General \Check Constraints | Foreign Keysl Permissions} Notesl Identilyl Virtual Column Edition

Data Type Domains

‘ i@MNumber(x,y) ~ | | hai

Precision Scale
price_domain

[|0 |

Default Value Default Rule

‘ | [JonNull |~ None — %

D Primary Key I:‘ Not Null I:‘ Unique (New AK)

Fig. 4.52: User-defined type

4.9.4 Relationship management

Relationship definition can be done using the (2), (3), (4), and (5) buttons.

Button (2) reflects non-identifying the relationship, button (3) delimits identifying
relationship type, button (4) defines M:N cardinality relationship. Button (5) deals with self-
relationships.

| o B Te Lo BB

|
12345

Each relationship is directional oriented and routed from the parent table to the child.
The foreign key is part of the child table.

Fig. 4.53: Relationship management

K_PERSON
4= PERSON_ID Char(11) NN (PK)
NAME Varchar2(20) NN K_READER
SURNAME ~ Varchar2(20) NN @~ READER ID Integer NN (PK)
: —— — — — —%g= PERSON ID Char(11) NN (FK)
VALD FROM Date NN

Fig. 4.54: Person, Reader table

Afterward, the relationship can be edited by double-clicking on it. The first (General) tab
of the form is the most important. Each relationship can have a name, which will be,
transformed into SQL script. A relationship type can be edited (from identifying to non-
identifying or vice versa), membership (mandatory/optional in either parent or child entity),
and also cardinality (1, N, or direct association count limitation). Many other properties can
be set, like referential integrity management, deferrable constraints, etc.

142 Lab 4 — Data modeling
T8 Relationship Properties - E — O X
Caption Name
|person_reader_re|| | = |person_reader_rel |
General ITO Dol Notesl sQL Previewl
Relationship Type Referential Integrity
() Identifying (®) Non-ldentifying
Parent Key No Action
SYS_C00110767 N Parent DELETE
No Action ~
Parent Child
PERSON_ID PERSON_ID v Settings
[]Deferrable
|:| Deferred
[]Disable
[INo Validate
|:| Rely
|:| Index to Foreign Key in Child Entity
Cardinality
Mandatory Parent Cardinality E Cat
ategory
i 1..1to O..n
|:| Mandatory Child ||:|__ None — o
Parent Entity - - - - = - — — = — =% Child Entity
KNIZNICA ENG.K PERSON KNIZNICA ENG.K READER
o Generate OK Cancel Apply Help

Fig. 4.55: Relationship properties

4.9.5 Generating SQL script

When data modeling is finished, SOL script can be generated and consequently executed
on the server — database objects are created. Whereas the defined script is database system
dependent, it is inevitable to choose the correct one. Suppose the different database system
type is used compared to the selection at the beginning. In that case, the model can
be converted to the particular system by selecting “Convert Model => Run”
from the “Model” main menu tab.

SQL script itself can be generated by clicking on the “Generate DDL Script’ button [y
in the “Model” panel:

H B b e

Fig. 4.56: Model panel

In the main menu, it is located in the Model menu navigating to Generate DDL Script =>
Run or by using the F9 button shortcut.

Lab 4 — Data modeling 143

The form for the script property definition is shown in the following figure.

%2 DDL Script Generation of RE Oracle 12c Release 1 O X
What to Generate Detail Settings Referential Integrity Select List
Location of SQL File
C:\Users\Michal Kvet\Documents\Toad Data Modeler\GeneratedScripts\Generated.SQL |
User / Schema Split Output File [_] Append To File []
— Not Specified — ™
R o
Property Name Extended Value
=l Model
D After Script
] Before Script
D Directories Create
] Editions Create
Create
D Functions Create
[Java Create
D Materialized Views Create
[] Packages Create
D Permissions to Objects
] Procedures Create
Relationships Create
] sequences Create
D Synonyms Create
] User Data Types Create
[User Groups
[users Create
[] Views Create
D Zone Maps Create
[_|Show Preview
Save Action... Load Action | ~ Verify Show Log Generate Show Code Help

Fig. 4.57: Generating script

First, there are several options defined by checkboxes bordering objects for which script
should be generated. For our purposes, we will use:
o Entities (DDL script for table definitions, primary keys, etc.).
e Relationships (creating relationships between tables).

The proposed tool can also generate many more script types, like user-defined indexes,
procedures, functions, or views. Also, referential integrity constraints (cascade, nullified,
restrict) can be defined, and management ensured by the friggers, generated automatically
based on user selection (see Lab 10 — Triggers). The script can be generated for the whole
model or for its subpart, which can be defined in the “Select list” tab:

144 Lab 4 — Data modeling

%2 DDL Script Generation of RE Oracle 12c Release 1 - O X
What to Generate Detail Settings Referential Integrity Select List

Workspace: Entire Model ~ Qenerate by Property "Generate"

Entities Relationships

[]Show Preview

Save Action... Load Action | - Verify Show Log Generate Show Code Help

Fig. 4.58: Generating script

The important script option is in the “Detail Settings” tab. Deselect the option
“Use Quotation Marks”.

%2 DDL Script Generation of RE Oracle 12c Release 1 - O X

What to Generate Detail Settings Referential Integrity Select List

hema to Objects

Text Case Selection:

Preserve Case >

["] Generate Constraint Names (Not Null, Foreign Keys)

I:‘ Generate Check Constraint Names Used in Domains

Create Triggers for Update of Columns That Uses Sequence
D Drop Tables with CASCADE CONSTRAINTS Clause

D Drop Tables with PURGE Clause

Grant Roles to User/Role

Generate Permissions Only to Object Types Selected on Tab What to Generate
Generate Change of Edition in Session

Terminator
Order of Generated Objects

You can change order of generated objects. Click Edit and define how objects will
be generated.

Edit...

[_|Show Preview

Save Action... Load Action | ~ Verify Show Log Generate Show Code Help

Fig. 4.59: Use Quotation Marks problem

Lab 4 — Data modeling 145

Otherwise, the generated script would use quotation marks — each object and attribute
name would be enclosed by quotation marks (which are not visible by querying data
dictionary views, see Lab 14 — Data dictionary views), however, they should be used when
coding scripts. Moreover, particular names would be case-sensitive. Generated code would
look like the following:

Create table "Title"

(
"title id" Integer NOT NULL,
"title name" Varchar2 (50) NOT NULL,
"genre" Varchar2 (8) NOT NULL,
"publisher" Varchar2 (40),
"year of issue" Integer,
"isbn" Char (13),

primary key ("title id")
)
/

Alter table "Reader" add foreign key ("person id")
references Person ("person id")

/

In the Detail Settings tab, several parameters can be set, like Cascade operation in case
of table dropping, Purging tables (after object dropping, it is not placed in the recycle bin),
etc.

Default Terminator is “/”. Therefore, after the table, index, or relationship definition,
slash is placed in a separate line like the terminator. In the preceding parts, we mainly used
semicolons. However, the principles are the same.

After the definition and options specification, an SQL script can be generated. Be strictly
aware and execute the proposed script on the server (cloud) only if it has been generated
without errors! If not, correct them and repeat the process.

Generated script for the table Reader looks like the following — table and primary key
are defined. Afterward, the relationship is added.

Create table Reader

(
reader id Integer NOT NULL,
person_id Char (10) NOT NULL,
valid from Date NOT NULL,
valid until Date,

primary key (reader id)
)
/

Alter table Reader add foreign key (person id)
references Person (person_id)

/

4.9.6 Executing script on the server

The script can be executed on the server based on your preferred software tools.

146 Lab 4 — Data modeling

If the SQL Developer is used, the particular file is opened on the client site
and can be executed on the server (the same principle as running whatever code). Either
desktop or web version of the SOL Developer can be used.

Script stored in a file can be executed via the already described SOL Client, as well. In that
case, a particular file should be located by pointing to the server. Set and locate the directory
where the file resides (using the cd command). Finally, execute the script using SQL *Plus
environment by using the sfart command (assuming that the file name is script_library.sql):

start script library.sql

Seven tables should be created — Author, Authors _of book, Title, Book, Rent books,
Reader, Person.

4.9.7 Working with directories and files

It is helpful to know some basic commands for dealing with directories and files in the file
system and traverse using the tree structure. Note that these commands are associated with
the operating system. Thus, if you want to call them from the SQL*Plus (SQL Client)
environment, then they must be prefixed by the host command:

SQL> host pwd

$ pwd

Tab. 4.1: Commands for working with directories and files

Command Explanation

Getting actual working directory
Spwd /home/kvetl
Listing the directories and files inside
the actual directory
Listing the directories and files inside
8ls -la the actual directory with more details
(like access privileges, owner, ...)
Listing the directories and files defined inside

Sls

8ls directory the directory parameter
Sed Moving to home directory

/home/kvetl
Scd .. Moving to parent (direct superior) directory
3cd directory Moving to the defined directory (relative path)
Sed Jpath/directory Moving to the defined directory (absolute

path) — starts with a slash (/)

Lab 4 — Data modeling

147

Command Explanation

Schmod value name

User (owner) Group Others

RWX /" RWX / RWX
R —read, W — write, X — execute
R=22 w=2! X =20

id
7
6
5
4
3
2
1
(0]

$chmod {u|g|ola} {+|=|-} {r|w|x}
u-—user, g- group,
o0 —others, a-—all

Changing access privilege of the defined
directory/file (name) using parameter values
(value)

chmod 751 file.txt
owner => rwx privileges
group => r-x privileges
others => --x privileges

Changing access privileges using access string

chmod g+w file.txt
write privilege is added to the group

Smkdir directory name

Creating directory (make directory)

Srmdir directory _name

Deleting directory (remove directory)
— it must be empty

Creating file copy, parameters from, and fo are
used to define the file's location.

Sep from to Using this command, it is also possible
to rename the file.
Moving the file, parameters from and to define
Smv from to the location of the file.

Using this command, it is also possible
to rename the file.

Srm file name

Removing files from the file system.

Srm —r directory _name

Removing the directory with all files and
directories inside (be aware of using such
a command).

New files can be created using any provided editor. During this lab, the “joe” editor will
be used. However, feel free to use any you like.

To create a new file, use the following command. Whereas SQL code will be obviously
written into the files, meet the concept of using “.sql” file extension.

$ joe file name.sql

148

Lab 4 — Data modeling

There are also multiple joe editor shortcuts, which can effectively improve data
management. Some of them are in the following table:

Shortcut Meaning

Tab. 4.2: Joe editor shortcuts

CTRL+K +B The first (begin) point of the block definition
CTRL +K+K The last (end) point of the block definition
CTRL+K+C Copying defined block
CTRL+K+M Moving defined block
CTRL+Y Removing the whole row
CTRL +K+ X Saving and exit
CTRL +C Exit without saving
CTRL+K+D Saving file only
CTRL +7Z Previous word
CTRL + X Following word
CTRL + A The beginning of the line
CTRL+E End of the line
CTRL+U Previous screen, like PgUp
CTRL+V Following screen, like PgDn
CTRL+K+U Beginning of the file
CTRL+K+V End of the file
4.10 Practice
1. Download preprepared model of the library from the USB medium, respectively

server (flight_part.dm?2).

2. Extend the model by adding Rent books and Book table with appropriate
relationships. Mind the correct direction, relationship type, cardinality,
and membership.

Varchar2(20) NN K_READER '@= BORROW_DATE Date NN (PK)
SURNAME Varchar2(20) NN 4= READER_ID Integer NN (PK) @= READER_ID Integer NN (FK)
[= — - —%e= PERSONID Char(11) NN (FK) 4= BOOK_ID Intager NN (PFK)
VALID_FROM ~ Dato NN
STATUS Char(1) NN
5
KCTITLE
| K ATTRORE OF BO0R 3= TITLE_ID nteger NN (PK) ‘ =TS K-Boo"_(T |
9= AUTHOR_ID _ Inieger NN (PFK) , [sl L - HATS e i :FK;
9= TITLE ID Integer NN (PFK) | EEE LoECTEEY GO Lo - - PRICE Number(10,2) NN
NO Integer NN
RAUTHOR
3= AUTHOR_ID Integer NN (PK)
NAME Varchar2(20) NN
SURNAME Varchar2(20) NN
Fig. 4.60: Library model
3. Set the suitable data types, NULL/NOT NULL flags, primary keys, etc.,
for all attributes.
4. Which data type have you selected for attribute price? Is it possible to put there

negative value?

Lab 4 — Data modeling 149

5. Define the domain price_domain, which limits the value set of the domain
(use macro <%ColumnName%>):

<%ColumnName%> >= 0

6. Associate defined domain with all price data attributes.

7. Ensure that each publication can have no more than 6 authors. Thus, the order is
delimited by the values /, 2, 3, 4, 5, and 6. Define and associate user domain.

8. Ensure that the value of the publisher attribute will always hold uppercase values
(defined explicitly by the user). Define and associate user domain.

9. Extend the table person, so you will also record the parents for the child (the book
can be returned either by the person who borrowed that book or by the parent).
Do not forget to rename foreign key attributes (mother, father). Use optional
membership types.

PERSON_REC
4= PERSON_ID _ Integer NN (PK)
NAME Varchar2(30) NN

SURNAME Varchar2(30) NN

- — o
o :

|
| |
d= MOTHER Integer (FK) | I
g= FATHER Integer (FK) | I
T |
|
| L __ |
|_ __________ —

Fig. 4.61: Person, mother, father modeling

10. Record also an identifier of the editor and illustrator for each ftitle. If the title has
no images, a particular illustrator attribute value can hold an undefined value.
Assume that each fitle has no more than one edifor and illustrator. Reference

the table Author.
K_TITLE
‘ K AUTHORS OF BOOK ‘ @= TITLE_ID Integer NN (PK)
TR D e o BT e D
WLELEJD :ng:: m (PRI TITLE_NAME Varchar2(50) NN
= GENRE Varchar2(11) NN
IX_Relationship1 (1X1)
K AUTHOR IX_Relationship2 (1X2) —
g= AUTHOR_ID Integer NN (PK) lom — — — — — — — _ 1 | T
NAME Varchar2(20) NN [
SURNAME Varchar2(20) NN L J

Fig. 4.62: lllustrator, editor modeling

150 Lab 4 — Data modeling

11. Generate SQOL script for tables, primary keys, and referential integrity. If no errors
occurred, execute the script on the server (otherwise, correct them and repeat

the process).
12. Drop defined tables in the correct order.

drop table table name;

Lab 5 — Create, Alter and Drop commands 151

Lab S — Create, Alter and Drop commands

This lab deals with the Data Definition Language (DDL) formed by the Create, Alter and
Drop commands. Compared to the DML statements, DDL changes the database structure,
not the data themselves.

It offers the extended data type summary, user, and table management. Reader will learn
the basics of the data retrieval process performance and indexes. Section 5.5 deals with the
index types (B+tree, bitmap, hash), access methods, and addresses to the physical database
— ROWID pointers.

5.1 Introduction

This lab will introduce and describe principles of database object definition, management,
modifications, and remove operations on the object level definition. All commands
are covered by the Data Definition Language (DDL) statements — Create, Alter, Drop
and Truncate. Notice that by using these statements, object management is provided,
not the data stored in those structures (e.g., table definition, not the data management inside
the table). Create command is used for adding (creating) new database object (table, index,
sequence, view, procedure, function, package, trigger, user, ...). The Alter command aims
to modify the database object, Drop command removes the database object from the system.
Truncate operation removes the pointers to the data blocks holding the data, resulting
in removing all data rows from the particular table object. Before going deeper to individual
operations, let’s introduce and summarize available data types.

Moreover, such commands are usually managed internally by developed software tools.
Database system Oracle consists of a small number of instances created by Create Database
command, but mainly by Database Assistant (DBCA) tool. Each instance is delimited by its
name — SID (do you remember it from the installation process as well as connecting to the
database, don’t you?). These instances are independent, and each of them consists of user
accounts. For DBS Oracle, each user has an assigned schema (1:1 assignment) for storing
particular objects, like tables, views, etc. These objects can also be accessible to other users
if privileges are granted (privilege management is described in Lab 7 — Managing privileges).
A complex description of the administration processes can be found in [1] [5] [13].

152 Lab 5 — Create, Alter and Drop commands

Database Instance
schemal 4 schema2 7
SysTablel Tablel Tablel
Table2 Table2
SysTable2
Table3
SysTable3 Table4

Fig. 5.1: Database instance model and user accounts

5.2 Data types

SQL supports multiple ranges of data types. The following table reflects the possibilities
implemented in DBS Oracle in comparison with SQL norm:

Tab. 5.1: Data types

‘ SQOL norm Oracle
. . CHARACTER (n) CHAR(n)
§ Fixedsie NATIONAL CHARACTER (n) | NCHAR(n)
“ Variable size CHARACTER VARYING (n) Xiigﬁi;ﬁj&’)
SMALLINT NUMBER(5)
g g Integer values INTEGER NUMBER(10)
& £ NUMBER(38)
-
§ § Fixed decimal size I?Igﬁglﬁlégi’ rrg QUMBER(m, n)
3 S SMALLFLOAT FLOAT(63)
§ 2. Float decimal size |[JINOYNN FLOAT(126)
DOUBLE PRECISION NUMBER
DATE DATE
TIME X
Data and Time TIMESTAMP TIMESTAMP
INTERVAL INTERVAL
INTERVAL
CLOB CLOB
NCLOB NCLOB
LONG
BLOB(n) BLOB
LONG RAW

Note, that there are two data types dealing with variable string definition — varchar and
varchar2. Such situation occurs for historical reasons, whereas the original definition

Lab 5 — Create, Alter and Drop commands 153

(varchar) was replaced by the optimized version (varchar2). Currently, any format, you use,
the optimized version is always used.

5.3 User management

User management covers the particular category of database objects as an interface
between the database and user activities. Users are commonly managed (created, altered,
dropped) by the database administrator. However, now, you are the supervisor of the whole
cloud database instance, so you are responsible for user management, as well. For defining
new users (schema), it is necessary to Create user. Therefore, we describe the principles
more precisely in this section.

Each user is delimited by the username (login) and password (which can be managed
locally or by external verification methods, like LDAP). Moreover, each of them must have
assigned space for storing defined objects (tables, views, procedures, etc.). This space
is called tablespace, and two types are distinguished — default tablespace (for storing
persistent data objects) and temporary tablespace (space, where temporary tables,
intermediate data, Select statements results, etc. resides. After processing, these objects
are purged and space freed). Moreover, each user can have an assigned profile and quota
for system resources. There are also another two keywords, which are suitable
to be described. Password expire keywords ensures that created user will be forced to change
his password immediately after his first successful login to the database. The Account lock
keyword is used if you want to create a new user, however, such user will not be possible
to login using it because such account is locked. It means that all defined objects still reside
in the system, but it is not possible to access the system using such a user (locked user can
also be caused by performing a suspicious activity, like too many incorrect login attempts
or too old passwords without change). Please notice that password of the user should start
with a letter, no numeric value. Moreover, always define a strong password consisting
of characters (lower and uppercase), numeric values, and special characters.

The syntax of the create user command looks like the following. Only the first two rows
of the script are necessary. The rest have their default values, which will be used,
if not explicitly defined.

CREATE USER user_name
IDENTIFIED { BY password | EXTERNALLY | GLOBALLY AS 'CN=user' }
[DEFAULT TABLESPACE tablespace]
[TEMPORARY TABLESPACE tablespace]
[QUOTA { number [K|M] | UNLIMITED } ON tablespace]
[, QUOTA { number [K|M] | UNLIMITED } ON tablespace]
[PROFILE profile name]
[PASSWORD EXPIRE]
[{ ACCOUNT LOCK | ACCOUNT UNLOCK }]

Connect as the admin user and create a new user. The solution can look like this.
The created username will be mk_user and password my_passport.

create user mk user identified by my password;

In this case, the rest values will use their default values. The following query can be used
to get the default values for the tablespace definition (data dictionary view is used, principles
are defined in Lab 14 — Data dictionary views). For now, use it as it is.

154 Lab 5 — Create, Alter and Drop commands

select *
from database properties
where property name like 'DEFAULT3TABLESPACE';

PROPERTY _NAME PROPERTY VALUE DESCRIPTION
| DEFAULT TEMP_TABLESPACE TEMP Name of default temporary tablespace
»2| DEFAULT_PERMANENT_TABLESPACE | SYSTEM Name of default permanent tablespace

All these characteristics can be later changed (using Alfer command).

The command itself consists of the Alter keyword followed by the object type
(in this case, “user” will be used) and object name (e.g., kvet_eng). Then, characteristics
to be changed are defined. So, if you would like to change associated permanent tablespace
(new value will be “system” tablespace), the script can look like this:

I alter user kvet eng default tablespace system;

If you want to freeze or unfreeze a user account, the following Alter command can be
used:

alter user kvet eng account lock;

I alter user kvet eng account unlock;

The particular category covers the principle of changing the user password. Although
it can also be done using Alter command, it is not very suitable because the non-encrypted
form of the password is visible on the screen (now, the password will be “new_password”).

I alter user kvet_ eng identified by new password;

The password of the user can be changed anytime in two ways, in principle. The first
solution covers the technique of changing user password when a particular user is logged on.
In this case, he uses the password command. First, an existing password will be required,
followed by a new password to be set. You will be prompted to write it twice for security
reasons (avoiding typos).

I password

& New password: >

Changing password for STUDENT _ENGOId password: |
New password;

Retype new password:

Apply Cancel

Fig. 5.2: Changing password

The second solution allows the administrator to change any user password. Naturally,
this operation can also be done without knowing the actual password of the particular user.
Mentioned command password is extended by the username definition (system user
is changing the password of the kvet_eng user):

I password kvet eng

Lab 5 — Create, Alter and Drop commands 155

To remove the particular user from the system, the Drop user command should be used.
If a particular user has some defined objects, the operation will fail. It is caused by security
reasons, where there is no reverse operation for such activity.

drop user kvet eng;

SQL Error: ORA-01922: " CASCADE must be specified to drop 'KVET ENG'"
*Cause: Cascade is required to remove this user from the system.

The user own's object which will need to be dropped.
*Action: Specify cascade.

A Cascade keyword must be used to force the system to drop user regardless
of the defined objects. However, always think twice. Such an operation cannot be easily
reversed.

drop user kvet eng cascade;

5.4 Table management

The user's main activity is the data management and the object definition, in which
the data will be stored. In the following chapters, we will describe the principles of data
management and data modeling techniques. Now, we will deal with the database object
definition itself. The following table shows the object types, which can be managed
in the DBS Oracle.

Tab. 5.2: Object types
Oracle type
DATABASE
USER
System objects SCHEMA
ROLE
PROFILE
TABLE
UNIQUE INDEX
Basic objects INDEX
SYNONYM
SEQUENCE
VIEW
Derived objects MATERIALIZED VIEW

SNAPSHOT
Automatic action management UIIE[CIT
PROCEDURE
Stored methods FUNCTION
PACKAGE

For now, we will describe the principles of table definition; other object management
will be described later (in a particular chapter defining such objects).

The syntax of the creating table consists of several parts and looks like this. It can be
considered complicated at first sight. However, we will describe each keyword principle
separately using multiple examples.

156 Lab 5 — Create, Alter and Drop commands

5.4.1 Create command

CREATE TABLE [schema name.]table name
[
({ column name datatype [DEFAULT expr] { [column constraint] } [...]
|
table_ constraint
| S O |
)
]

column_constraint ::=
[CONSTRAINT constraint name]
{
[NOT] NULL
I
{ UNIQUE | PRIMARY KEY }
|
REFERENCES [schema name.]table name [(column name)]
[ON DELETE CASCADE]
I
CHECK (condition)
}

table constraint ::=
[CONSTRAINT constraint_ name]
{
{ UNIQUE | PRIMARY KEY } ({ column name } [, ...])
I
FOREIGN KEY ({ column name } [, ...]) REFERENCES
[schema name.]table name
[
({ column _name } [, ...])
] [ON DELETE CASCADE]
I
CHECK (condition)
}

As you can see, each table must be defined by its unique name. By default, the table is
created in the logged-in user's schema but can also be defined in another schema. Naturally,
particular privileges to access another schema and create a new object must be granted.
In that case, the name of the table would be extended by the schema (username)
or a particular user (owner of the object).

I Create table kvet_eng.person ...

Then, individual attributes are listed with their names, data types, and constraints.
So, now, let’s create a simple table (person) consisting of three attributes (personal_id, name,
surname). Each table must have at least one attribute.

Create table person
(personal id char (11),
name varchar2 (15),
surname varchar2 (15)

)i

Lab 5 — Create, Alter and Drop commands 157

Naturally, some attributes cannot be NULL, so if the table definition requires personal id
value as NOT NULL, the solution will look like the following. Notice that table must
be dropped before changing its definition by the new Create command. Changing
the structure and constraints of an existing table can be provided using Alter command
described a bit later.

Create table person

(personal id char (11) NOT NULL,
name varchar2 (15),
surname varchar2 (15)

)i

As we can see, by default, each attribute is listed as NULL. As evident, we can get
the table schema using already known command desc.

Name Null Type
PERSONAL_ ID NOT NULL CHAR (11)
NAME VARCHAR2 (15)
SURNAME VARCHAR2 (15)

The primary key is asignificant part of each table, allowing the user to access
the particular row of the table directly. If the primary key is simple (consists of only one
attribute), two possibilities are available for the definition. The first principle is based
on using primary key keyword after the particular attribute definition (column constraint):

Create table person
(personal id char(ll) primary key,
name varchar2(15),
surname varchar2 (15)

)i

The second one uses the primary key definition after the attribute listing
(table constraint):

Create table person
(personal_id char(11),
name varchar2(15),
surname varchar2(15),
primary key(personal_ id)
)7

Notice that the primary key is automatically NOT NULL from the definition.
It is not necessary to define it explicitly.

Only the second solution is available in the case of composite primary key definition
(multiple attributes covering primary key).

To demonstrate the solutions and principles, let’s create another table Employee
consisting of information about the person's employment contract in the particular company.

158 Lab 5 — Create, Alter and Drop commands

How would you define the structure of the table? Which attributes are necessary? What about
the primary key definition? The natural solution defines composite primary key:

Create table employee
(personal id char(11),
employer id integer,
date from date,
date to date,
primary key(personal id, employer id, date_from)
)

Notice that composite primary key definition directly in the Create table command can
be done only with the previously defined principles. It is not possible to write a primary key
keyword after multiple attributes forming column constraint primary key because it would
be evaluated as an attempt to create multiple primary keys for one table resulting in exception
raising.

Create table employee
(personal id char(11l) primary key,
employer id integer primary key,
date from date primary key,
date to date
)

Error report -
ORA-02260: table can have only one primary key

02260. 00000 - "table can have only one primary key"
*Cause: Self-evident.
*Action: Remove the extra primary key.

Foreign key

These two tables (person, employee) can be linked together, forming a relationship.
Foreign key references the primary key of the second table (to be honest, it can also reference
any unique index). To form the relationship, it can be done by using the references keyword
either in Create or Alter command. Notice that the attribute names must be enclosed
in the parentheses. Moreover, this command only adds the reference. The particular attribute
must already be part of the table.

alter table employee add foreign key (personal id)
references person (personal id) ;

Whereas the name of the attributes in the table employee and person to be referenced
are the same, the name of the referenced attribute in the person table can be omitted.

alter table employee add foreign key (personal id)
references person;

The relationship has been created. However, what about the relationship type (identifying
/ non-identifying)? Sure, if the foreign key is part of the primary key, the identifying
relationship must be created.

What about cardinality? (/:1, 1:N, M:N)? This is /:N cardinality, whereas the foreign key
attribute is part of the composite primary key. Thus, one person can be listed in table
employee multiple times. Vice versa, each employee references exactly one person.

Lab 5 — Create, Alter and Drop commands 159

Finally, what about the membership type (obligatory/optional)? Why? From the person
to the employee table, it can be an optional relationship — a person does not need
to be employed at all. However, there must be an obligatory relationship from the employee
to person table because the foreign key value is part of the primary key. Thus, it cannot
contain a NULL value at all.

More about the foreign key definition, management, and described principles are in
Lab 4 — Data modeling.

| EMPLOYEE |
4= PERSONAL 1D Integer NN (PFK)
9= EMPLOYER_ID Infeger NN (PK)
4= DATE_FROM Date NN (PK)

PERSON
@= PERSONAL_ID Integer NN (PK)

Fig. 5.3: Foreign key definition — Person, Employee table

Domain definition (check constraint)

The attribute value is characterized by the data type it belongs to (like integer, varchar,
date, ...). Such data type can also be limited to particular values forming the user-defined
domain. It can be done using the check constraint of the attribute. To describe the solution,
add the attribute job_type to the employee table definition expressing the type of employment
(full time, part-time). From the definition, the value must be in string format. However,
another check constraint should be defined to ensure that only specified values can be inserted
(or updated). The following code shows the table definition, therefore, drop the existing table
and create a new one.

Create table employee

(personal id char(11),
employer id integer,
date from date,
date to date,
job_type char(9) check (job_type in ('full time',6 'part time')),
primary key(personal id, employer id, date_ from)

)7

If the definition is completed, one question arises, whether such solution is correct.
The answer is easy — sure, it is. However, it is not practical. For each employee, it is necessary
to store at least 9 characters, but the word “time” is always present. Therefore, it can
be shortened to “full” and “part”. To get an effective solution, only one character is adequate.
Thus, the size of the attribute can be lowered nine times. Much better, isn’t it? Imagine
the complex system consisting of thousands of employees or even portal managing
all employment in the country. Size effectivity is considerable. Therefore, always deal
with the efficiency of the system.

Create table employee
(personal id char(11),
employer id integer,
date from date,
date to date,
job_type char(l) check (job_type in ('f', 'p')),
primary key(personal id, employer id, date from)

160 Lab 5 — Create, Alter and Drop commands

Default value

The default value can be optionally extended attribute definition. Thus, if no value
is inserted, it will be automatically replaced by the defined default value. In the past, there
was a significant difference between no value (not listed in the /nsert statement) and NULL
value listed explicitly. If any value were defined explicitly, no default value would be used.
Thus, NULL was not replaced by the default value at all. In Oracle 12c¢ version, a new clause
— default on null — was introduced. Thus, if the value is undefined or not specified, it will be
replaced by the default value. Consequently, a NULL value is replaced, as well.

Principles are described using a job_type attribute of the employee table. Let’s assume
that in a standard environment, we deal with the full-time job. Thus, the default value can
look like the following. Notice that the default value must be syntactically defined before the
check constraint:

Create table employee
(personal id char(11),
employer id integer,
date from date,
date to date,
job_type char(l) default on null 'f' check (job type in ('f', 'p')),
primary key(personal id, employer id, date from)
)7

Constraint naming

Each constraint (primary key, foreign key, unique) can be optionally named using user-
defined naming notation. We strongly recommend using your name due to later management.
You will be clear about the meaning of the constraint, if necessary, to remove it. Otherwise,
a system-generated name will be used.

Create table employee

(personal_id char(11),
employer id integer,
date from date,
date to date,
job_type char (1) default 'f'

check (job_type in ('f', 'p')),
constraint emp pk primary key (personal_ id, employer id, date_ from),
constraint emp fk per foreign key(personal_ id)
references person

)i

Create table as Select

Special opportunity for table definition can be provided by the Create table as Select.
In that case, a new table is created based on the defined Select statement. One more time,
it is inevitable to use a column alias for each attribute formed using the function. The rest
attributes can be renamed using aliases optionally. Thus, the result of the function nv/
and subtracting operation will be named as duration.

Create table employee deposit as
select name, surname, personal id, employer id,
nvl (date to, sysdate) - date from as duration
from person join employee using(personal id);

Lab 5 — Create, Alter and Drop commands 161

Name Null Type

NAME VARCHAR2 (15)
SURNAME VARCHAR2 (15)
PERSONAL ID CHAR (11)
EMPLOYER_ID NUMBER (38)
DURATION NUMBER

If you add the condition to the Select statement, which will never be valid (e.g. primary
key consisting of NULL values, which can never occur), the only structure will be defined,
but the table will be empty.

Create table employee deposit2 as
select name, surname, personal id, employer id,
nvl (date to, sysdate) - date from duration
from person join employee using(personal id)
where personal id is null;

Notice the constraints defined using such a command (Create table as Select).
No primary keys, not check constraints, no default values are copied. Thus, if you create
a deposit for the employee table, you can insert any character into the job_type attribute.
The following Insert statements are valid. Whereas there is no primary key definition,
the following insert statement can be executed several times without raising an error.

Create table employee deposit3 as
(select * from employee) ;

insert into employee deposit3(personal id, employer id, date from,
date to, job_ type)
values ('000101/1234', 1, sysdate, null, 'x"');

insert into employee deposit3(personal id, employer id, date from,
date to, job type)
values (null, 1, sysdate, null, 'x');

Thus, no primary key definition, no check constraint is copied. However, what about
the NULL definition? It is abit tricky. Sometimes it is valid, sometimes invalid.
So, how it works? We will describe the principles using two simple tables (7', 72) consisting
of only one attribute — ID defined as a primary key. In the first case, NOT NULL is specified
explicitly.

create table T1
(id integer not null primary key);

create table T2
(id integer primary key);

Now, create another two tables (771 and T72) using Create table as Select command
based on tables 77 and T2.

create table TT1 as
(select * from T1);

create table TT2 as
(select * from T2);

Get the schema of the tables.

162 Lab 5 — Create, Alter and Drop commands

I desc TT1
Name Null Type
I | NOT NULL NUMBER (38)
I desc TT2
Name Null Type
I w NOMBER (38)

Try to insert NULL values into the newly defined tables. Is it possible?

insert into TT1 values (null);

("KVET ENG"."TT1"."ID")
01400. 00000 - T"cannot insert NULL into (%s)"
*Cause: An attempt was made to insert NULL into previously listed
objects.
*Action: These objects cannot accept NULL values.

insert into TT2 values (null);

Error report -
ORA-01400: cannot insert NULL into
I 1 row inserted.

To conclude the NULL value management, it is necessary to highlight the definition
of the attribute itself. If the NOT NULL constraint of the attribute is defined explicitly, it will
be copied using Create table as Select command. Vice versa, if there is the only primary key
definition (but there is no NOT NULL explicit definition), even though the primary key must
always be NOT NULL, such constraint is not evaluated copied to the newly created table.

5.4.2 Alter command

As already partially described, each table definition can be later changed using the Alter
command. Naturally, removing the table and creating a new one would be unsuitable
(references, complex management, existing applications, etc.). Therefore, if there is
a necessity to change the structure, the following notation can be used.

Alter table command has three primary variants of usage:

e Add — extending the table definition by another attribute or constraint.
e Modify — changing the column specification.
e Drop — removing the column or constraint.

Supplementary settings — Rename.

Add option

I alter table table name {add | modify | drop}

Following notations show the example of the main Alter table commands.

Adding new attribute — passport number. Notice that the defined value is noted as unique:

I alter table person add passport num varchar2(20) unique;

Lab 5 — Create, Alter and Drop commands 163

Adding primary key definition. Assume that there is no primary key definition
of the table:

I alter table person add primary key (personal_id);

Adding foreign key definition:

alter table employee add
foreign key (personal_id) references person;

Modify option
The existing definition of the attribute can be changed using the Alter table ... modify
commands:

I alter table table name {add | modify | drop}

Changing data type: increasing the size of the attribute is no problem at all. However,
an attempt to decrease the size can raise an exception if the existing data have a bigger size
than the limit to be set (one /nsert statement is executed to highlight the limitations).

alter table person modify name varchar2 (50);

insert into person (personal id, name, surname)
values ('851210/1234"', 'Michael', 'Flower');

alter table person modify name varchar2 (10);

Table altered.

alter table person modify name varchar2(3);

Error report -
ORA-01441: cannot decrease column length because some value is too big
01441. 00000 - '"cannot decrease column length because some value

is too big"

Changing NULL /NOT NULL definition. Also, notice the previously described limitation.
Thus, the NOT NULL definition can be added only if existing data do not contain NULL
values in the particular attribute.

I alter table person modify name not null;

I alter table person modify name null;

Naturally, multiple definitions based on one attribute can be grouped.

I alter table person modify name varchar2(30) not null;

Removing default value. The default value is not named constraint. It is necessary
to remember that a NULL value will be set if no explicit default value for the attribute
is defined. Thus, removing defined default value actually means replacing user-defined
default value with NULL.

I alter table employee modify job type default NULL;

164 Lab 5 — Create, Alter and Drop commands

Drop option

alter table table name {add | modify | drop} ... |

Let's repeat the employee table definition with user-defined constraint names.
Using explicit constraint naming is suitable if there is a necessity to remove the defined
constraint. If a system-generated name is used, the particular value must be obtained
by querying data dictionary views (Lab 14 — Data dictionary views). Notice that the name of
the constraint must be unique.

create table employee

(personal id char(11),
employer id integer,
date from date,
date to date,
job_type char(l) default 'f',
constraint check job type check (job type in ('f', 'p')),
constraint emp pk primary key(personal id, employer id, date from),
constraint emp fk per foreign key(personal_ id)

references person
)7

Removing attribute:

alter table employee drop column date to; |

Removing primary key constraint:

alter table employee drop constraint emp pk; |

Removing foreign key constraint:

alter table employee drop constraint emp fk per; |

Removing check constraint. Principles of removing default value have been proposed
sooner. A different situation arises if the check constraint needs to be dropped. The solution
is similar, based on using named constraint. Removing check constraint cannot be done using
Alter table ... modify command.

alter table employee drop constraint check job type; |

Table renaming

The table can also be renamed using the Alter table command. In the following example,
the original table person is renamed to person tab. The first part defines the syntax.
The second one is an example of usage.

alter table table name rename to new_name; |

alter table person rename to person_ tab; |

However, also particular attribute can be renamed by using rename column keyword.
In the following example, the attribute surname of the table person is renamed
to family name. The first part defines the syntax. The second one is an example of usage.

alter table table name rename column orig name to new_name; |

Lab 5 — Create, Alter and Drop commands 165

alter table person rename column surname to family name;

5.4.3 Drop command

If the database object is not necessary to be handled later, it can be removed
from the system using the last DDL command type — Drop.

Can you drop the student table, now? If not, why? Look at the model. The answer resides
in the referential integrity definition.

drop table student;

Error report -
ORA-02449: unique/primary keys in table referenced by foreign keys

02449. 00000 - T"unique/primary keys in table referenced by foreign keys"
*Cause: An attempt was made to drop a table with unique or

primary keys referenced by foreign keys in another table.
*Action: Before performing the above operations the table, drop the

foreign key constraints in other tables. You can see what
constraints are referencing a table by issuing the following
command :

SELECT * FROM USER CONSTRAINTS WHERE TABLE NAME = "tabnam";

Can you drop the study _subjects table now? Yes, it is possible (but do not do it now, data
will be necessary for future work).

drop table study subjects;

Table dropped.

Now, it is possible to drop table student (but do not do it now, data will be necessary
for future work).

drop table student;

Table dropped.

If you want to force the system to Drop table irrespective of the referential integrity,
the keyword Cascade constraints can be used. However, it is not recommended to use it
like this because it influences existing table definitions. (Do not do it now, data will be
necessary for future work).

drop table personal data cascade constraints;

Drop table personal data using Cascade constraints keyword would influence
the structure of student table, whereas it references personal data table (using personal id
attribute). Foreign key based on the personal id attribute is removed. Thus it can hold
any value meeting other constraints.

Recycle bin

Let’s create the table person as a copy of the personal data table. Drop newly created
table.

create table person as select * from personal data;

drop table person;

166 Lab 5 — Create, Alter and Drop commands

Although the object (table person) has been removed from the system, it is still possible
to reverse the operation. Executing the Drop command in its pure form reflects only
the movement of the database object to another repository — recycle bin, from which it can
be resumed (if sufficient disc space is allocated for recycle bin). The original table Person
has been renamed to “BINSSQUDkj2ohEngUMGeEopRYw==30".

The content of the recycle bin can be obtained using one of the following commands
(the second command will provide deeper characteristics):

I show recyclebin

select * from recyclebin;

ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME

PERSON BINS$SQUDkJj20hEngUMGeEopRYw==50 TABLE 2017-02-21:06:54:32

Notice that original queries can be used if the original table name is replaced by recycle
bin name. However, the table cannot be modified if it resides in recycle bin.

select name, surname, personal id, employer id,
nvl (date to, sysdate)-date from duration
from BIN$SQUDkj20hEngUMGeEopRYw==$0 join employee using(personal id)
where employer id = 1;

To restore the table from the recycle bin, a flashback command can be used.

I flashback table person to before drop;

Optionally, such a table can be renamed using the flashback command.

I flashback table person to before drop rename to person_renew;

However, notice, that not all constraints are resumed, but the data are. If you have
multiple tables in the recycle bin with the same original names, the LIFO approach is used —
the last object added to the recycle bin is taken back (renewed) as the first.

If you drop a database object using the purge keyword, it is not moved to the recycle bin
but removed totally — there is no possibility to reverse the action. Do it very carefully.

drop table employee purge;

select * from recyclebin;

no rows selected.

Recycle bin can be flushed entirely using purge recyclebin, or only a particular object can
be flushed.

purge recyclebin;

purge table table name;

I purge table person;

Notice that the cleaning process automatically removes database objects from the recycle
bin if another object must be placed there and no free space is located.

Lab 5 — Create, Alter and Drop commands 167

5.5 Index

Oracle defines an index as an optional structure associated with a table or table cluster
to speed data access. By creating an index on one or more columns of a table, you gain
the ability to retrieve a small set of randomly distributed rows from the table quickly.
During individual destructive DML statement execution, the index is built, respectively
reconstructed. It contains locators to the physical structure on the leaf layer — pointers
to the physical files — ROWIDs.

Fig. 5.4 shows the index structure.

[al
—] CREATE | { INDEX] .

table_index_clause

I bitmap_join_index_clause I

Fig. 5.4: Index definition; source: docs.oracle.com

The purpose of the database index is similar to an index in the back of a book (it associates
a topic with a page number):

+ topic appears on a few pages

— usefulness decreases with an increase in the number of times a topic appears in a book.

An index creates an interlayer forming logical and physical independence of associated
data. By using it, I/O disk operations are reduced, consequencing in better performance.
The index can be created either implicitly (unique constraint of the attribute, primary key)
or explicitly by using the create index command. The main advantages of indexes
are following:

e improving SQL statement performance,

e enforcing uniqueness of the primary key and unique key constraints,

e reducing locking issues with parent and child tables associated via primary
and foreign keys.

Notice that for primary keys, indexes are created automatically. Vice versa, foreign keys
are not associated with the index. Instead, they only use the unique index in the referenced
table. Generally, it is useful to create explicit indexes for foreign keys due to table joining
and access reduction to the referenced table.

5.51 ROWID

The ROWID pseudo column is associated with each row in the database and returns
the physical address of the row. It contains all information necessary to locate a row stored
in 10 bytes):

e The data object number (/-32 bits)

e Data file in which the row resides (the first file is /; file number is relative
to tablespace) (33—44 bits)

e Data block in the data file in which the row resides (45—64 bits)

e The position of the row in the data block (the first row is 0) (65-80 bits)

ROWID values have several important uses:
e they are the fastest way to access a single row,
e they can show you how the rows in a table are stored,

168 Lab 5 — Create, Alter and Drop commands

e they are unique identifiers for rows in a table.

Although it provides unique value within a table, do not use it as the primary key
for several reasons. First of all, it reflects the ROWID data type and requires /0 bytes.
Moreover, these values can be changed over time (e.g., by using import, export functionality,
flashback, shrinking space, moving data, etc.).

5.5.2 Index management

Access approach to the data during the retrieval is an automatic process controlled
by a database optimizer. The decision, whether the index will be used or not (and which one,
if several are defined), is based on statistics and an optional SQL profile. Therefore,
it is inevitable to have correct and actual statistics to reach (sub-)optimal performance. Notice
that by default, statistics are generated and calculated during maintenance windows
in the weak workload of the database (usually at night).

Several indexes can include a particular column. A critical component is just the index
type and order of the attributes (if the composite index is defined). These factors significantly
influence performance. Therefore, it is also necessary to take care of it during primary key
definition or when the composite index is created. Attribute order forming index is essential.
The most often used attribute in the Where clause of the query should be listed first, likewise
others. When looking at the primary key of the table study subjects, the following importance
list is assumed (top is student id followed by subject _id and school year). Thus, most query
conditions should be based on student id.

primary key (student id, subject id, school year)

Notice that incorrect order of the attributes forming index can cause significant
performance degradation.

5.5.3 Types of indexes

B+ tree index type

B+ tree index is adefault type used in databases. Table row identifier (ROWID)
and associated column values are stored within index blocks in a balanced tree structure.
An essential property of such an index is the fact that it cannot manage NULL values at all.
It is formed by the root node, internal nodes, and leaf nodes consisting of ROWID pointers.
Data on the /eaf layer are ordered and connected via the double-directional linked list.
Fig. 5.5 shows its architecture.

Lab 5 — Create, Alter and Drop commands

169

150

VARERN

T 75 T /. 250 T 613 1
12 ROWID 93 ROWID 123 ROWID 253 ROWID 697 ROWID
> —_— E— —
44 ROWID 96 ROWID 197 ROWID 254 ROWID 714 ROWID
< —

56 ROWID 121 ROWID 222 ROWID 255 ROWID 949 ROWID
Fig. 5.5: B+ tree index
This is the syntax and example:
Create index ind name on table name (atrl [, atr2, ...]);

Create index ind ns on personal data(surname, name);

The reverse B+ tree index approach is a specific type of B+ tree. It stores index entries
with their bytes reversed. The problem of standard B+ free index is just consecutive values
— sequences and necessity to index block reconstruction — balancing (B+ tree structure
is balanced) when data are inserted or updated. Thus, the reverse B+ tree index requires
smaller server sources and provides performance benefits (for destructive DML).
But, on the other hand, data on the leaf layer are not ordered, which can degrade performance
if the condition is based on a range (non-equality).

The following figure shows the structure of the reverse B+ tree index.

170 Lab 5 — Create, Alter and Drop commands

RN

f 250 T 613 ‘

T/

/’ 75

+12 ROWID *+93 ROWID 123 ROWID 253 ROWID »697 ROWID
44 ROWID »96 ROWID 197 ROWID —254 ROWID =714 ROWID
56 ROWID 121 ROWID 222 ROWID 255 ROWID 949 ROWID

21 44 65 B8 69 sl 321 791 222 352 452 552 796 417 949

Fig. 5.6: Reverse key B+ tree index
Tab. 5.3: Original and indexed value

Original value ‘ Indexed value ‘

12345 54321
3489 9843
FRI IRF

This is the syntax and example:

I Create index ind name on table name (atrl [, atr2, ...]) reverse;

I Create index ind st on student (student id, st group) reverse;

Another B+ free index type is based on functions. It does not cover direct column values,
but it is created based on SQL functions or expressions. Notice that if you use the user-
defined function, it must be deterministic.

This is the syntax and example:

Create index ind name
on table name (func_name (param list) [, ...]);
Create index ind_ func_st
on personal_data (func_gender (personal_id), name, surname);

Create or replace function Func_gender (p_id char)
return char deterministic is
begin
case
when substr(p_id, 3,1) in (5,6) then return 'female';
when substr(p_id,3,1) in (0,1) then return 'male';
else return 'unknown';
end case;
end func gender;

/

Lab 5 — Create, Alter and Drop commands 171

Multiple functions can form a function-based index. There can be a combination of direct
attributes and functions, as well. For function definition, reference chapter Lab 9 —
Procedures, functions and packages.

Bitmap index

A bitmap index is primarily suited for data warehouses and decision support systems —
many rows, low-value variability. It is based on star schema — central fact table and number
of related dimension tables. The aim is to monitor values in multiple dimensions over time.

Fig. 5.7 is based on the billing process and invoicing. Billing fact as a core table,
dimension tables are formed by Billing Date dimension, Time dimension,
Geography dimension, and Product dimension.

Billing_Date_dimension

PK |BILL_DT ID
BILL_YEAR
BILL_MONTH
BILL DAY

Billing_fact
PK |YYYYMMDD DT PK |PROD_ID PK |GEO_ID

YEAR PK |GEO_ID L 1 COUNTRY

MONTH O<Ipk BILL DT ID - ‘ REGION

DAY PK |YYYYMMDD DT STATE

QTR BILL_UNIT CITY

BILL AMT
O

Product_dimension
PK |PROD_ID

PROD NM
PROD_DESC
UNIT TYPE

Fig. 5.7: Bitmap index

Guidelines for using bitmap index:
e [t should generally be used on low cardinality columns.
e [t manages NULL values automatically.
e [tis suitable for many queries that join or filter on indexed columns.
e [tis suitable for no (or very low amount) destructive DML activity.

Drop the bitmap indexes before updating tables and recreate them after the DML
operations on tables are complete.

For OLTP, bitmap indexes are not appropriate (many DML operations and row locking)
=> significant performance degradation.

172 Lab 5 — Create, Alter and Drop commands

This is the syntax and example (assuming, that personal data table contains also gender
attribute. If not so, a particular value can be obtained by using the function):

Create bitmap index ind name
on table name (atrl [, atr2, ...]);

Create bitmap index ind b pd on personal data(gender);

Index organized table

Index organized table is physically stored like Oracle B+ free index — all of the data
are stored within the index. Therefore, it does not cover physical ROWID:s at all.

There are physical differences in comparison with the standard heap organized table
supported by the B+ tree index. On the other hand, access is the same as any other Oracle
table.

It is typically defined for:

e thin tables (without too many columns),
e multiple column primary key.

Notice that an index-organized table is created based on the primary key, which must
be present. Otherwise, an error will be raised:

I ORA-25175: no PRIMARY KEY constraint found

The syntax of the index-organized table is based on adding the organization index
keyword to the end of the table definition.

Create table personal data

(

personal id Char (11) NOT NULL,
name Varchar2 (15),

surname Varchar2 (15),

street Varchar2 (20),

town Varchar?2 (50),

zip Char (5),

nationality Char (2),

primary key (personal id)
) organization index;

5.5.4 Access methods

Access path selection is one of the essential parts of the optimizer decision. It significantly
influences the principles and performance of data retrieval.
Generally, two basic types of access paths are defined:
o Full Table Scans (Table access full) — all blocks (rows) of the table are scanned.
It is mainly used when:

o alarge portion of the table’s data is required,
o the accessed table is small, consisting of few blocks,
o no suitable index is defined.

o Index Access Paths — index is used for accessing particular data.

Selecting the index access method is the task of the optimizer, and its decision is based
on the index definition itself and statistics, defined query, etc. The hints can partially
influence it.

Lab 5 — Create, Alter and Drop commands 173

Several categories can be distinguished — index unique scan, index range scan, index skip
scan, index full scan, fast full index scan, etc. Their characteristics, properties, and limitations
can be found in [48] [49].

Create table T1 with a primary key /D. Then, add another string attribute (varchar2
/ char data type) and at least one more attribute (/nteger data type).

Create table T2 with a composite primary key containing attribute ID and valid from
(data type Date). Be sure that the data type of the attribute /D is the same

Create a relationship between tables T/ and T2 (based on ID). The cardinality
of the relationship should be /:N. Will it be identifying or non-identifying? Why?

Add another attribute, “note” to the 72 table (choose the appropriate data type).

5.6 Practice
1.
2.
as the attribute /D in the 7 table.
3.
How can you influence it?
4,
5.

Create table 73. The primary key of the table should be ID with data type integer.
Ensure that only even values can be inserted.

alter table T3 modify id check(mod(id, 2)=0);

6.

Create M:N relationship between T1 and 73.

| T2

T

d= D Integer NN (PK)

| ASSOCIATED_ENTITY

@= ID_T1 Integer NN (PFK)
9= ID_T2 Integer NN (PFK)

po———H

ii-w 1D Integer
d= VALID_FROM Date

NN (PFK)
NN (PK)

T3

d= |D Integer

NN (PK)

Fig. 5.8: Model for practice

Drop all created tables (T1, T2, T3, associated entity) respecting the correct

Renew the tables from the recycle bin. Check the renewed constraints. What about

Create an index based on the name and surname of the person (table personal _data).
Try to create an index based on the personal_id of the person (table personal data).

Try to create an index based on student id, subject_id, school year (in that order)
of the study subjects table. Is it possible? Notice that the primary key

7.
operation order.
8. Create another table 7/ with different attributes and drop it consequently.
9.
table 71? Is it possible to restore the older one?
10.
11.
Is it possible? Why not?
12.
of the study subjects table is following:
primary key (student id, subject id, school year)
13.

Try to create an index based on subject id, student id, school year (in that order)
of the study subjects table. Is it possible? Be aware the order of attributes
is significant.

Lab 6 — Data loading 175

Lab 6 — Data loading

Data loading is essential during the data layer migration or by moving a huge data set to
the database. Three techniques are proposed and discussed. SOL Loader is a general solution
mostly referencing other systems by managing data in the textual form input (TXT, CSV files,
etc.). Oracle database import and export can be done on the client or server layer. The Oracle
directory mapping object operates server file system accessibility. Although server processes
are now more preferred due to the performance, we also mention the principles of client site
data management.

In this lab, we will drive the reader through the process of data loading to the cloud
environment. It requires access to the object storage and data containers (buckets).

6.1 Introduction

Data loading is a complex process of copying and loading data sets from the external data
source — file or application to the database. Individual database systems provide various
technologies for data loading, from generating Insert statements up to binary copies
of the data tuples. For this subject, we will describe three techniques. The first one is based
on the SOL Loader tool. Using this approach, several data file structures like CSV
can be used, which is very useful when imported from third-party systems. The second and
third approaches are based on import functionality and data pump. Imp is an older approach,
which is subsequently replaced by newer technology. The Imp approach is based on the client
site, which generates data to be imported as conventional Insert statements. Oracle 10g
introduced a data pump facility, which significantly extends the possibilities and speed
of the processing, whereas such solution is server site oriented. Thus, these two solutions
(imp and data pump import) have entirely different architecture and cannot be combined.

For this lab, it is inevitable to follow all instructions. Correct data loading is necessary
for subsequent database activities and queries. In this lab, the theoretical introduction is
directly linked to the examples and activities you perform.

6.2 SQL Loader

SOL Loader allows you to insert data into the database using multiple format types.
Associated control file delimits the structure. Thanks to that, it provides a sophisticated tool
to convert and insert data from other systems. It is a user process, which inserts data using
conventional way (insert statements are generated with regards to the UNDO and REDO data
logs) or direct path (in this case, the buffer cache is bypassed, and data are loaded directly
to the data files). No UNDO is generated. Moreover, it is possible to disable also REDO
logging for this operation). Thus, the Direct path is far faster than the conventional method,
but some negatives must be mentioned. Referential integrity control mechanisms must
be disabled or dropped. Whereas the operation is not standard Insert statement execution,
particular Insert triggers do not fire. Moreover, the processed table is locked against DML
statements executed by other sessions. Vice versa, primary key and also NULL value
constraints are managed consistently.

We have prepared a library data model with data filled to perform data loading operations
using SOL Loader. So, follow the instructions:

176

Lab 6 — Data loading

1. Download the file archive from your USB media, respectively server
(SOL load library.zip). It consists of the data necessary to be loaded
into the database. It contains three file types, which can be differentiated
by the extensions:

*.sql SQL file - DDL statements for creating database schema
(tables, relationships, ...),
* unl data files with the values to be loaded into the database,
* ctl control files containing instructions, how to load UNL data
to the database (format, delimitation, etc.)
2. Create data model schema objects using the SQOL file (copy the file to the server

and launch its execution — file library.sql). In SQL developer, such file can be
directly opened, and script launched.

start library.sql

3.

Create missing control files for correct data loading (person.ctl, author.ctl). Be aware
of the schema of the table, but also appropriate attribute order in particular UNL file.

The easiest way to creating a missing control file is based on copying another existing
file. First, it is necessary to modify the name of the control file, the table name
to which we would like to load appropriate data, and a /ist of attributes (columns).
The order of columns in the control file must reflect data in the UNL file, not the order
in the schema definition. In our case, the order in the schema and the data UNL file
is the same, but it generally does not need to be like that.

For correct Date attribute loading, it is necessary to set a suitable input data format.
In our case, the order is month/day/year.

ACCEPTANCE DATE DATE 'DD.MM.YYYY'

Thus, essential data files necessary for successful loading are the following. Notice
that the crossed file names are missing and must be created by you.

Tab. 6.1: SOL Loader files

Table_name ‘ Data file Control file
K person Person.unl Person-etl
K reader Reader.unl Reader.ctl
K book Book.unl Book.ctl
K title Title.unl Title.ctl

K rent books

Rent books.unl

Rent books.ctl

K authors of book

Authors of book.unl

Authors of book.ctl

K author

Author.unl

Auther-etl

The Control file structure looks like the following example. The first part deals
with data location (INFILE ‘book.unl’) and table, to which data should be loaded
(INTO TABLE book). The individual attribute value must be delimited in some way.
In our case, the delimiter is a pipe (|) — FIELDS TERMINATED BY '|'. Afterward,
the data structure definition is proposed — order of the data represented in * UNL file.
Do not forget to define a format for Date data type attributes.

Lab 6 — Data loading 177

LOAD DATA

INFILE 'book.unl'

INTO TABLE book

FIELDS TERMINATED BY '|'
(

BOOK_1D,
TITLE_ID,
PRICE,
REGISTRATION DATE DATE 'MM/DD/YYYY',
DISPOSATL_DATE DATE 'MM/DD/YYYY',
LOST DATE DATE 'MM/DD/YYYY'
)
DISPOSAL DATE Data inside the UNL file looks like this (for table book):

27911719109/23/2002|08/02/2014|12/29/2014
28014212102/06/2012108/17/2014|10/19/2014
28118113112/13/2001106/15/2014|12/17/2014

4. Load the data into fables using defined control files and data files. Do not forget
to use the correct order of operations (table reflecting another table primary key
must be loaded later, whereas foreign key value must refer to existing data) —
the operation order is the same as Insert statement order. The loading process
can be done using the following command (Linux).

$ sqlldr login@connect string control='control file name.ctl'

We will launch the SQL Loader tool from the Instant client, so the steps
are following:

o Start the SQL*Plus (SQL Client) application and connect to the libraryDB
cloud database.

e Provide the credentials (admin and connect identifier or connect string,
respectively).

e After successful login, the first letters of the row should be “SQL>".

e As stated, SOL Loader is an external tool. Invoking it from the SOL *Plus
environment requires you to call operating system activity, so the “host”
command will enclose the original statement:

host sqglldr login@connect string control='control file name.ctl'

178 Lab 6 — Data loading

Enter user-name: admin@librarydb_high
Enter password:
Last Successful login time: Tue Mar 16 2021 10:22:28 +01:00

Connected to:

Oracle Database 21c Enterprise Edition Release 21.0.0.0.0 - Production
ersion 21.2.0.0.0

Ahoj Michal :)

PL/SQL procedure successfully completed.

SQL> host sqlldr admin@librarydb_high control='title.ctl’
Password:

SQL*Loader: Release 19.0.0.0.0 - Production on Tue Mar 16 15:34:27 2021
ersion 19.8.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights reserved.

Path used: Conventional
Commit point reached - logical record count 100

Table K_TITLE:
100 Rows successfully loaded.
Fig. 6.1: SQOL Instant client — SQL Loader tool

5. Check the correctness immediately after the loading. Results shown on the screen
do not reflect the number of inserted data, but only the number of rows read from
the *.UNL data file. If there is any problem, solve it before continuing (errors are
mainly based on integrity constraints violation).

Appropriate information about the execution process can be found after starting control
file execution. The file has the same name as the control file but contains the extension
“*log”, e.g.:

person.ctl --> person.log

The log file will consist of error information about the refused rows to be loaded (refused
rows are directly stored in the file with BAD extension) and also information about a number
of successfully read (from the file) and loaded (into database) rows.

Example of the LOG file:

SQL*Loader: Release 21.0.0.0.0 - Production on Mon Mar 21 09:54:28 2022
Version 21.3.0.0.0

Copyright (c) 1982, 2021, Oracle and/or its affiliates. All rights reserved.

Control File: person.ctl
Data File: person.unl
Bad File: person.bad
Discard File: none specified

(Allow all discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 50

Bind array: 64 rows, maximum of 256000 bytes

Continuation: none specified

Lab 6 — Data loading 179

Path used: Conventional

Table K_PERSON, loaded from every logical record.
Insert option in effect for this table: INSERT

Column Name Position Len Term Encl Datatype
NAME FIRST &7 | CHARACTER
SURNAME NEXT £ | CHARACTER
PERSON_ID NEXT £ | CHARACTER
STREET NEXT &7 | CHARACTER
ZI1P NEXT £ | CHARACTER
TOWN NEXT £ | CHARACTER
DISTRICT NEXT &7 | CHARACTER
REGION NEXT £ | CHARACTER
STATE NEXT £ | CHARACTER

Table K_PERSON:
100 Rows successfully loaded.
0 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 148608 bytes (64 rows)
Read buffer bytes: 1048576

Total logical records skipped: 0

Total logical records read: 100

Total logical records rejected: 0

Total logical records discarded: 0

Run began on Ne Sep 17 18:26:39 2017
Run ended on Ne Sep 17 18:26:42 2017

Elapsed time was: 00:00:02.50
CPU time was: 00:00:00.03

The principle of creating UNL file is expressed by the following example written in SQL.
Moreover, explicit /ine feed can be added using chr(10).

set echo off newpage 0 space 0 pagesize 0 feed off
spool author.unl
select trim(name) || '|
trim(surname) || [
trim(author_id) || "|"' ||
to char (registration date, '"MM/DD/YYYY') || "[' |
trim(note) || '|' from author;
spool off

SQOL Data Loader can be invoked from the SOL Developer client (desktop) environment,
as well. It is provided by the wizard, so the steps are a bit easier and maybe more user-
friendly.

Connect to the cloud instance of the library database. Expand the list of tables in the left
panel. By right-clicking on the particular table name, select the “Import Data...” option.

Lab 6 — Data loading

180

K_TITLE

(SOL Loader variant) (1)

Fig. 6.2: SOL Developer — Import data

w-EKAUTHG Edit.
= k_Book Open

- K_RENT)
-3 k_TIME Export...
(3 Views
(a8 Indexes Table ’
5. 23 padranan Column »

Fig. 6.3: SOQL D-;veloper — Import data (SQL Loader variant) (2)

Navigation wizard will be launched consisting of five steps. The first step defines data
source and structure. Select the source file and file format. In our case, data are not enclosed
by the special characters. Individual values are delimited by the pipe (|), whereby the rule

is that one line in the source file corresponds to one inserted record.

Lab 6 — Data loading 181

B8 Data Import Wizard - krok 12 5 X
Data Preview
- Data Preview ¥ Restore State
e source: [Local Fle -
I Fle: [C:\sers\ Kvet\Desktop ibrary-full author.csv [*] Browse...
[
File Format
CHesder o =] o ron: 7 =
Format: v~ @lereviewRowlimt: [0 [
Encoding: Cp1250 -
Delimiter: || - Line Terminator: standard: CR LF, CR or LF |+|
Left Endosure: _‘:\ Right Endosure: ;;;__-E\
File Contents
COLUMN1 COLUMNZ COLUMN3 COLUMN4 COLUMNS
willam Shakespeare 1
Agatha Christie 2 09/04/2003
Barbara Cartland 3 note note note
Danielle Steel 4 08/20/2001
Harold Robbing 5
Georges Simenon 6 Golf player
Sidney Sheldon 7
Enid Blyton 8
Tom Clancy 9 08/15/1984
Gibhert Patten in note note note
Pomoc Dalej > Zrusit’

Fig. 6.4: SOL Developer — Import data wizard (1)

The next part consists of the definition of the Insert type — either Insert, Insert script,
and SQOL Loader. We will use the SOL Loader Utility option with no limit.

[Data Import Wizard - krok 22 5 X
Import Method
’T\ Data Preview Specify the method for importing data. For insert method, data is imported directly into the table. Insert method insert script creates a script and sends it to a worksheet.
‘T Import Method Import Method: SQL "Loader Utiity ¥
T Choose Columns
[Table Name:
[[] Import Row Limit: {100 =
File Contents
COLUMN1 COLUMNZ COLUMN3 COLUMN4 COLUMNS
Wiliam Shakespeare 1
Agatha Christe 2 09/04/2003
Barbara Cartland 3 note note note
Danielle Steel 4 08/20/2001
Harold Robbins 5
Georges Simenon 6 Golf player
Sidney Sheidon 7
Enid Blyton 8
TTom Clancy 9 08/15/1984
Gilbert Patten 10 note note nate
.k Rowiing 11
Leo Tolstoy 12
Jadde Collins 13 Three times ...
Horatio Alger 14
R.L. Stine 15 01/14/19%6
(Corin Tellado 16
Dean Koontz 17
Blevander Buchiin 1R
Bomoc < gpat Dalej > 2nudit

Fig. 6.5: SOL Developer — Import data wizard (2)

In the third phase, column mapping must be done. The original data source does not have
headers, so columns are named sequentially. Mapping is in the right part. Combine individual
source columns to the table attributes. The order must correspond to the order of columns

182

Lab 6 — Data loading

in the source file. In our case, it reflects name, surname, author id, registration_date,

and note.

Fig. 6.6: Data source file

"l author.unl - Notepad — O X
File Edit Format WYiew Help

William|Shakespeare|1] || P

Agatha|Christie|2]|09/04/2003| |
Barbara|Cartland|3||note note notel
Danielle|Steel|4|08/20/2001| |
Harold|Robbins|5]|| |
Georges|Simenon|6| |Golf player| v

Ln 100% Windows (CRLF) UTF-8

Always take emphasis on the Date or Timestamp data types. It is necessary to specify

the element format to ensure proper loading. In our case, the Date is delimited
by the MM/DD/YYYY format.

Target Table Columns

Name | REGISTRATION_DATE

Data Type

Format [MM/DD/YYYY

Default

Fig. 6.7: Table column property definition

K1

Optionally, you can specify default values, which will be used, if no data value is provided

(step 3).

Column Definition

Import Method
Column Definition

-

Options

88 Data Import Wizard - kiok 32 5

For each column in the Source Data Columns kst on the left, select a Target Table column on the right.

Match By |Position ¥

Source Data Columns
COLUMNL
CoLUMN2
'COLUMNS

COLUMNS

Target Table Columns
Name | REGISTRATION_DATE
Data Type
Format [MM/DD/YY

Defauilt
Comment

Data
09/04/2003
08/20/2001

08/15/1984

01/14/1996

01/18/1964
05/19/1998

< Spat’ Dalej >

Fig. 6.8: SOL Developer — Import data wizard (3)

Znusit’

Navigate the wizard to the fourth step by clicking on the Next button. There, output files
are specified. As already stated, the BAD file consists of the source file lines, which were

Lab 6 — Data loading

183

not loaded. Log file consists of the process monitoring and result description, list of raised
exceptions is there.

Pomoc

Fig. 6.9: SQL Developer — Import data wizard (4)

E Data Import Wizard - krok 4 2 5

Sqlidr Options
Log File Directory: [s\Michal Kvet\DesktopVibrary-ful [»| Browse...

Bad Fie Directory: [s\Michal KvetiDesktopVbrary-full|>| Browse...

Generated Files Drectory:
%) Save In Import File Directory (C:\Users\Michal Kvet\Desktop ibrary-ful)
) Save In: [-none [+ erowse...

Generated File Line Terminator: | platform defauit A4

Generic Options
Number of Characters in a buffer: 4000

[] Generate File Character Set Clause

< Spat’ Dalej >

Finally, the summary is provided, and the whole process can be launched:

Finish

Data Preview
Import Method

1
j

e

g
3

B3 Data Import Wizard - kiok 5z 5

| Import Summary
-8 Destination Connection: doud_library
-5 Table: ADMIN.K_AUTHOR
=8 source Fle: C:\usersy Kvet\D
#-(File Propertes: csv format
& Fields
= $ Selectad Fields
(] Freld: COLUMN1 —> NAME
] Field: COLUMN2 —> SURNAME
23] Field: COLUMN3 —> AUTHOR_ID
[Field: COLUMN4 —> REGISTRATION_DATE
] Field: COLUMNS —> NOTE
4 Fields Not Selected
(& Import Method: SQL™Loader Utiity
(=~ Method Options
K Limit Rows to Load
- Sqlldr Options
Log File Directory: C:\Users\Michal Kvet\Desktop \ibrary-ful
& Bad Fie Directory: C:\UsersMichal Kvet\Desktopfibrary-full
@+ Save In Import File Directory
-~ Generated Fie Line Terminator: platform default
=& Generic Options
&8 Number of Characters in a buffer: 4000
¥ Generate Fie Character Set Clause

y-fullauthor.csv

Lo save state

Pomoc

<Spat’ Dokondit

Fig. 6.10: SOL Developer — Import data wizard (5)

After launching the process, wait a bit for loading to be finished. In the repository,
alog file and a bad file are created if any issue occurs. In our case, no problem should

be identified.

184 Lab 6 — Data loading

Like the SQL Developer desktop version, SOL loader can be launched in the SQOL
Developer Web using the Data loading tab. The process and wizard are analogous. We will,
therefore, skip the step-by-step definition.

= ORACLE Database Actions

Development

la saL F DATA MODELER 2 REST
Execute queries and scripts, and Create relational diagrams for Deploy REST APIs for your database

create database objects database objects

{2} J50N # APEX

Manage your JSON Document Build web applications rapidly
Database

Fig. 6.11: SOL Developer Web — Import data (1)

= ORACLE' Database Actions | SQL

Navigator ~ Worksheets [Worksheet] ¥ o 7{;‘ L E) = Consumer Group: Low »
ADMIN v - -

1
Tables v

Searct | e Query Result Script Output ~ DBMS Output Explain Plan Autotrace SQL History Data Loading s

» EB K_AUTHOR

P B8 K AUTHORS_OF_BOOK
» EB K BOOK

» BB K_PERSON

P ES K_READER

P BB K_RENT_BOOKS

b EB K _TITLE

Search. Q

No data load hi

we support X

Fig. 6.12: SOL Developer Web — Import data (2)

6.3 EXP/IMP utility

1. If all previous operations ended successfully, backup the table structures and data
using the exp client. It should be executed in the OS environment. The command
consists of three parts — credentials to the database (password will be requested
by the system. If you want also to write password explicitly, use the second
command) followed by the list of tables to be exported (keyword tables) and file,
to which data should be exported. Notice that the table names are delimited
by the space or by commas.

$ exp login@connect string tables='list of_ tables' file='file name.exp' I

$ exp login/password@connect string
tables='k person k reader' file='library.exp'

If invoked from the SQL Instant client environment, operating system tool is launched
by using host prefix.

Lab 6 — Data loading 185

host exp login@connect string
tables='k person k reader' file='library.exp'

2. If the export process is done successfully, then drop all the exported tables. Notice
that the correct order must be used (based on referential integrity) — in principles,
reverse to loading.

drop table table name;

3. Then, use the prepared export and load data back into the database. When requested,
use your credentials.

$ imp login@connect string file='filename.exp'

In case the export file has not been created by you, but by another user, you must
code it explicitly by adding the fromuser clause.

$ imp login@connect string fromuser=old login file='filename.exp'

Standard users can import data only to their schemas. However, the user with DBA
privileges can import data to any user schema using the following command. Clause
touser defines the schema name to which data should be loaded. (If you use
the localhost database, the SYSTEM user has DBA privileges, so you can try it).

$ imp login@connect string fromuser=old login touser=new_login
file='filename.exp'

Whereas it is invoked from the Instant client environment, the operating system tool
is launched using the host prefix.

host imp login@connect string file='filename='library.exp'

6.4 Creating import/export using dump files

Data pump (DP) import/export has been introduced in version Oracle 10g. At the same
time, the original approach (imp, exp) has been marked as deprecated. Although future
versions will not support old export functionality, the import will still be available for
compatibility with older versions. Compared to a previously described solution, the Data
pump is a server process, not a user process, and is managed by Data Pump Master Process
and Workers. It can also generate SQL files.

Note: Please distinguish between the operating system directory and the Oracle
directory in the next section. The whole process is multi-step. Operate carefully to reach
the results.

Login expression in the next section expresses your real login to Oracle cloud and should
be replaced in your code.

6.4.1 Import using data pump

As already stated, data pump functionality is, in comparison with exp or imp
functionality, executed on the server-side. It is, therefore, necessary to copy the export file to
the cloud storage and make it available for the database and management processes. We will

186 Lab 6 — Data loading

need Object storage and Credentials to access the objects by the database and to allow you
to manage the import process using the locally installed SQL developer tool.
Access to a cloud account using SOL developer and Wallet has already been shown.

Object storage

Oracle Cloud Object Storage is high-performance cloud storage — reliable, resistant, and
cost-efficient data repository. Object storage repository can cover an unlimited number of
files with any structure. Always Free version is limited to 20 GB of the capacity. Oracle
Cloud Object Storage data can be easily, safely, and securely managed and retrieved
by the internet or by using a cloud platform. It is not associated with a specific compute
instance. The core element is the region itself.

Object storage can be accessed from the left panel of the Cloud management by selecting
the Storage option.

e

Block Storage Object Storage & Archive...
Block Volumes Buckets

Block Volume Backups

Block Volume Replicas

Networking Volume Groups
Volume Group Backups

Backup Policies

Oracle Database

Databases
File Storage
Analytics & Al
Iyti File Systems

Developer Services Mount Targets
Identity & Security

Observability & Management

Fig. 6.13: Object storage

Object storage consists of the buckets holding data files themselves.

Bucket

The bucket is a logical container for storing data files. Each bucket is created
and associated with the compartment delimited by the policies limiting the actions, which
can be done there. We will use the general term “object” as a file of any data structure
and format for cloud storage. The object is defined by its representation and metadata.
Each object is stored within the bucket.

Lab 6 — Data loading 187

Buckets in kvetmichal (root) Compartment

Object Storage provides unlimited. high-performance, durable, and secure Gafa storage. Diata is uploaded as objects that are stored in buckels. Leam o

~ | Default Storage Tier Visibility Created
Standard Private Fri, Aug 28, 2020, 0
Standarg Private Mon, Now 9, 2 2639 UTC

Showing 2 llems ¢ 101

Fig. 6.14: Bucket creation (1)

To create a new bucket, the following parameters are defined:

® Bucket name.

e Bucket storage tier — standard or archive.

o Object auto-tiering option (enabled or disabled) allowing the system to move
infrequently accessed objects to the less expensive storage repository (if the paid
option is used).

e Object versioning option (enabled or disabled) storing all versions of the data object
in case of creating and uploading new object version or by deleting and overwriting
object, respectively.

o Emit object events — automation of the state changes (for the object of the whole
bucket) using pre-defined events (like user notifications) — CRUD (create, read,
update, delete) operations

o Encryption type using either Oracle managed keys or customer-managed keys.

e Tags — metadata, by which the resources can be categorized and tracked inside
the tenancy. Tags consist of pair — key and value.

Create a new bucket for the dump file repository. Name it bucket library, whereas it will
hold relevant import, export, and log files for data pump operations. Let the bucket type set
as standard. Object changes do not need to be monitored or versioned. Let encryption be done
and managed by the Oracle.

Create Bucket

T
[

Bucket Name

I bucket_library

Default Storage Tier
© Standard
Archive

The default storage fier for a bucket can only be specified during creation. Once set, you cannot change the storage tier in which a bucket resides. Leam more about storage fiers

Enable Auto-Tiering
Automatically move infrequently accessed obiects from the Standard tier to less expensive storage. Leam more

Enable Obj
Create an obj

ning
ion when new object is uploaded, an existing objectis overwritten, or when an object is deleted. Learn more

Emit Object Events
Create automalion based on object state changes using the Events Service

Encryption
1@ Encrypt using Oracle managed keys
Leaves all encryption-related matters fo Oracle.

Encrypt using customer-managed keys
Requires a valid key from a vault that you have access to. Learn more

ags

Tagging is a metadata system that allows you to organize and track resources within your tenancy. Tags are composed of keys and values that can be attached to resources.

Learn more about tagging

Fig. 6.15: Bucket creation (2)

Tag Key Value

188 Lab 6 — Data loading

Press the Create button and wait for the system to create the bucket. After the creation,
a new bucket will be part of the list.

Buckets in kvet3 (root) Compartment

Object Storage provides unlimited, high-performance, durable, and secure data storage. Data Is uploaded as objects that are siored in buckets. Leam more

You can use 10 GIB of Object Storae and 10 GIB of Aschive Storage far free in your harme region. You are using approximately 489.72 KiB. of combined Ctject Storage and Archive Slorage. If you use more than 20 GIB and have nol upgraded
when your Free Trial ends, your data is deleted.

Creale Bucke!

Name =~ | Default Storage Tier Visibility Createa
Standard Private Wed, Jun 30, 2021, 05 33 14 UTC
Stangarg Private Wed, Jun 30, 2021, 06:33:31 UTC

Showng 2Hems ¢ 1of1

Fig. 6.16: Created bucket

By clicking on the bucket name, its definition is present, followed by the parameters,
availability, and list of objects stored there. For now, the bucket does not hold any data.

Germany Central (Frankfurl) v

Object Storag

G o Archive Storags for 22 i your home ragion. You 212 using approximatsly 469.72 KIE of combined Object Storage and Archive Storage. Ifyou us more than 20 Gif and have not Upgraded when

bucket_library

sorvtny || o reseucs e oo |
Resources Objects

BucketInformation | Tags
[rmy——

Name Last Modified sizz Storage Tier

Encryption Key: Oracle mansges key Assian

Created: Wed, Jun 30, 2021, 06:33:14 UTC.

No ftams found

Fig. 6.17: Created bucket characteristics

Now, it is time to upload the exported dump file to the bucket (export file is available
in the file repository of the book — expdp library.dmp). Click on the Upload button under
the Object definition.

Resources Objects

Last Modified Size Storage Tier

Ho fams found.

Fig. 6.18: Object upload into the bucket

Object Prefix Name is optional and will be treated as the left-most part of the original
object name extension. The original name is self-explanatory so that the input field can
remain empty.

After upload operation, a particular file is available in the Object list of the Bucket,
meaning that the file is (can be) accessible via the internet or various interfaces.

Lab 6 — Data loading 189

Resources Objects

| vore actions ~
Name Last Modified size Storage Tier

expdp_iibrary.dmp 30, 2021, 08:38:18 UTC 124 KB Standard

Lifecycle Palicy Rules

Fig. 6.19: Uploaded file

At this stage, the file has been uploaded into Cloud Object storage. However, it is
not accessible from the database. It is even not accessible through the local SQL Developer.
The solution is to create Credentials by invoking the Create credentials procedure
of the Dbms_cloud package.

Create_credentials procedure

Dbms_credentials is a package supervising the authentication process. It provides
an interface for authenticating and impersonating EXTPROC callout functions and external
or remote jobs and file watchers from the Scheduler.

Credentials are database objects holding username and password pairs. They are created
by invoking the Create credentials procedure of the defined package. The syntax
of the method consists of seven parameters. The first three ones are mandatory. The others
have default clauses.

DBMS CREDENTIAL.CREATE CREDENTIAL (
credential name IN VARCHAR2,

username IN VARCHAR2,

password IN VARCHAR2,

database role IN VARCHAR2 DEFAULT NULL
windows_domain IN VARCHAR2 DEFAULT NULL,
comments IN VARCHAR2 DEFAULT NULL,
enabled IN BOOLEAN DEFAULT TRUE) ;

Credential_name is a unique name used for reference. It cannot be undefined (NVULL) and
is automatically converted to the uppercase unless specified in the double quotes ().
Username is a definition of the connection to the cloud database — tenancy. Password
is provided by the authentication token. Database_role parameter delimits the administration
privileges (SYSDBA, SYSDG, SYSADMIN, or SYSBACKUP). By default, the connection
is made via standard user privileges delimited by the NULL value. Enabled parameter
defaults to True, limiting the availability of the Credentials.

The following code expresses the required parts. Credential name is a unique, username
represents tenancy name and password is delimited by the authentication token
(do not execute the code now, it is just an example of the structure):

BEGIN
DBMS CLOUD.CREATE_CREDENTIAL (
credential name => 'CREDENTIAL NAME',
username => 'tenancy name',
password => 'authentication token');
END;
/

For the creation, we will need the credential name (use any you want, but without
the spaces). Note that it must be unique among the fenancy. Tenancy name has been specified

190 Lab 6 — Data loading

and provided to you during the registration process to the cloud. Its value can be obtained
by clicking on the profile inside the cloud.

— ORACLE Cloud Germany Central (Frankfurt) v _{:L (E:) LT_:J @ 0

Object Storage » Bucket Details

@ You can use 10 GiB of Object Storage and 10 GiB of Archive Storage for free in
your home region. You are using approximately 469.72 KiB of combined Cbject
Storage and Archive Storage. If you use more than 20 GiB and have not
upgraded when your Free Trial ends, your data is deleted. Show details

bucket_library

Edit Visibility Move Resource Add Tags

Fig. 6.20: Getting tenancy name (1)

Gemmany Central (Frankfurt) _i_:_v‘

Profile

oracleidentitycloudservice/kvet

Tenancy: kvetmichal
User Settings

Sign Out
Fig. 6.21: Getting tenancy name (2)

In my case, the tenancy name is “kvetmichal”.

Authentication token

To define new Credentials, it is necessary to obtain an Authentication token. There are,
in principle, two ways, how to reach them. The first solution is based on clicking the Profile
and selecting username (in my case: oracleidentitycloudservice/kvet***@******* com):

Gemmany Central (Frankfurt) ~ j_:_\ 2

Profile

oracleidentitycloudservice/kvet

Tenancy: kvetmichal
User Settings

Sign Out

Fig. 6.22: Profile

Lab 6 — Data loading 191

The second solution is based on accessing it using the left navigation panel menu: Identity
& Security => Users.

@ Identity & Security

Identity Security Zones
Users Overview
CoRBET Groups Recipes

Sioae Dynamic Grou,
. Security Advisor
Networking Network Sources

Policies. Web Application Firewall
Oracle Database

Compartments
Databases Federation

Analytics & Al Authentication Settings
Developer Services Cloud Guard

[Identity & Security Scanning

Host Scans.

‘Observability & Management

Fig. 6.23: User identity

By clicking on the user, available resources are listed in the left part of the screen.

ces, and documentation iral {Frankfurt) v

dentity » Users »

kvet

Michal Kvet
EditUser || CreateResetPasswerd | | Ensble Mult-Factor Authentication | | Edit User Capabilities | | More Actions v
User Information Tags

ACTIVE OCID: ...3jwd5a Show G

Federated: No

Created: Tue. Aug 18, 2020, 11:55:47 UTC My Oracle Support account: -

Multi-factor authentication: Dissied

Email: kvet
Capabilities
Local password: Yes SMTP credentials: Ye:
APl keys: Yes Customer secret keys: Yas
Auth tokens: Yas OAuth 2.0 Client Credentials: Vs
Resources GFOUpS
Groups Add User o Graup
API Key Group Name - | Status Description
Administrators ® Actve Administrators

scted Displaying 1 Group < 1of 1

Fig. 6.24: Authentication token (1)

Select Auth Tokens and Generate token.

192 Lab 6 — Data loading

Resources Auth Tokens

Groups

APl Keys

Auth Tokens

ftoken

Customer Secr
QAuth 2.0 Client Crederials

SMTP Credentials
Fig. 6.25: Authentication token (2)

Provide some explanatory description.

Generate Token

Description

token_import

Generate Token Cancel

Fig. 6.26: Authentication token (3)

Copy the generated token to the clipboard. Note that it is impossible to get it afterward.
It would be necessary to remove the token and create a new one.

Generate Token

Generated Token
Copy this token for your records. It will not be shown again.

,,,,,, Show Copy

Fig. 6.27: Authentication token (4)

Now, you have all the required values to create Credentials, so let’s return to the defined
syntax. Connect to the cloud instance as the administrator user (admin) via SOQL Developer
desktop, web, or Instant client. Execute the following code. The process of getting a username
and authentication tokens has already been specified.

Lab 6 — Data loading 193

BEGIN
DBMS CLOUD.CREATE CREDENTIAL (
credential name => 'ATP_CREDENTIAL MK',
username => 'kvetmichal',
password => '****%*%!'),; —- replace the value with the generated value
END;
/

The result provided by the SOL Developer Web:

[Worksheet]* v B O B B & & = Av W
1 BEGIN
2 DBMS_CLOUD.CREATE_CREDENTIAL(
3 credential_name => 'ATP_CREDENTIAL MK',
4 username => 'kvetmichal’
5 password => (N ; - colace the value with the generated value
= :
7 H
8

LW
Query Result Script Qutput DBMS Output Explain Plan Autotrace SQL History Data Loading

[f.a]

PL/SQL procedure successfully completed.

Elapsed: 00:00:00.962
Fig. 6.28: Create credentials — result

Check the created Credentials by retrieving data from the all credentials data dictionary:

SELECT credential name, username
FROM all credentials
ORDER BY credential name;

credential_name username

1 ATP_CREDENTIAL_MK = kvetmichal
Fig. 6.29: List of created credentials

All prerequisites for the data pump operations are passed at this moment. Before we start,
create a new user account to cover the data import. Grant him at least connect, resource,
and tablespace limit privileges (it can be done by using admin user in the SQL Developer
or Instant client).

create user library user identified by ****x**;
grant connect, resource, unlimited tablespace to library user;

Replace the “*******” with the actual password (at least 8 characters with upper
and lower case and numeric value).

In the next part, import using the data dump (impdp) will be managed in the SQL
Developer desktop. Navigate to the View => DBA.

194

Lab 6 — Data loading

B Oracle SQL Developer : CLOUD._oracle_student~1 - X

N IN7A SYS

ORDS Admnsstration

Gea B & @

PEW-BR 302 &ean

& QoD arade._student~1

“fworkshest | Query Buder

6| END;

77

8

SESELECT credential name,

10 username,
windows_domain

FROM all_credentials

ORDER BY credential_name;

{/saiptoutput % [P QueryResult x
o 3) 3 5o | AlRows Fetched: 1in 0,028 seconds

 crepeNTIAL_Nave Gusenave [winoows_pomain |
! ATP_CREDENTIAL_MK kvetmichal (null)

| ooy Ly reye - swwmmens -

Messages -

ol key down to perform G

" | Line 12Column 17 | Insert | Modified | Windows: OF

Fig. 6.30: Enabling DBA menu (1)

Data Modeler k

Analytic View »
@ Bookmarks
@Z Breakpoints
o Cart
a Change Management
ﬂ Components
&) Connections
4 pBA
Data ’

Ctri+Shift-K
Ctrl+Shift-R

Ctrl+Shift-P

Fig. 6.31: Enabling DBA menu (2)

Specify a new DBA connection by clicking on the green plus symbol (#) in the DBA

group:

DBA

oy
ir.)

[=]

Fig. 6.32: DBA connection specification

The connection is delimited by the admin account to the cloud database. Let’s expand it.
It consists of several administration tools and performance monitoring. Navigate to the Data
Pump section. Right-click on the Data Pump. There are two options — wizard
for the Data Pump Import and Export.

Lab 6 — Data loading 195

DBA

+ @5

a Connections

=-E3 cLoUD-Oradekvetmichal
#-[_@ Database Configuration
| @ Database Status

5. [&
LJ L;B E W Refresh
- @8 Im
@@‘3 Per
-3 RMAN
E—@ Resource Manager

I:E SQL Translator Framework
{3 Scheduler

(g2 Security

-3 Storage

e @ Tuning

Fig. 6.33: Data Pump import

Data Pump Export Wizard...
Data Pump Import Wizard...

Data Pump Import Wizard

Impdp Wizard consists of the six steps to be treated. All activity is done on the server-
side; a client is just treated as the supervisor process.

Namely, specify the Job Name by which the process can be monitored. Type of objects
to be imported — either the structure itself or extended by the data loading into the tables.
We will load the table structure (DDL) and the data, so the option “Data and DDL”
will be selected. The type of import can deal with various granularity levels. We will use
table precision reflection. The input source demands are credential definition and link to the
data file. Credentials have been created using in the previous step by using the
Create_credentials procedure:

BEGIN
DBMS CLOUD.CREATE_CREDENTIAL (
credential name => 'ATP_CREDENTIAL MK',
username => 'kvetmichal',
password => '******xx'),; —— replace the value with the generated value
END;
/

196 Lab 6 — Data loading

E8 Import Wizard - krok 12 6 X
P

Type

g
B

Connection a

Job Name IImport_Iibrary

Data or DDL [Dmandnu. v]

Type of import
O Ful

|2

(") Schemas
(3) Tables
() Tablespaces

Choose Input Files

Credentials or Directories File Names or URI
CREDENTIAL:ATP_CRE... +|IIT

» Al *A R A
(CREDENTIAL:NULL
DIRECTORY:DATA_PUMP_DIR
DIRECTORY:SQL_TCE_DIR

Pomoc Dalej > Zrusit'
Fig. 6.34: Data Pump import wizard (1)

We still need the path to the import file, which is stored in the Object storage of the cloud.
It is done by the pre-authenticated request defined in the Oracle Cloud console.

Return to the cloud, navigate to the Object storage, select the Bucket and relevant file
inside (scroll down to the Objects section).

E ol &2 Uging approvdmately §2.16 MIB of the 20 GIB it of frae combingd Obct Sorane and Awchive Storage Uparads to use unlimied storage Shew dats

bucket_library
Edit Visbiily | | Move Resource: A Tags
Bucket Information Tags
Visibility: Private Encryption Key: Orace managed key &
Namespaca: frtASautzme Craated: Wed_ Mar 17, 2021, 073502 1
Detautt Storage Tier: Stanzard Compartment: ke

Appraximate Count: 1 chjects (1) Approximate 8lze: 450 g (i)
ETag: 5061034801 20-4587- 03660882 160C 3007 Emit Object Events: & Disabied Edil
OCID: _pwgTgara Show Cooy Object Versioning: @ Dissbled Cdil (3

Resources Objects

Objects m More Actions. =
- Narne. Last Modified

thenticaled Requests

sapdp_library dmp W Mar 17, 9091, 073637 UTC
Work Requests
q

Fig. 6.35: Pre-authenticated request definition

Lab 6 — Data loading

197

In the Resources list of the left part of the screen — Pre-Authenticated Requests
are present. Click there and create a new element. Specify the name and target — either
the whole bucket or the object itself. Specify the access privileges and expiration, as well.

Create Pre-Authenticated Request

Name

Help

[preauth_bucket_library|

Pre-Authenticated Request Target

Bucket Object
Create a pre-authenticated re- Create a pre-authenticated re-
quest that applies to all objects quest that applies to a specific
in the bucket. v object.

Access Type

© Permit object reads
Permit object writes
Permit object reads and writes

Enable Object Listing
Let users list the objects in the bucket

Expiration
Jul 7, 2021 0716 UTC

Create Pre-Authenticated Request [eENls=)

Objects with prefix

Create a pre-authenticated re-
quest that applies to all objects
with a specific prefix.

Fig. 6.36: Create a pre-authenticated request for the whole bucket

Copy the provided URL address. Note that it will not be visible later.

Pre-Authenticated Request Details

Name Read-Only

I preauth_bucket_library

Pre-Authenticated Request URL Read-Only

https:/fobjectstorage.eu-frankiurt-1.oraclecloud.com/p/Z-b3JdtYUS1Tbb3SVBvsaX3H| |j|

Copy this URL for your records. It will not be shown again.

Fig. 6.37: Pre-authenticated request result

We have created a pre-authentication request for the whole bucket.
Similarly, the pre-authentication request can be created just for the individual object
(file), as well. In that case, it is done either by selecting Object type in the definition.
The name of the object inside the bucker needs to be specified explicitly, as well as access

rules (read, write privileges).

198 Lab 6 — Data loading

|:\:
B
b=]

Create Pre-Authenticated Request

Name

preauth_export_library

Pre-Authenticated Request Target

Bucket

Create a pre-authenticated re-

quest that applies to all objects in

the bucket.

Object Objects with prefix

Create a pre-authenticated re-
quest that applies to a specific
object.

Create a pre-authenticated re-
quest that applies to all objects
with a specific prefix.

Object Name
[expdp_library.dmp

Access Type
© Permit object reads

Permit object writes
Permit object reads and writes

Expiration
Jul 7, 2021 07:20 UTC =

Create Pre-Authenticated Request Cancel

Fig. 6.38: Pre-authenticated request for the specific object (1)

A more straightforward solution can be reached by defining pre-authentication request
directly for the file in the bucket object list. Navigate to the Object storage, select the relevant
bucket by which the objects inside will be listed.

Search for resources, services, and documentation

and Archive Storage. If you use more than 20 GiB and have not upgraded when your Free Trial ends, your data is deleted. Show details

bucket_library

Edit Visibiity || Move Resource

Bucket Infermation Tags

Visibility: Private Encryption Key: Oracle managed key Assion

Namespace: MECISNYTK Created: Wed, Jun 30, 2021, 06:33:14 UTC

Default Storage Tier: Standard Compartment: kvel2

Auto-Tiering: ® Disabled £ Approximate Size: 124 iiB (1)

Emit Object Events: @ Disabie

Approximate Count: 1 objects

ETag: 3544882¢-9531-4405-9a10-a20e0e102da8 Object Versioning: @ Disabled Ecit (7)

OCID: . avab3ua Show Copy

Resources Objects
Objacts More Actons. =
Metrics
Name Last Modified Size Storage Tier
Pre-Authenticated Requests
expdp_library dmp Wed, Jun 30, 2021, 06:39:16 UTC 124 ki Standard H
Work Requests
»

1

Lifecvcle Policy Rules

Fig. 6.39: Pre-authenticated request for the specific object (2)

Click on the three dots at the end of the file property list and select Create Pre-
authenticated Request.

Lab 6 — Data loading 199

Objects
View Object Detalls
Upload More Actions =

Download

Name Last Modified Size Storage *
Copy

expdp_library.dmp ‘Wed, Jun 30, 2021, 06.39:16 UTC 124 KB Standard

Update Storage Tier b

Creats Pre-AUmenticates Request
Re-encrypt
Rename

Fig. 6.40: Pre-authenticated request for the specific object (3)

In that case, the Object name will be filled automatically.

|:|:
B
E=]

Create Pre-Authenticated Request

Name
par-object-20210630-0922

Pre-Authenticated Request Target

Bucket

Create a pre-authenticated request
that applies to all objects in the
bucket.

Object Name
expdp_library.dmp
© Permit object reads
Permit object writes
Permit object reads and writes
Expiration
Jul7,202107:22UTC

Object

Create a pre-authenticated request
that applies to a specific object.

Create Pre-Authenticated Request Cancel

Fig. 6.41: Pre-authenticated request for the specific object (4)

For now, read privilege is suitable.
Copy the link to the clipboard and return to the import wizard inside the SQL Developer
and use the copied link to the object (not the whole bucket) to the File Name position.

Objects with prefix

Create a pre-authenticated request
that applies to all objects with a
specific prefix.

200

Lab 6 — Data loading

58 Import Wizard - krok 1z 6

Type

Connection a

Job Name [Impurt_library

Data or DDL [Data and DDL

Type of import
|'::| Full
(") Schemas
(3) Tables
() Tablespaces

Choose Input Files

Credentials or Directories
CREDENTIAL:ATP_CREDEN...

File Names or URI
library/oje:

library.dm

Add Row

Pomoc

Fig. 6.42: Data Pump import wizard (1)

Remove Row

Dalej >

Navigate to the Next and wait to get the list of the available tables inside the export dump
file. Select the set of the tables to be imported. In my case, I will import all of them.

58 Import Wizard - krok 2 2 6 X
Filter
7 Tables Indude Filter
T — Select tables for Data Pump
T' Filter Available source tables Selected source tables
T Remapping DB_KNIZNICA.K_AUTHOR
DB_KNIZNICA.K_AUTHORS_OF _BOOK
T DB_KNIZNICA.K_BOOK
I DB_KNIZNICA.K_PERSON
! DB_KNIZNICA.K_READER
N DB_KNIZNICA.K_RENT_BOOKS
DB_KNIZNICA.K_TITLE
®
< '\
K4
Pomoc < Spat’ Dalej > Zrusit

Fig. 6.43: Data Pump import wizard (2)

Lab 6 — Data loading 201

As stated, we have created one extra user as the import destination. His username is then
specified in the third step — Re-Map Schemas. Source username will be obtained
automatically, whereas the export file consists of only one user data. The destination user has
been created. In my case, the username is “library _user”. Tablespaces can remain original.
However, if necessary, they can be remapped similarly.

= Import Wizard - krok 3 z 6 X
Remapping
Re-Map Schemas
Eiter Destination
1 -
T Remapping fibrary_user|]
s Options
T Add Row Remove Row
Re-Map Tablespaces
Source Destination
Add Row Remove Row
Bomec < Spat Dalej > Zrusit

Fig. 6.44: Data Pump import wizard (3)

202 Lab 6 — Data loading

Step 4 defines the parameters of the import process — number of threads, log file
destination, action on the table, if a particular table already exists, etc. For the definition,
the Logging section is the most relevant.

58 Import Wizard - krok 47 6 X
Options
Thread Number
I Enable Logging
¢ Remapping LogFile |DATA_PUMP_DIR | [[MPORT.LOG
1 -
"T‘- Options ["] Action On Table if Table Exists
I
¥ Schedule
[] skip indexes that are set to the Index Unusable state
[] Regenerate Object IDs
[] Delete Master table
[v] Append Timestamp to Log and Job names
VERSION [compaTIBLE v
[] Proceed to summary.
Pomoc < Spat’ Dalej > Zrusit

Fig. 6.45: Data Pump import wizard (4)

The name of the Oracle directory mapper is DATA_PUMP_DIR, which is always created
for these data pump activities. The name of the log file is suitable, as well. However,
it is required. So, name it whatever you want.

[v] Enable Logging
LogFile |DATA_PUMP_DIR ¥| [IMPORT.LOG]

Fig. 6.46: Log output specification

Logging import and export activities (via data pump) is inevitable to identify the issues
during the process, to get the information about the results, status, etc.

Optionally, you can define a job by the time when the action will start. Otherwise, it will
be executed immediately.

Lab 6 — Data loading 203
£ Import Wizard - krok 5z 6 X
Schedule

Job Parameters
I JobName: [Import_library
| : Job Schedule
A tions Start Repeat
% Schedule () Immediately CE v|/|(®OneT
w Summary () Later =5) Inte
pate [17.3202110:4053 = ; =
Repeat Until
=
17.3.2021 10:40:53 (=
Pomoc < Spat’ Dalej > Zrusit

Fig. 6.47: Data Pump import wizard (5)
Proceed to the summary, check it, and start the process.

B Import Wizard - krok 6 2 6

Summary

Summary PL/SQL

T [= Data Pump Summary
T = (& Connections
Remapping 3 Destination: CLOUD-Oradekvetmichal
T (& Data
,T\ Options &-(E Tables
Schedule & DB_KNIZNICA

[K_AUTHOR

[EH K_AUTHORS_OF _BOOK

Data or DOL - Data and DDL
: Threads - 1
B Log File - DATA_PUMP_DIR IMPORT.LOG

Re-Map Schema - From: DB_KNIZNICA To: library_user
B Append Date to file names - true
Schedule - Immediate
=@ Current connection is ADWC = FALSE
Current connection is ATP = TRUE
“-- (@@ VERSION - COMPATIBLE

i B Input File - CREDENTIAL:ATP_CREDENTIAL_MK https://objectstorage.eu-frankfurt-1.oradedoud.com)|

Bomac < Spat’
Fig. 6.48: Data Pump import wizard (6)

204 Lab 6 — Data loading

Now, the process is to be started.
Setting up Data Pump job. X

Setting up Data Pump job.

\ |

Processing...

Fig. 6.49: Setting data import job

Execution can be monitored using the SOL Developer, as well.

3@
'} OWNER_NAME | {} JOB_NAME } 108_MODE | {: STATE '} DEGREE |{} ATTACHED_SESSIONS |{} DATAPUMP_SESSIONS
1 ADMIN Import_library-09 40 _52 TABLE EXECUTING 1 0 2
L
aw
| LOG FILES
M) IRefresh: 0 =

CHECKRING FASTERK TADLE
PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.

OWNER: ADMIN JOB_NAME: Import_ library-09%_40_52
I

Fig. 6.50: Data Pump import execution monitoring

The import process has been done. IMPDP, as a data pump import process, has generated
a log file describing the import process. But where to find it?

The log file is not accessible directly. It is available, located on the cloud by using
the Oracle directory specified during the 4th step of the import process
(DATA_PUMP _DIR). 1t is not part of the bucket, so the user cannot get it directly. Looking
at the import process description of the SQL Developer desktop, the defined file name is
specified:

OPENING: MK_EXP KNIZNICA DIR: expdp_kniznica.log
Fig. 6.51: Log file location

To get the log file accessible, it must be copied to the bucket of the Object storage. It can
be ensured through the procedure Put object of the DBMS CLOUD package.

We will ensure this through a procedure DBMS CLOUD.PUT OBJECT. 1t copies a file
from Autonomous Database to the Cloud Object Storage. The maximum allowed file size is
50 GB.

Syntax of the Put object procedure:

DBMS_ CLOUD.PUT OBJECT (

credential name IN VARCHAR2,
object uri IN VARCHAR2,
directory name IN VARCHARZ2,
f ile_name IN VARCHAR2) ;

o Credential_name has already been created, covered by a definition of the username
and password provided by the authentication request procedure to the Object
Storage.

e Object _urirepresents the URL link to the bucket or object itself.

Lab 6 — Data loading 205

e Directory name is an existing Oracle directory present in the Autonomous
Database.

o File name — the name of the file located and accessible via a defined Oracle
directory (directory _name specification). It represents the /og file of the data pump
import, and its name was specified either during the import definition in the wizard
or is obtainable using SOL Developer (as already stated).

Let's define the Put object parameters and execute it. Let’s take emphasis on the
Object_uri parameter value.
We have created two pre-authenticated requests, one for the whole bucket, and the second
is associated with the object itself. Let’s evaluate their structures. N references namespace,
B covers the bucket, and O expresses the object.

Bucket

https://objectstorage.eu-frankfurt-1.oraclecloud.com
/Pp/0O8mTAKHDVT3qypjLlazUDoylyt-KOemYLcQdl9DhcpMiRS6BzM68vSASEALI30CdT
/n/frrt85axbzme

/b/bucket library

/o/

Object

https://objectstorage.eu-frankfurt-1l.oraclecloud.com
/P/J4Ub7Rtgeb9E1qRavVdPsQoo0PJ8XqUpAim-eiXsMhUPN2z1iSDv1JAhcmsm7Zv5Gq
/n/frrt85axbzme

/b/bucket library

/o/expdp library.dmp

The URL address always consists of the cloud address, reflection to the Object storage,
Bucket, and optionally object (file) name.

So, if you use the whole bucket as the object uri parameter, it must be extended
by the name of the destination file:

https://objectstorage.eu-frankfurt-1.oraclecloud.com
/p/08mTAKHDVT3gypjLlazUDoylyt-KOemYLcQdl9DhcpMiRS6BzM68vSd5EAL30Cd7
/n/frrt85axbzme

/b/bucket library

/o/IMPORT DP_library.LOG

The definition of the Put object procedure can look like following (replace the values
with your defined structures and links):

BEGIN
DBMS CLOUD.PUT OBJECT (
credential name => 'ATP CREDENTIAL MK',
object uri => 'https://objectstorage.eu-frankfurt-
1.oraclecloud.com/p/0O8mTAKHDvT3qgypjLlazUDoylyt-
KOemYLcQd1l9DhcpMiRS6BzM68vSASEAL30Cd7
/n/frrt85axbzme/b/bucket library
/o/IMPORT DP library.LOG',
directory name => 'DATA PUMP_DIR',
file name => 'IMPORT-10_31 28.L0G');
END;
/

206

Lab 6 — Data loading

Look at the Cloud repository, navigate to the Object storage and particular bucket.

Now the file is visible there.

bucket_library

B Pl o |

esources Objects
s [I

B wpom o manice

erp—

‘

visa v 7, 2020 11000

Vied Mar 17 2031, 073537 7.

Fig. 6.52: Access to the log via Object storage

You can download it locally:

Obijects

[oo P
e
@ o mmicn

epap

[rer—

Veed, 17, 2024, 141990TC,

eed, i 17, 2021, 073637 UTG

Fig. 6.53: Access to the log via Object storage — download option

anne

ke

smamm

wvie

Stanazc

r—

Storage Tier
Stanare

Stanare

Vi Otject Detais i

[—
o
Upasts Stocaga T

Crmsi Pre At ied Recusst

The log consists of the summary of the activity, as well as the error description. The first
part deals with the total number of imported rows to each table.

Processing object type

Processing object type

Processing object type
imported "KNIZNICA

SCHEMA EXPORT/PRE_SCHEMA/PROCACT SCHEMA

SCHEMA_EXPORT/TABLE/TABLE

SCHEMA EXPORT/TABLE/TABLE DATA

ENG".

imported "KNIZNICA ENG"

imported "KNIZNICA ENG".
imported "KNIZNICA ENG".
imported "KNIZNICA ENG".
imported "KNIZNICA ENG".
imported "KNIZNICA ENG".

Processing object type

Processing object type

"K_RENT BOOKS"

."K_BOOK"

"K_PERSON"
"K_TITLE"
"K_READER"
"K_AUTHOR"
"K_AUTHORS OF BOOK"

40.
21.
15,
12.
.01

11

46
75
58
38

8.062
6.593
SCHEMA_EXPORT/TABLE/GRANT/OWNER_GRANT/OBJECT_GRANT
Processing object type SCHEMA EXPORT/TABLE/CONSTRAINT/CONSTRAINT

SCHEMA EXPORT/TABLE/INDEX/STATISTICS/INDEX STATISTICS
Processing object type SCHEMA EXPORT/TABLE/CONSTRAINT/REF CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS

Processing object type SCHEMA EXPORT/STATISTICS/MARKER

KB
KB
KB
KB
KB
KB
KB

1000
500
100
100
150

50
50

rows
rows
rows
rows
rows
rows
rows

Job "KNIZNICA ENG"."SYS IMPORT FULL 01" successfully completed at Mon Mar
21 14:21:11 2022 elapsed 0 00:00:35

Fig. 6.54: Log file content

Note that if any error occurs, it is necessary to analyze and evaluate it. In my case, there
was a problem with the statistics. However, it can be ignored — the system will calculate new

statistics on demand.

Lab 6 — Data loading 207

ORA-39083: Object type INDEX STATISTICS failed to create with error:
ORA-01403: no data found
ORA-01403: no data found

Fig. 6.55: Errors inside the log

6.4.2 ExpDp

ExpDp is a new, more flexible, and faster server-side alternative to the “exp”. ExpDp
functionality can be executed on various levels — either for the whole database, schema
(user), or specific tables.

The process of the export is analogous to the impdp already described. In the DBA

section, expand the connection and use the option Data Pump Export Wizard of the Data
Pump element.

DBA

+ 0 /

a Connections
=) cLoup-Orade-kvetmichal
- Database Configuration

: law
@ @ Database Status &l saipt ¢
& 3

5 ;B E E@ Refresh

—% L3 Im Data Pump Export Wizard...

4@ Performa T e Pump Import Wizard

@ EﬁRMANB Data Pump Import Wizard...

Fig. 6.56: Data Pump Export Wizard

Note, that for explanatory reasons, I have created one extra user called “student user”
consisting of the student model by using older imp version (launched in Instant client):

host imp student user@studentdb high
fromuser=kvetl touser=student user
file=exp student.exp

Data pump export (ExpDp) is delimited by the eight-stage process. First of all, the result
set structure is defined, consisting of either the data structure definitions (DDL) or data
that can be present in the output, as well.

Exported Data Pump granularity can be the whole database, tablespace, schema, or table.
In this example, we will export all tables of the created user student user:

208 Lab 6 — Data loading

58 Export Wizard - krok 2 z 8 X
Source
Connection Q
) Source
‘ Data or DDL |Data and DDL -
Tables

’T\ Types to be Exported in Data Pump

T () Database

[(") Tablespaces

[(%) Schemas

[() Tables

Pomoc Dalej > Zrusit’

Fig. 6.57: Data Pump Export — step 2

In the third step, a list of usernames is present, which can be filtered out. Select
the student user and move it to the right part (Selected source schemas).

8 Export Wizard - krok 3z 9 X

Schemas

Select schemas for Data Pump.

Available source schemas Selected source schemas

Name %[]

sl Source

) Schemas

Filter

OMLSMODELS
OMLMODSPROXY

OML SPROXY
ORACLE_OCM
ORDS_METADATA
ORDS_PLSQL_GATEWAY
ORDS_PUBLIC_USER
OUTLN
REMOTE_SCHEDULER _AGENT
SH

558

SYs

SYSBACKUP

R e ¥ v

Pomoc < Spat’ Dalej > Zrusit
Fig. 6.58: Data Pump Export — step 3 (1)

Lab 6 — Data loading

209

Fig. 6.59: Data Pump Export — step 3 (2)

B Export Wizard - krok 3z 9 X
Schemas
Select schemas for Data Pump.
I Available source schemas Selected source schemas
st Source
/T\ Name |student J
T Schemas
A Bl Lookp
STUDENT _USER
" Y
! »
<
*
Pomoc < Spat’ Dalej > Zrusit’

In the next phase, filters can be optionally applied. We will do not use any filtering option.

B Export Wizard - krok 4z 9

Filter

X

["] Enable Indude Filter

Filter Type Expression

l
. l Sch
/T iemas

T Table Data
I
I .
!

Pomoc < Spat’ Dalej >

Fig. 6.60: Data Pump Export — step 4

210 Lab 6 — Data loading

Now, click on the Lookup button, by which the defined schema will be analyzed, list
of tables will be loaded.

E8 Export Wizard - krok 52 9 X

Table Data
Name][]

[More... @® Lookup

I \
”}« Filter
@ Table Data

+ Options

' v ¥ & @&

I Database Object Columns Object Where

Global Where: [
Pomoc < Spat’ Dalej > Zrudit

Fig. 6.61: Data Pump Export — step 5 (1)

Copy tables, which should be exported to the above list. I will export all the tables.

8 Export Wizard - krok 5z 9 X
Table Data
Name %]
[More... @8 Lookup
| 5] STUDENT_USER.0S_UDAJE
I 5] STUDENT_USER.PREDMET
s Filter 3] STUDENT_USER.PREDMET_BOD
& Table Data 3] STUDENT_USER.ST_ODBORY
| -] STUDENT_USER.ST_PROGRAM
Y S 777] STUDENT_USER.STUDENT
5 coruincwT _1CEn 1 TTEL
[@] A A/
| Database Object s Object Where
Global Where: |
Pomoc < Spat’ Dalej > Zrusit’

Fig. 6.62: Data Pump Export — step 5 (2)

Lab 6 — Data loading 211

Then, the options are defined. I recommend forcing the system to create a log file covering
the data pump export process. It is maintained by the DATA PUMP _ DIR Oracle directory.
Specify the name of the log file created.

8 Export Wizard - krok 6 z 9 X
Options
Thread Number 1
Estimate ‘Bludts v‘ Calculate (Not Calculated yet)
Enable Logging
1l’ . LogFile |DATA_PUMP_DIR v| ‘EXPDP_student.LOG
1
W Options
|))
-~ Output Files rt read-consistent vie,
VERSION [COMPATIBLE [+]
[] Delete Master table
Pomoc < Spat’ Dalej > Zrusit’

Fig. 6.63: Data Pump Export — step 6

In the Output Files step, result file names and other options influencing the compression,
copy processes, etc., are specified. Output files will be part of the DATA PUMP _DIR Oracle
directory. Various parameters and flags can enhance the names for simplicity. For example,
let’s name the file — EXPDP_LIBRARY.DMP. Remove the check on the Append Timestamp
to Dump (if checked, the file names will be enhanced by the timepoint of the execution).

212

Lab 6 — Data loading

AT

— %

Job Schedule

c—€

0SS Transfer

["] Proceed to summary.

Pomoc < Spat’ Dalej >

Fig. 6.64: Data Pump Export — step 7

B Export Wizard - krok 7z 9 X
Output Files
Choose Output Files

l Directories File Names Size (M)

I DATA_PUMP_DIR Expop_sTUDENT.OMP |

~!¢ Options

1 ["] Delete Existing Dump Files

«) Output Files

["] Append Timestamp to Dump, Log and Job names
["] Compression (Requires At least 11g + Advanced Compression Option)
[] Copy files to Oracle Object Storage Service (OSS)

Zrusit’

Finally, name the job and optionally specify the description as well. Job time planning
can be done in this phase, or the export process can be launched immediately.

Fig. 6.65: Data Pump Export — step 8

B Export Wizard - krok 8z 9 X
Job Schedule
Job Parameters
| JobName: [EXPDP_STUDENT_18_3_2021 |
] Job Description: Idata pump export - student I
[Job Schedule
I Start Repeat
I (3) Immediately
I () Later
T Output Files
.I, Job Schedule
& Summary
Repeat Until
18.3.2021 7:06:38
Pomoc < Spat’ Dalej > Zrusit’

Proceed with the summary, check the correctness and finish the definition by launching

(or planning) the expdp process.

Lab 6 — Data loading

213

B Export Wizard - krok 9z 9

Summary

Summary PL/SQL

[= Data Pump Summary

Source (& Connections

Schemas 8 Source: CLOUD-Orade-kvetmichal
(2-(& Tables with Where Clause

T

’T\ Eilter : No Individual Table Where Clauses
T

1

Table Data (& Schema

) & STUDENT_USER
Options
= B Options

Qutput Files & Type - Schemas

Job Schedule @8 Data or DDL - Data and DDL
T : Threads - 1
- Log File - DATA_PUMP_DIR EXPDP_student.LOG
[H outputFile - DATA_PUMP_DIR EXPDP_STUDENT.DMP
- (@@ Schedule - Immediate
(&8 For Object Store Service = FALSE
- @8 0SS File Transfer is OFF
~[58 0SS Full Import is OFF

(=3 VERSION - COMPATIBLE

Bomac < Spat’ Dokondit’ |

Fig. 6.66: Data Pump Export — step 9

Note that the generated script to be executed in the PL/SQL tab is visible.

B Export Wizard - kiok 929

Summary

Summary | PL/SQL

Start
st scan off
)T\ Source. set serveroutput on

set escape off
)r\ Schemas

Table Data H VHd‘\!’Z(lm) =NULL;
T ermorvarchar varchar2(100): = ERROR';
Gatens tryGetStatus number ;= 0;
success_with_info EXCEPTION;
’]“ —_— mammmm;éuss_wim_hh, -31627);
Job Schedule

@ Summary tryGetStatus 1= 1;
dbms_datapump.set_parallelhandie => h1, degree => 1);
dbms_datapump.add_fie(handle => h1, filename => EXPDP_student.LOG', drectory => ‘DATA_PUMP_DIR', fietype => 3);
dbms_datapump.set_parameter(handie => h1, name => KEEP_MASTER, value => 1);
dbms_datapump.metadata_filter handle => h1, name =>'SCHEMA_EXPR', value => 'IN("STUDENT_USER"));
:h-s _datapump.add_fie(handle => h1, flename => EXPDP_STUDENT.DMP', directory => DATA_PUMP_DIR', flesize =>'S00M', filetype => 1);
dampum set_parameter(handle => h1, name => 'INCLUDE, :_METADATA', value => 1);
dbms_datapump.set_parameter(handie => h1, name ->m1A'Ac'l€n-m, value => "AUTOMATIC);
damlln.setﬁanm(hm& =>h1, name => ESTIMATE, value => BLOCKS);
datapump.start_job(handle => h1, skip_current => 0, abort_step => 0);

dms ;_datapump.detach(hande => h1);
errorvarchar :="NO_ERROR';
EXCEPTION
WHEN OTHERS THEN
BEGIN

TF ((errorvarchar = ERROR)AND(tryGetStatus=1)) THEN

DBMS_DATAPUMP DETACH(h1);

ENDIF;
EXCEPTION
WHEN OTHERS THEN

NULL;
END;
RAISE;
END;

h1:= dbms_datapump.open (operation => EXPORT', job_mode => ‘SCHEMA', job_name => EXPDP_STUDENT_18_3_2021 version => ‘COMPATIBLE);

Pomoc < gpat’ Dokondit’

2Zrusit’

Fig. 6.67: PL/SQL script

The whole process can be monitored via SQL Developer. In the following figure, you can

see that the specified log file has been created.

214 Lab 6 — Data loading

B Oracle 501 Develaper : DAIAPUMP_EXPORT_JOES ADMIN. ADMIN'"EXPDE_STUDENT_15 3 2021°@CLOUD-Oradle-kvetmichal 0 x
File Edit View Navigate Run Team Tools Window Help
Bodd 9@ O O~ & o

i#-[3 CLOUD_orade_student

- CLOUD_orade_studentl
- (3 CLOUD_LNIZA KVET3
@3 CLOUD_UNIZA_STUDENTOL
= B coun_waza svs

Cannections .hal | QOUD-Grack dvetmichal~t [obei SYS [k obal mk_student~1) CLOUD-Oracedvetmichal~2 | %) "A0MIN'EXPOP_STUDENT_13_3_2021" T
*-ATHD 3 @) ~ Acons...

1. é ?m:""':“"“ ownER_Nave [08 Nave) 108 pove [} sTaTe § ecree [{} ATTacHED_sessions [{} pATaPuMP_sEsstons |

& = 1 ADMIN EXPDP_STUDENT_18_3_2021 SCHEMA EXECUTING 1 0 2

av
LOG FILES

W Refeshi o v

= i} CLOUD-Orade kvetmichal

- Tables Fered) OWNER: ADMIN JOB_MAME: EXPDP_STUDENT 18_3 2021
0eA
+ m OPENING: [‘ATA_PU'MP_DIR;EXPDP_SC\AdEn(‘..LOG
ECM = DIRECTORY: DATA PUMP_DIR FILE: EXPDP_student.LOG

- CLOUD-Orade-kvetmichal
@ [Database Configuraton
i (@) Database Status
@ [Data Pump
|5} erformance
(1) RMAN Backup/Recovery
4 [Resource Manager
&[5 SQL Transiator Framework

PL/SQL procedure successfully ted.

[secunty Messages - Log
Messages | Logging Page * | Statements: « Utiies >

Fig. 6.68: Log file specification (ExpDp)

After the execution, let’s make the output files visible and accessible via the Oracle
Object Storage bucket. The principle is analogous, as already described in the /mpDp section.
Execute the Put_object procedure of the DBMS CLOUD package:

e Credential name is a valid credential definition that has already been created.
Object_uri is a created URL link to the object or the whole bucket extended
by the destination file name.

e Directory_name represents an Oracle cloud directory, by which the original file is
accessible. In our case, it is DATA_ PUMP _DIR.

e The last parameter delimits the file name to be loaded into the Object Storage
bucket. Its name has been specified during the data pump definition
(EXPDP_STUDENT.DMP) — step 7.

BEGIN
DBMS CLOUD.PUT_OBJECT (
credential name => 'ATP CREDENTIAL MK',
object uri => 'https://objectstorage.eu-frankfurt-
l.oraclecloud.com
/p/08mTAKHDVT3qypjLlazUDoylyt-
KOemYLcQd19DhcpMiRS6BzM68vSdASEAL30Cd7
/n/frrt85axbzme
/b/bucket library
/O/DP_STUDENT .DMP',
directory name => 'DATA PUMP DIR',
file name => 'EXPDP STUDENT.DMP');
END;
/

Lab 6 — Data loading 215

Similarly, the log file can be put to the bucket:

BEGIN
DBMS CLOUD.PUT OBJECT (
credential name => 'ATP CREDENTIAL MK',
object uri => 'https://objectstorage.eu-frankfurt-
l.oraclecloud.com
/p/08mTAKHDVT3qypjLlazUDoylyt—
KOemYLcQd19DhcpMiRS6BzM68vSdASEAL30Cd7
/n/frrt85axbzme
/b/bucket library
/o/EXPDP_student.LOG',
directory name => 'DATA PUMP_DIR',
file name => 'EXPDP_ student.LOG');
END;
/

In the Oracle Cloud environment, a particular dump file and a log are accessible. You can
download them locally.

i} ch far resources, sarvices, and dacumantation

B -- s

bucket_library
Eorwasmy | oversource o

Buckel Information | Tegs

SAICTIVE Storage. LIDOTANE 10 Us UNIMIRSE Storage. - Shas cetals

Visibily: Pricaie Encryption Key: Oracie managed key Assion

Namespacs: minsasbaTe

Defaut storsgs Tier:

v
Approumats Count: 5 caject:
ETag: 606123454120 4e¢
OCID: _pwaTuara €

582180C3007 Emit Object Events: & Disasied

Gbisct Versioning: ® Diszblea Exi (1)

Resources

Objects
oo = oo -

Wotncs

Name Last Modities size. Storage Tier

13uTC 735 B Standard

640 10LTG 262 KB Siandar

Content of the log:

Processing "ADMIN"."EXPDP_STUDENT_18 3 2021":
Processing object type SCHEMA EXPORT/TABLE/TABLE DATA

estimated "STUDENT_USER"."OS_UDAJE" 4.683 KB
estimated "STUDENT_USER"."PREDMET" 4.683 KB
estimated "STUDENT USER"."PREDMET BOD" 4.683 KB
estimated "STUDENT_USER"."STUDENT" 4.683 KB
estimated "STUDENT USER"."ST ODBORY" 4.683 KB
estimated "STUDENT USER"."ST PROGRAM" 4.683 KB
estimated "STUDENT_ USER"."UCITEL" 4.683 KB
estimated "STUDENT_USER"."ZAP_PREDMETY" 4.683 KB

Processing object type SCHEMA EXPORT/TABLE/INDEX/STATISTICS/INDEX STATISTICS

Processing object type SCHEMA EXPORT/TABLE/STATISTICS/TABLE STATISTICS

Processing object type SCHEMA_ EXPORT/STATISTICS/MARKER

Processing object type SCHEMA EXPORT/USER

Processing object type SCHEMA EXPORT/SYSTEM GRANT

Processing object type SCHEMA EXPORT/ROLE_GRANT

Processing object type SCHEMA EXPORT/DEFAULT_ROLE

Processing object type SCHEMA EXPORT/PASSWORD_HISTORY

Processing object type SCHEMA EXPORT/PRE_SCHEMA/PROCACT_SCHEMA

Processing object type SCHEMA_ EXPORT/TABLE/TABLE

Processing object type SCHEMA EXPORT/TABLE/CONSTRAINT/CONSTRAINT

Processing object type SCHEMA EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT

Processing object type SCHEMA EXPORT/POST SCHEMA/PROCACT_ SCHEMA
exported: "STUDENT USER"."OS_UDAJE" 10.07 KB 35

216 Lab 6 — Data loading

exported: "STUDENT USER"."PREDMET" 12.10 KB 218
exported: "STUDENT_ USER"."PREDMET BOD" 16.69 KB 372
exported: "STUDENT USER"."STUDENT" 10.35 KB 37
exported: "STUDENT USER"."ST ODBORY" 6.773 KB 9

exported: "STUDENT_ USER"."ST PROGRAM" 22.39 KB 637
exported: "STUDENT USER"."UCITEL" 7.25 KB 32
exported: "STUDENT USER"."ZAP PREDMETY" 25.93 KB 484

ORA-39173: Encrypted data has been stored unencrypted in dump file set
Master table "ADMIN"."EXPDP STUDENT 18 3 2021" successfully loaded/unloaded
Kk hkhkhkhhk Ak kb hhhh Ak hkhhhh kA hkhkhh kA kA hhhhh Ak Ak bk bk hhhh kA hkhhh kA hkhk bk kA Ak rkhkhkhhhkhrk kA hkhkhhkkxk
Dump file set for ADMIN.EXPDP_ STUDENT 18 3_ 2021 is:
/u03/dbfs/BD8E12C78924D962E0534111000A0D6E/data/dpdump/EXPDP STUDENT . DMP
Job "ADMIN"."EXPDP_ STUDENT 18 3 2021" successfully completed at Wed Mar 23 06:26:45
2022 elapsed 0 00:01:26

6.4.3 Useful notes

You can export all the data of defined schema or multiple schemas without the necessity
to define individual tables separately using the clause schemas:

I schemas=KVET1, KVETTT

It is also possible to define objects which will be part of import or export using clause
include or exclude. Be aware when using these clauses, you refer to data dictionary views.
Therefore, the names must be uppercase:

exclude=TABLE:\"IN(\'FEES\',\FEES_HISTORY\')\"
include=TABLE:\"LIKE \'K%\'\"

expdp db_kniznica@orcl
INCLUDE=TABLE: \”"LIKE \'K%\'\”
directory=mk exp kniznica dir
dumpfile=expdp kniznica.dmp
logfile=expdp kniznica.log

Lab 7 — Managing privileges 217

Lab 7 — Managing privileges

This lab focuses on the Data Control Language (DCL) — Grant and Revoke. Privileges
can be made to individual users, or roles can be created and associated with multiple users.
Thus, instead of granting privileges to individual users sequentially, a defined role can be
more useful for the maintenance.

When dealing with the Grant command, it is inevitable to distinguish between system and
object privileges in case of allowing the grantee to inherit privileges.

7.1 Introduction

Access control mechanisms to the database provide a significant security layer between
users and objects, ensuring defense mechanisms. DBS systems highlight the strict control
mechanisms provided by at least the privilege principle. Thus, any operation, which
is not inevitable for a particular user, should be forbidden. DBS Oracle goes even further -
the user does not have any privilege by default. Any user cannot even log on to the database
without the grant.

Each database object is delimited by its creator (owner), who may assign appropriate
privileges to individual users for object usage and manipulation. Privileges are managed
using Grant and Revoke commands.

7.2 Grant command

This command allows you to assign privileges to the user or group, according to which
a particular user will be able to manipulate with database objects. Generally, we can
distinguish two Grant command types based on the handled object type.

7.2.1 System privilege management

System (database) privilege management allows users to access system resources. The
syntax is like following:

grant database_privilege to { public | list of users }
[with admin option];

There are three categories of this command reflecting the usage and access opportunities.
As has been already mentioned, no privileges are automatically delegated. Thus, the first type
covers the Connect privilege, which allows the user to connect to the database, but he can
define no object. Resource privilege covers a group of database object definition
opportunities — create table, create trigger, create sequence, create procedure, and some
other ones, which are, however, out of the topic of this lab. To get the whole list of privileges
associated with Resource privilege can be obtained using the following query. It uses data
dictionary view dba_sys_privs (principles of data dictionary views are described in Lab 14 —
Data dictionary views). The condition reflects the name of the privilege group. Notice that
the value must be uppercase.

218 Lab 7 — Managing privileges

select privilege
from dba sys privs
where grantee = 'RESOURCE':

The last category of database privilege management is just Dba allowing the user
to administer the database.

grant comnect to kvet eng;
grant resource to kvet eng;
grant dba to kvet eng;

The optional clause of the defined command is “with admin option”. 1t allows the user
to grant received privileges to other users.

Let's have the following example. Create two users (Ul, U2). One of them will have
Connect privilege granted. Then, connect as a created user with connect privilege (UI)
and try to add the same privilege (Connect) to user U2. As you can see, it is not possible
because Connect privilege has not been granted with the “with admin option” clause.
The following code shows the sequence of commands to demonstrate the principles.
The last Grant command will raise the exception.

-- login as system user
create user Ul identified by passwordl;
grant connect to Ul;
create user U2 identified by password2;
-- login as created user Ul
grant connect to U2;

Error report -
ORA-01932: ADMIN option not granted for role 'CONNECT'

01932. 00000 - "ADMIN option not granted for role '$s'"
*Cause: The operation requires the admin option on the role.
*Action: Obtain the grant option and re-try.

However, if user U/ has system privilege Connect — with admin option definition — it will
be allowed to add a privilege to another user (U2) successfully. User Ul can also grant
privilege to user U2 by using with admin option clause.

-- login as system user

grant connect to Ul WITH ADMIN OPTION;
-- login as created user Ul

grant connect to U2;

I Grant succeeded.

Naturally, several privileges to multiple users can be granted using one statement. Values
are delimited by the comma (,). In this case, all privileges in the whole defined set of users
are either with the admin option clause or not for any of them.

I grant connect, resource to Ul, U2;

I grant connect, resource to Ul, U2 with admin option;

Suppose it is necessary to divide the users based on particular clauses. In that case,
separate commands must be used (user U/ will get the privilege to grant it to other users,
but user U2 does not have such privilege).

I grant resource to Ul with admin option;

Lab 7 — Managing privileges 219

grant resource to U2;

Notice that there is also a significant amount of other system privileges, which can be
used. Principles and descriptions can be found in database system documentation (for DBS
Oracle, use https://docs.oracle.com/en/database/).

7.2.2 Object privilege management

Object privilege command definition is always associated with the particular object
by its name. The syntax is following:

grant object privilege to { public | list_of users }
[with grant option];

Notice the significant difference between object and system privilege in the syntax
definition layer. In this case, for object privilege, the “with grant option” clause can be used.
Generally, we distinguish four table privileges for accessing and managing table data — Insert,
Update, Delete and Select. Insert and Update privilege can be extended by attribute list,
to which the privilege applies (privilege to the Select statement can also be defined
only for some attributes; however, it is done using views (see Lab 12 — Views)). Grants
represented by the attribute granularity are shown colored.

grant insert on personal data to matiasko;

grant insert (personal_id, name, surname) on personal data to krsak;

grant update on personal data to matiasko;

grant update (date to) on personal data to krsak;

grant delete on personal data to matiasko;

grant select on personal data to matiasko;

However, if all mentioned privileges should be granfed to the particular user, a special
placeholder — “all” — can also be used. Thus, the last two commands are equivalent.

grant insert, update, delete, select on personal data to matiasko;

grant all on personal data to matiasko;

In the previous example, user “krsak” can insert into a personal data table. However,
only attributes personal _id, name, and surname (or their combinations) can be handled.
Any attempt to insert another attribute value will end unsuccessfully by raising the following
exception:

Error report -
ORA-01031: insufficient privileges

01031. 00000 - "insufficient privileges"

*Cause: An attempt was made to perform a database operation without
the necessary privileges.

*Action: Ask your database administrator or designated security

administrator to grant you the necessary privileges

A similar problem will occur if the user attempts to manage non-privileged table objects.

https://docs.oracle.com/en/database/

220 Lab 7 — Managing privileges

Management of method privilege is provided using Execute privilege. It ensures
that the granted users (or groups) can launch such a method. DBS defines three method types
— procedure, function, and package (reference Lab 9 — Procedures, functions and packages).
Adding execute privilege to user “matiasko” is shown in the following commands (the first
command reflects procedure, the second deals with function, and the last manages package).
Highlighted value expresses the name of the object. Notice that the execute privilege cannot
be set to the individual method of the package.

I grant execute on procedurel to matiasko;
I grant execute on functionl to matiasko;
I grant execute on packagel to matiasko with grant option;

By using the “with grant option” keyword, defined object privilege can be further
delegated to other users. However, there is a significant difference in the functionality
in comparison with the “with admin option” keyword for system (database) privilege,
which will be described during the Revoke command definition, whereas it significantly
influences mentioned operation and results.

7.3 Accessing another schema object

DML (Insert, Update, Delete, Select) statements can access not only owned tables
but also structures, which were created by another user, who granted privileges for access
and manipulation. The manipulation principles described sooner are the same. However,
when dealing with objects, the owner schema must be declared explicitly. Therefore,
by accessing another user object, the particular object name is preceded by the schema name.

Let’s execute the following statements by user “kver”. In the first case, he accesses his
table, whereas the second statement deals with a table in the “kmat” schema. Sure, user “kver”
must have granted privileges to the “kmat” table. Otherwise, an exception will be raised.

select name, surname
from personal data; -- own table

select name, surname

from kmat.personal data; -- table created (owned) by kmat
execute proc_man —-- own procedure
execute kmat.proc man —-—- procedure owned by kmat

7.4 Revoke command

This command allows the user to remove privilege from the particular user or group.
Let’s consider the following syntax. Privilege in the syntax can be either database (system)
privilege or object privilege (which also requires object naming used after the “on” keyword).

I revoke privilege from { public | list of users };

Also note the examples:
e Removing database privilege example:

I revoke connect from matiasko;

Lab 7 — Managing privileges 221

revoke connect, resource from krsak;

revoke dba from kvet;

e Removing object privilege example:

revoke insert on personal data from matiasko;

revoke select on personal data from public;

The particular category forms the “public” role. If you grant any privilege to a public role,
it will be automatically given to each user in the database space. Thus, such activity
will be able to be performed by anyone. Therefore remember, that public role is implicitly
granted to anyone and cannot be removed. However, it is strictly recommended to pay
significant attention to granting privileges and monitoring accessible sources, data,
and objects of the particular user.

Principles and limitations are described in the following example. Let’s have two users
— kvet and matiasko. User kvet owns the table personal data and grants the Select privilege
to matiasko. Afterward, he also grants such privilege to all users (using public role).
What will happen if the user kvet consecutively removes the Select privilege from the user
matiasko? Will he even be allowed to query the personal data table owned by the kvet user
successfully?

Sure, he will be able. The reason is that user kvet is always part of the public role,
so the privilege is still active. Grant commands are performed by the user kvet. Select
statements are executed by the matiasko user.

-— KVET
grant select on personal_data to matiasko;
grant select on personal data to public;

-— MATIASKO
select * from kvet.personal data;

PERSONAL_ID SURNAME STREET NATIONALITY
1| 841106/3456 Michael | Pearce Kamenna 27 Banska Bystrica 97401 | SK
| 840312/7845 Jack Smith Zelena 9 Nove Mesto nad 91501 | SK
Vahom
< 860907/1259 John Young Slnecne Komarno 94501 | SK
namestie
L 850130/3695 Carol Pearce Stred 49/7 Povazska Bystrica 01701 | SK

—-—- KVET
revoke select on personal data from matiasko;

—-— MATIASKO
select * from kvet.personal data;

PERSONAL_ID SURNAME STREET NATIONALITY
B 841106/3456 Michael | Pearce Kamenna 27 Banska Bystrica 97401 | SK
| 840312/7845 Jack Smith Zelena 9 Nove Mesto nad 91501 | SK
Vahom
< 860907/1259 John Young Slnecne Komarno 94501 | SK
namestie
“| 850130/3695 Carol Pearce Stred 49/7 Povazska Bystrica 01701 | SK

222 Lab 7 — Managing privileges

As already mentioned, there is a significant difference in management between objects
and system privileges, and it is currently the suitable place to explain the characteristics
deeper. In principle, revoking object privilege cascade, system privilege remains. Thus,
if some user has the privilege to grant it to another user, at the moment such privilege
is removed from him, it is automatically removed from all users who had such privilege
granted by the particular user. It applies to object privileges.

Let’s have the following example. User Kvet, who owns the personal_data table and has
administrator privileges, will create two users (Peter, Jacob). He will grant the user Peter
privilege to connect and the privilege to query his personal _data table (Select privilege).
Moreover, such privileges can be granted later. Notice that these privileges must be granted
using two commands, whereas one of them is database privilege associated
with the “with admin option” clause, the second one is object privilege and is associated with
the “with grant option” clause. Then, Peter connects to the database and grants
his privileges to Jacob. Thus, Jacob can connect to the database and query the personal_data
table residing in the Kvet schema. (Auxiliary question — can users Peter or Jacob create their
objects? Why not?). Now, remove these privileges by user kvet from Peter user.
What will happen? Naturally, Peter will not be able to conmect to the database
and consequently will not be able to query any table. However, what about the user Jacob?
Ascertain the solution using the following example — object privilege is removed (he will
not be able to query personal data table later), but database privilege will remain valid
(he will be able to connect to the database).

The following code must be evaluated sequentially — the first column characterizes user
Kvet, the second column deals with created user Peter and the last one is user Jacob.
Be aware, if Jacob user queries personal data of the Kvet user, raised exception
does not explicitly describe the reason — Jacob will get information, that particular table
does not exist. However, that is not true. He only does not have sufficient privileges to access
it.

Tab. 7.1: Session management

Kvet ‘ Peter Jacob

create user peter
identified by
pass_peter;

create user jacob
identified by
pass_jacob;

grant connect to
Peter

with admin
option;

grant select
on personal data
to Peter
with grant
option;

—-—- Peter successfully
connects to the database

select *
from
kvet.personal data;

grant connect to Jacob;

Lab 7 — Managing privileges 223

Kvet Peter Jacob

grant select
on kvet.personal data
to Jacob;

-—- Jacob successfully
connects to the
database

select *
from
kvet.personal data;

revoke connect
from Peter;

revoke select
on personal data
from Peter;

-- Peter cannot connect
later at all.

An error was encountered
performing the requested
operation:

ORA-01045: user Peter
lacks CREATE SESSION
privilege; logon denied

-- Jacob successfully
connects to the database

select *
from
kvet.personal data;

ORA-00942: table or view
does not exist

00942. 00000 - "table or
view does not exist"

7.5 Grouping privileges to roles

Individual database systems allow the user to define roles (in DBS Postgres, its name
is a group, however, principles are the same) to cover multiple privileges. These roles
are consequently granted to users, so multiple privileges are not necessary to be granted
individually. One of the examples of the role that has been already mentioned before — role
resource —is system role, so it cannot be edited. The particular category covers public role,
which is implicitly granted to each user (such role cannot be revoked).

The following code structure shows the syntax of the role definition. Then, the role
is associated with the privileges using Grant and Revoke commands. In logical meaning
in command, the group would behave the same as the user. Afterward, defined roles
are granted to the users.

Role definition syntax:

create role role name;

Setting privileges to role syntax:

grant privilege name to role name;

224

Lab 7 — Managing privileges

Associating user with the defined role syntax:

grant role name to user_ name;

This is an example of group definition, privilege management, and user group association.

Role definition syntax:

create role manager_role;

Setting privileges to role syntax:

grant select, insert, update(name, surname, street, town, zip)

on personal data

to manager role;

grant execute on function get user results to manager role;

Setting privileges to role syntax:

grant manager role to novakova, sicova;

7.6

Practice

Create user_test and user_test2 accounts and grant them connect privileges.

1.

2.
3.
4

9]

Grant privilege to query your table personal_data to defined user user_test.

Can user user_test access your defined table? Can he change any value?

Can user user_test2 access your defined table? Can he change any value?

Extend the previous privilege definition so that the user_test can grant the defined
privilege to other users.

Grant the Select privilege on the personal data table to all users by user_test
account.

Can user user_test2 access your defined table?

Remove the Select privilege from the user_test2 account (by your personal account).
Can user user_test2 access your defined table?

Remove the Select privilege on personal data from the wuser test user
(by your personal account).

. Can user user_test access your defined table?
. Can user user_test2 access your defined table?
12.

Remove defined user accounts user_test2, user_test2 if created explicitly by you.

Lab 8 — Advanced techniques of data retrieval 225

Lab 8 — Advanced techniques of data retrieval

The focus of the Lab 2 is made by the Select, From, Where and Order by clauses of the
Select statement. The discussion was done on the Inner Join limiting the output to the rows,
which can be interconnected using multiple tables.

In this lab, we emphasize the aggregate functions by creating groups for which the
calculation is done. Conditions related to the aggregations cannot be placed in the Where
clause, whereas the groups have not been created yet. Instead, the Having clause is used,
whereas it is evaluated at the end of the processing.

The second part is related to the extended versions of the Join operation and relational
algebra operations Union, Difference, and set Intersection.

Finally, there is a practical discussion related to the self-relationship. In this chapter, it
is evaluated from the data retrieval point of view.

8.1 Introduction

The Select statement is used to get data from one or more database tables, which can
also be encapsulated by views. In most systems, the Select statement is the most often used
data manipulation language (DML) command returning the result set consisting of zero
or more rows. The main advantage of SQL is the non-procedurality of the statements. Thus,
the query specifies only the result set format but does not specify how to get desired data,
how to join them, or how to calculate results. This lab extends the capabilities
of the previously defined lab — Select statements (Lab 2 — Basics of data retrieval) and
highlights the possibilities of aggregate functions, extended methods for table joining with
regards to an outer join, recursive relationships, and joining the same table several times in
one Select statement.

8.2 Aggregate functions

Aggregate functions return a single result row based on groups of rows rather than
on single rows. For this course, we will deal only with five main aggregate functions
(min, max, sum, avg, count), using which you can understand principles and functionality.
An aggregate function can be part of the Select, Having, and Order by clause. You can never
locate aggregate function to the Where clause because the order of the execution processes
conditions in the Where clause sooner than creating groups using Group by clause. Therefore,
the system would not be able to evaluate it. If the condition is based on aggregate function,
it must be processed after creating groups. Thus, it must be in the Having clause (place only
conditions based on aggregate functions in the Having clause, standard conditions should be
found in the Where clause. Putting common conditions on the Having clause is also possible,
but ineffective).

Aggregate functions are commonly associated with the Group by clause, which defines
the groups for which the aggregate function should be evaluated. Thus, everything
in the Select statement clause except the aggregate function MUST be noticed in the Group
by clause, but there can also be something more. As we can see in the following examples,
it is often necessary to add other attributes (usually primary key) to prevent incorrect data
groups processing (e.g., two namesakes cannot be processed as one person).

226 Lab 8 — Advanced techniques of data retrieval

If only one value for the whole group created by the Select statement is returned,
no Group by clause is necessary. This is because the result set consists of only one numerical
value.

The following query gets the minimal value of the student id attribute. One value
is returned: 500422.

select min(student_id) from student;

To get the maximal value of the student id, the principle is similar, but the max aggregate
Sfunction will be used.

select max(student_id) from student;

The following query gets the total number of credits (ects) of one student
(student_id=501103), which he can obtain if all registered subjects are passed successfully.
Aggregate function sum is used.

select sum(ects) from study subjects
where student id=501103;

To get an average value for the processed attributes or function results, an aggregate
function avg can be used. This case returns the average number of credits (ects) for the subject
in the school year 2007 (the output value would be 4.8).

select avg(ects) from subject year
where school year=2007;

Count aggregate function in its pure way expresses the cardinality of the table — number
of rows stored.

select count(*) from student;

The result expresses the total number of rows in the student table.

The expression inside the aggregate function can be attribute value, function result or can
be substituted by the “*”, which reflects the whole row. Thus, the same results will be
obtained if you replace the symbol “*” with the primary key or any NOT NULL attribute.

select count(student_id) from student;

select count(personal_id) from student;

However, if you put an attribute with NULL values inside the aggregate function, you
will get a lower output value, whereas aggregate functions ignore NULL values.
Let’s consider the two following Select statements. The first one will return a value of 484.
The second one will return 295.

select count(*) from study subjects;

select count(result) from study subjects;

So, 189 (484-295) rows in the table have a NULL value assigned for the result attribute.

select count(*) - count(result) from study subjects;

Lab 8 — Advanced techniques of data retrieval 227

As you can see, we can combine multiple aggregate functions in one statement, but they
MUST be based on the same grouping set (they bind themselves to the same Group by clause,
if defined).

Getting a number of the unique attribute values can be done by adding Distinct keyword:

I select count (distinct class) from student;

The query's result is 4. This is because the attribute class consists of values 0, /, 2, and 3.
However, be aware NULL values are not processed at all. So, if you replace the value
for class 2 with NULL values, the same query will return only value 3.

set class = null

update student
where class = 2;

I select count (distinct class) from student;

If you want to evaluate also NULL values, they must be replaced before processing,
like this:

I select count (distinct nvl(class, -1)) from student;

Notice also the difference between the following notations:
e Count(distinct A) — it removes duplicates for values of attribute 4.
e Distinct count(A) — the result set will contain unique values of the function
count(A) results.

8.3 Fundamentals for Group By clause management

If the output of the Select statement is only one value, Group by clause will not be present
in the statement. Vice versa, if the aggregate function should be calculated for specific
groups, they must be defined in the Group by clause.

If you state some attributes in the Select clause (not important whether direct or by using
the function), they MUST be part of the Group by clause. Often, it is necessary to add other
attributes to prevent incorrect data groups processing (e.g., two namesakes cannot
be processed as one person).

Let’s have the table “flight” identified by id flight and plane table attribute — capacity.
Let’s also have the table consisting of sold flight numbers (flight_ticket). If you want to get
actual free capacity for each id flight, the Select clause will be following:

I select id flight, capacity - count(id flight ticket)

However, what about the Group by clause? Remember, at least each attribute in the Select
clause except aggregate function must be present in the Group by set, thus remember,
that also capacity MUST be there:

I group by id flight, capacity

228 Lab 8 — Advanced techniques of data retrieval

8.4 Working with aggregate function Count and Group By
clause

Let's have the following structure (table study subjects) with these data (assume that
the particular table consists of only these values). Consider the Select statements as well
as provided results.

Tab. 8.1: Data table and result set

Student id ‘ Subject_id ‘ School _year ‘ Result Teacher _id

501319 BL14 2005 C EXO001
501319 BE13 2005 D KMTO01
501319 BL11 2005 EX001
501319 BL11 2006 C EXO001
501201 IM16 2002 C KMMO1
501201 1108 2003 KDSO01
501345 BA12 2002 C KI003
501345 1S04 2003 D KI001
550123 1107 2001 KI001
550123 IAQ7 2001 C KMMO02
550123 1117 2002 D KI1002

1. A total number of rows in the table:

select count (*) from study subjects;

COUNT(*)

2. A total number of registered subjects for each student (the group is created for each
student, thus, student identifier (student id) must be placed in Group by section).
Moreover, it is also placed in the Select clause:

select student_id, count (*)
from study subjects
group by student id;

STUDENT ID COUNT(*)

501319 4
501201 2
502345 2
550123 3

Lab 8 — Advanced techniques of data retrieval 229

Tab. 8.2: Data table and result set

Student id Subject_id School_year Result Teacher_id
501319 BL14 2005 C EX001
501319 BE13 2005 D KMTO1
501319 BL11 2005 EX001
501319 BL11 2006 C EX001
501201 IM16 2002 C KMMO1
501201 1108 2003 KDSO01
501345 BA12 2002 C KI003
501345 1S04 2003 D KI001
550123 1107 2001 KI001
550123 1A07 2001 C KMMO02
550123 117 2002 D KI1002

3. A total number of registered subjects for each student and school year (the group is
created based on student id attribute as well as school year):

select student id, school year, count (*)
from study subjects
group by student id, school year;

STUDENT ID SCHOOL YEAR COUNT(%)

501319

2005

501319

2006

501201

2002

501201

501345

2002

201345

2003

550123

2001

550123

3
1
1
2003 1
1
1
2
1

2002

Tab. 8.3: Data table and result set

Student_id ‘ Subject _id W Result ’W
501319 BL14 2005 C EX001
501319 BE13 2005 D KMTO1
501319 BL11 2005 EX001
| | |
501319 BL11 2006 EX001
| | |
501201 IM16 2002 KMMO1
| | |
501201 1108 2003 . | KDSO0I
| | |
501345 BAI2 2002 KI1003
| | -
501345 1S04 2003 'D | KI00I
| | |
550123 1107 2001 KI001
550123 1A07 2001 C KMMO02
550123 1117 2002 D KI1002

230 Lab 8 — Advanced techniques of data retrieval

A number of students assigned to the teacher:

select teacher id, count (*)
from study subjects
group by teacher id;

HMCHEKJD‘ COUNT(*)

EX001 3
KDS01 1
KI1001 2
K1002 1
1
1
1
1

KI1003
KMTO1
KMMO1
KMMO02

Tab. 8.4: Data table and result set

Student_id ‘ Subject_id ‘ School_year Result ‘ Teacher_id
501319 BL14 2005 C EX001
501319 BLI1 2005 EX001
501319 BL11 2006 C EX001
——
501201
I—— ——
501345 1S04 2003 C KI001
550123 IIO7 2001 KI001

550123 1117 2002 _ KI1002
501345 BA12 2002 _ KI1003

501319 BE13 2005 I:_
501201 FIM16 2002 T KMMOT
| | |

550123 1A07 2001 C KMMO02

If you omit the attribute teacher id in the Select clause, the results will be the same,
but the output set will not contain feacher id information. Instead, only the numbers
will be listed.

4. Dealing with NULL values — aggregate functions ignore NULL values. Therefore,
be careful that the provided result is correct, just as you expected

a) To eliminate NULL values — as you can see from the following table, rows
which do not have assigned real value for result attribute are ignored.

select student id, count (result)
from study results
group by student id;

STUDEN[]D‘ COUNT(RESULT)

501319 3
501201 1
502345 2
550123 2

Lab 8 — Advanced techniques of data retrieval 231

Tab. 8.5: Data table and result set

Student id Subject_id School_year Result Teacher_id
501319 BL14 2005 C EX001
501319 BE13 2005 D KMTO1
504349 BEH 2005 EXO0+
501319 BL11 2006 C EX001
501201 IM16 2002 C KMMO1
504204 HOS 2003 KDBSO+
- |
501345 BA12 2002 C KI003
501345 1S04 2003 D KI001
=
2022 HoZ 2001 koot
550123 1A07 2001 C KMMO02
550123 117 2002 D KI1002

b) Eliminating NULL values and get a number of unique results
(rows with the NULL value assigned to result attribute are ignored. Moreover,
only unique values are evaluated. Thus, the result set will consist of a number
of unique NOT NULL exam results for each student):

select student id, count (DISTINCT result)
from study results
group by student id;

STUDENT ID COUNT(DISTINCT RESULT)

501319 2
501201 1
502345 2
550123 2

Tab. 8.6: Data table and result set

Student_id Subject _id School_year Result Teacher_id
501319 BL14 2005 C EX001
501319 BE13 2005 D KMTO1
5604319 BEH 2005 EX001+
5604319 BEH 2006 c EX00+
501201 IM16 2002 C KMMO1
504204 HO8 2003 KBSo+
501345 BAI2 2002 C KI1003
501345 1S04 2003 D KI001
5504123 Ho7 200+ K106+
550123 1A07 2001 C KMMO02
550123 1117 2002 D KI1002

Be aware incorrect Group by definition can lead to incorrect results:

select name, surname, count (*)
from personal data JOIN student using(personal id)
group by name, surname;

232 Lab 8 — Advanced techniques of data retrieval

NAME ‘ SURNAME COUNT(*%) ‘

Mark Bailey 2
Milan Clarke 2
Jack Clever 1

If two people have the same first name and surname, they will be considered one person,
which is absolutely incorrect. Therefore, an additional attribute for distinguishing and
separating these people should be added. In our case, we add there primary key — personal_id.

select name, surname, count (*)
from personal data JOIN student using(personal id)
group by name, surname, personal_ id;

NAME SURNAME ‘ COUNT(%)

Mark Bailey 2
Milan Clarke 1
Milan Clarke 1
Jack Clever 1

Let’s have two following Select statements (based on the course student model). Is there
any difference? How does it influence the results?

select name, surname, count (*)
from personal data JOIN student using(personal id)
JOIN study subjects using(student id)
group by name, surname, personal_ id;

NAME ‘ SURNAME COUNT(%)

Wiliam | Whittel 9
Mark Bailey 6
Jack Robinson 8

select name, surname, count (*)
from personal data JOIN student using(personal id)
JOIN study subjects using(student id)
group by name, surname, student id;

NAME ‘ SURNAME COUNT(%)

Mark Bailey 4
Mark Bailey 2
Jack Robinson 3
Jack Robinson 1
Jack Robinson 4
Wiliam | Whittel 5
Wiliam | Whittel 4

The answer is clear. The first statement gets the number of registered subjects
for a particular person. In contrast, the second statement gets the number of registered
subjects for a specific student. In principle, results are different because each person can be
present as a student multiple times (e.g., bachelor, master study).

Lab 8 — Advanced techniques of data retrieval 233

8.5 Having clause

If you want to process data based on aggregate function condition, such expression must
be placed in the Having clause, never put in the Where clause, whereas it is impossible.
The evaluation starts with the Where clause and joining operations. Afterward, the groups
are created. Thus, the aggregate function cannot be evaluated in the Where clause, whereas
groups have not been created yet.

Let's have the study subjects table. We want to list the number of students registered
for the particular subject during the year 2010. However, the result set should contain those
subjects which have at least 5 registered students. Aggregate function result is therefore
limited to minimal value 5:

select subject id, count (*)
from study subjects
where school year = 2010
group by subject id
having count(*) >= 5;

As already mentioned, the aggregate function cannot be placed in the Where clause.
It would lead to the ORA-00934 exception.

select subject id, count (*)
from study subjects
where school year = 2010
and count(*) >= 5
group by subject id;

I ORA-00934: group function is not allowed here

The following example shows how to list students based on their study results.
The aim is to get the students with the worst results. So, first of all, calculate the study results
for each student and sort the result set based on results.

select student id,
avg (decode (result, 'a',1,'B',1.5,'Cc',2,'D',2.5,'E',3,4))
from study subjects
group by student id
order by 2 desc,1;

The first proposed solution is based on using the Rownum function. For each row returned
by the query, pseudo column Rownum indicates the order. The first selected row has a value
of 1. The second has 2, and so on. Sorting the result set based on study results and limiting
the Rownum value to 1 will list only one student, although several students have the same
results.

select * from(
select student id,
avg (decode (result, A',1,'B',1.5,'C',2,'D'",2.5,"'E',3,4))
from study subjects
group by student id
order by 2 desc, 1
)

where rownum = 1;

234 Lab 8 — Advanced techniques of data retrieval

The correct solution is based on using Set operations and subquery. The calculated study
result grade average is compared to the highest (worst) values obtained by the subquery.
The solution can look like this.

select student id,
avg (decode (result, 'A',1,'B',1.5,'Cc',2,'D',2.5,'E"',3,4))
from study subjects
group by student id
having avg(decode (result,'Aa',1,'B',1.5,'c',2,'D',2.5,'E',3,4)) in
(select max(avg (decode (result,'Aa',1,'B',1.5,'Cc',2,'D',2.5,'E"',3,4)))
from study subjects
group by student_id);

Notice that DBS Oracle allows you to define an aggregate function from an aggregate
function, but it is the specialty of that DBS. The inner aggregate function reflects the Group
by clause. The outer aggregate function processes obtained value and cannot have Group by
section at all. So, only one value can be returned. First of all, the nested Select statement gets
the average value for each student:

(select avg(decode(result, 'aA',1,'B',1.5,'C',2,'D',2.5,'E"',3,4))
as st_avg
from study subjects
group by student id
)

Afterward, the maximal value from that is obtained. Notice that there is a necessity
to define column alias.

(select max(st_avg)
from
(select avg(decode (result, 'A',1,'B',1.5,'C',2,'D',2.5,'E',3,4))
as st_avg
from study subjects
group by student id

)

Complete solution can look like this:

select student id,
avg (decode (result, 'A',1,'B',1.5,'Cc',2,'D',2.5,'E"',3,4))
from study subjects
group by student id
having avg(decode (result, 'A',1,'B',1.5,'C',2,'D',2.5,'E',3,4)) in
(select max(st_avg)
from
(select avg(decode(result, 'A',1,'B',1.5,'C',2,'D',2.5,'E"',3,4))
as st_avg
from study subjects
group by student id

)

So, to get a universal solution, a nested (inner) Select statement must be used.

Lab 8 — Advanced techniques of data retrieval 235

Another example is based on listing the oldest actual student based on his registration
date (first_date). For these purposes, please update table student using the following
command:

update student
set first date = to date('01.09.2007', 'DD.MM.YYYY')
where first date is null and status 'S';

Then, the oldest students can be listed as follows. Notice that the first date attribute value
is compared with the minimal value.

select name, surname, personal id, first date
from personal data join student using(personal id)
where status 'S' and first date IN (select min(first date)
from student
where first date is null);

Now, you can rollback the transaction so that table will hold original values.

8.6 Extended versions of table joining

Join is a query functionality that combines rows from two or more tables or views.
It is performed whenever multiples tables appear in the From clause of the query (except
Cartesian product). To avoid a Cartesian product, join conditions must be defined based
on the whole attribute set for the connection.

The syntax of the JOIN:

select ...
from table namel [{INNER | {LEFT | RIGHT | FULL} [OUTER]}] JOIN
table name2 { ON (joining conditions) | USING (column_ list) }
[{INNER | {LEFT | RIGHT | FULL} [OUTER]}] JOIN
table namen { ON (joining conditions) | USING (column_ list) }

There are several JOIN types:

e [INNER] JOIN - the result set to be subsequently processed consists only of
attributes with corresponding (same) values of foreign key and particular
referenced primary key.

e OQUTER JOIN — extends the INNER JOIN principle by adding data to the result set,
which do not have the corresponding reference in the second table. Three types
of OUTER JOIN are distinguished:

o LEFT OUTER JOIN - all table data from the left table are processed, and
they are supplemented by rows of the right table, which can be joined (there
is a reference to PK),

o RIGHT OUTER JOIN - all table data from the right table are processed,
and they are supplemented by rows of the left table, which can be joined
(there is a reference to PK),

o FULL OUTER JOIN - consists of all data from both tables. Relevant data
are joined. In this case, there is no data loss.

e SEMI JOIN gets rows from one table, which can be joined with the second one.
It is based on these condition clauses — IN, EXISTS keywords.

e ANTI JOIN is vice versa based on the negations. It provides data from the first
table, which cannot be joined with the second one. Thus keywords NOT IN
and NOT EXISTS are used.

236 Lab 8 — Advanced techniques of data retrieval

Graphical representation focusing on the provided data are shown in fig. 8.1.

TR

§

INNER JOIN RIGHT OUTER JOIN
LEFT OUTER JOIN FULL OUTER JOIN
SEMI JOIN ANTTI JOIN

Fig. 8.1: Join types

Be aware. If you do not JOIN tables correctly, a Cartesian product is generated.
Therefore, special attention must be used to reference composite keys. In both following
examples, a Cartesian product is produced. The first example does not use the join condition
at all. The second one uses only one element of the composite key.

select name, surname, s.student id
from personal data, student s;
select field name, spec name, student id
from student JOIN st field USING (field id);

NATURAL JOIN is a particular category. In this case, it is not possible to use the ON
(condition) or USING clause because the join will be done under the equivalent column
names in the tables. Referential integrity is not checked. Such an approach is not used very
often, whereas it can provide undesirable results, e.g., if the attribute name is renamed.

8.6.1 INNER JOIN type

Inner join has been described in Lab 2 — Basics of data retrieval. It uses only rows, which
can be connected directly.

select name, surname, student id, subject id, result
from personal data JOIN student USING (personal id)
JOIN study subjects USING (student id);

Lab 8 — Advanced techniques of data retrieval 237

T ST |
personal_data student study_subjects

personal_id (PK) +—™MmMmM— | giiﬂ;ltdidplﬁ(\' school_year (PK)
name] student_id (PFK)

— _ field_id (FK) . .
F L+ — — —i5__ <] specialization_id (FK) [SU4€S S”bjecsts E%‘;FK)
o class i

it st_group

zZip exam_date

final_date
nationality A sign date
. status A
Eck Aata ects
first_date —_—

Fig. 8.2: Joining

8.6.2 ON/USING CLAUSE

USING keyword can be used only if the names of the attributes to be joined have the same
names.

select name, surname, student id, subject id, result
from personal data JOIN student USING (personal_id)
JOIN study subjects USING (student_id);

USING clause is impossible to be used in the following example. Namely, in the teacher
table, the primary key is teacher_id, but the reference in the study subjects table is named as
a lecturer.

select name, surname, teacher id, subject id
from teacher t
JOIN study subjects ss ON (t.teacher_id = ss.lecturer);

ON — always possible to be done. Interconnected attributes are listed in both tables.

select name, surname, s.student id, subject id, result
from personal data pd
JOIN student s ON (pd.personal id = s.personal_id)
JOIN study_subjects ss ON (s.student_id = ss.student_id);

8.6.3 LEFT OUTER JOIN type

Left Join selects all data from the left table of the relationship definition and connects
them to the table on the right side, if possible. If the row cannot be joined to the second table,
particular attributes reflecting the right table of the relationship will be listed as NULL.

select name, surname, p.personal id,
s.personal id, s.student id
from personal data p LEFT JOIN student s
ON (p.personal id = s.personal id);

Notice the NULL values for the student id attribute as well as personal id 1 (created
by renaming the personal id attribute of the table student, whereas the result set must have
unique column names).

SURNAME ‘PERSONALJD ‘PE&QWWULHLJ STUDENT _ID

Pearce 855122/8569 855122/8569 550698
Hoom 890608/4543 890608/4543 550807
Murgas 900913/3326 900913/3326 550945
Pearce 841201/1248 (null) (null)
Austin 871124/3578 (null) (null)

238 Lab 8 — Advanced techniques of data retrieval

select *
from teacher LEFT JOIN study subjects
ON (teacher.teacher id = study subjects.lecturer);

Notice NULL values for attributes belonging to the study subjects table.

DEPART SCHOOL STUDENT SUBJECT LECTUR RESU

NAME SURNAME

MENT _YEAR D /) ER LT

Arnas Beaudoin DTK 2004 550945 BN10 KTKO1 D 280%1 ’ 2(9)0057 4
Wiliam | Santos DI 2003 550945 BIO6 KI1001 C ; 30(1‘5 ;30(1‘6 6
Wiliam | Santos DI 2008 550545 BIO2 KI1001 A ;36096' ;86095' 6
Mark Madrigal Gar (null) (null) (null) (null) (null) (null) (null) (null)
Owen Boudreau DTK (null) (null) (null) (null) (null) (null) (null) (null)

From the historical perspective, also the following syntax could be used. However, now,
for clarity, it has been replaced with the Left Join keyword. Thus, everything is taken
from the teacher table supplemented by the study subjects table data, if possible (based
on join).

select *
from teacher, study subjects
where teacher.teacher id = study_ subjects.lecturer(+);

8.64 RIGHT OUTER JOIN type

Right Join selects all data from the right table of the relationship definition and connects
them to the table on the left side, if possible. If the row cannot be joined to the first (left table
of the relationship) table, particular attributes reflecting the left table of the relationship will
be listed as NULL.

select name, surname, p.personal id
from personal data p RIGHT JOIN student s
ON (p.personal id = s.personal id);

SURAMAlE‘ PERSONAL_ID

Smith 840312/7845
Young 860907/1259
Pearce 850130/3695
Whittel 830514/5341

What about the data result differences between the previous Select statement modeled
using Right Join and standard Inner Join in this case? Try to explain. The solution is based
on relationship type with an emphasis on membership.

select name, surname, p.personal id
from personal data p JOIN student s ON (p.personal id = s.personal id);

8.6.5 FULL OUTER JOIN type

Full Outer Join gets all the data from both tables. If defined table rows can be joined,
it is done. If not, particular values will be noted as NULL values. It is done using the Full
Join keyword for the relationship definition type.

Lab 8 — Advanced techniques of data retrieval 239

I select * from personal data FULL JOIN contact using (personal id);

Left table data can hold NULL values. The right table data can have NULL values as well.
But naturally, it cannot happen that the whole row would hold NULL values due to primary
key definition, which cannot hold NULL values.

NAME SURNAME | STREET ‘ TOWN VAl ‘ NATIONALITY TYPE VALUE
Milan Clarke Ligetska 10 Handlova 97251 SK M 8404097900
Thomas | Hall SNP4I gfpvcznsm 97613 | SK M 908123456
(null) (null) (null) (null) (null) (null) M 1234567890
Sim Eas Kolarovce 12 Kolarovece 1401 SK (null) (null)
Daniel Gomes Razusa 40/10 Prievidza 4 97101 SK (null) (null)

John Young ?;::;S;a“ka Zilina 1001 SK (null) | (null)

8.6.6 SEMI JOIN type

Semi Join type selects all data from the left table of the relationship, which can be inner
joined to the right table.

select *
from personal data
where personal id IN (select personal id from student);

Let’s also consider the second example providing similar data. Is there any difference
between these two mentioned Select statements? If so, why? The answer is based
on duplicates.

select p.*
from personal data p JOIN student s ON (p.personal id = s.personal id);

8.6.7 ANTI JOIN type

Anti Join type selects all data from the left table of the relationship, which cannot be inner
joined to the right table. It is modeled by the Set operators.

select *
from personal data
where personal id NOT IN (select personal id from student);

select *
from personal data p
where NOT EXISTS (select 'x '
from student s
where s.personal id = p.personal id);

The following solution is similar to ANTI JOIN but does not remove duplicate values
from the result set.

select p.*
from personal data p LEFT JOIN student ON (p.personal id=s.personal id)
where s.personal id IS NULL;

240 Lab 8 — Advanced techniques of data retrieval

8.6.8 NATURAL JOIN type

Natural Join type reflects Equi Join type and is constructed so that relationship is created
according to attributes with the same name. So, no USING nor ON keyword is used.
Associated tables must have one or more identically named columns. Moreover, columns
must have the same data type. Using this type can be a bit dangerous because of the naming.
Therefore, avoid using this approach if you are not sure that the attribute names cannot
be changed (even later).

select name, surname, personal id
from personal data NATURAL join student;

8.7 Relational algebra operations

An essential and inseparable part of any relational data model cover languages that allow
you to specify operations that can make changes to the database or get required data from it.
The query itself can be considered as a functionality of the database, which results
in providing data in relations. The languages for query definitions are based on relational
algebra and relational calculus.

Relational algebra represents the procedural language describing features
and functionalities by which desired data results can be obtained. It is formed based
on the algebraic concept. Relational calculus represents a declarative language, which
describes the properties of the result set. Using relational algebra expressions, database
commands can be constructed using several operations through which queries can be defined,
expressed, and consequently evaluated by the optimizer.

These eight operations create the basic operation set of the relational algebra:

e Selection
e Projection
e Cartesian product
e Union
e Difference
e Intersection
e Division
e Join
e Split

These operations can be classified using various aspects:
e Number of source relations
o unary — selection, projection
o binary — Cartesian product, union, difference, intersection, division, join
and split.

e Relation types
o Set operations — union, difference, intersection, Cartesian product.
o Relational operations — join, split, division, selection, projection.

Selection, projection, Cartesian product, and Inner Join, have been described in Lab 2 —
Basics of data retrieval with the emphasis of Select statement syntax, therefore in the
following section, we will define the rest part, again with the focus on real usage in the Select
statement environment. The Operations Union, Difference, and Intersection require the
processed sets to be union compatible, meaning they share the same amount of attributes

Lab 8 — Advanced techniques of data retrieval 241

with the same data types and order. This is because of the attribute context considerations.
For example, consider the following relations, they are union compatible.

e Student (name, surname)

e Employee (name, surname)

Following examples, however, show the relations, which are not compatible and therefore
cannot be processed using mentioned operations:
e Person (name, surname)
e Country (name, population)

Another example of union non-compatibility is based on two student group definitions
(students in the Zilina and students in the detached office Prievidza). Again, the relations
are not compatible because of the attribute order:

e Student ZA (name, surname, personal id, class, status)
e Student PD (personal id, name, surname, class, status)

In the literature, other relational algebra operations can be defined, which form

the extension of basic relational algebra operations:

e Natural join
Theta join
Inequi join
External join
Semi join
e Complement

8.7.1 Union operation

Union operation creates from two relations R;(A;, Aa ..., An), Rx(A1, As ..., Ay)
and the third relation R; with the same attribute definition R3(4;, A, ..., A»), for which applies,
that data tuple is part of the result relation R3, if it belongs to either input relation R; or relation
R>:

R

R1UR2

R

Fig. 8.3: Relational algebra operation Union

Graphical representation of the defined operation is following:

R4 R»

Rs

Fig. 8.4: Relational algebra operation Union

242 Lab 8 — Advanced techniques of data retrieval

In the Select statement, it is represented by the UNION operation.

Let’s have the example formed by two tables consisting of the musical instrument player
information — saxophone_player and guitar _player table with the following data (export
can be found in your CD, respectively server — exp_music.exp).

Saxophone_player table data:

SURNAME ‘ PERSONAL_ID CLASS

Pearce 841106/3456 3
Smith 840312/7845 2
Young 860907/1259 2
Pearce 850130/3695 1
Roger 781015/4431 3
Whittel 830514/5341 7

Fig. 8.5: Saxophone_player table data
Guitar_player table data:

SURNAME ‘ PERSONAL_ID CLASS

Pearce 850130/3695 1
Whittel 830514/5341 2
Bailey 800407/3522 1

Fig. 8.6: Guitar_player table data

Each table consists of the name, surname, personal_id of the student, as well as class.
To get data from both tables regardless of the studied musical instrument, UNION
operation can be used.

select name, surname, personal id
from saxophone player
UNION
select name, surname, personal id
from guitar player;

Notice that UNION operation automatically removes duplicate tuples. The cardinality
of the table saxophone player is 6, and the cardinality of the table guitar player is 3.
However, the result set consists of only 7 rows (Carol Pearce and William Whittel study both
musical instruments).

SURNAME PERSONAL_ID

B Carol Pearce 850130/3695
| Jack Smith 840312/7845
B Young 860907/1259
‘5| Mark Bailey 800407/3522
<1 Michael | Pearce 841106/3456
(| Peter Roger 781015/4431
70| Wiliam | Whittel 830514/5341

To ensure that no duplicates will be removed, use the operator UNION ALL instead
of UNION in its pure form.

Lab 8 — Advanced techniques of data retrieval 243

select name, surname, personal id
from saxophone player
UNION ALL
select name, surname, personal id
from guitar player;

Now, the result set contains 9 rows:

SURNAME PERSONAL_ID

88 Michael | Pearce 841106/3456
A Jack Smith 840312/7845
<3| John Young 860907/1259
L Carol Pearce 850130/3695
<1 Peter Roger 781015/4431
(| Wiliam | Whittel 830514/5341
74| Carol Pearce 850130/3695
S Wiliam | Whittel 830514/5341
T Mark Bailey 800407/3522

Column names are formed based on the attribute name of the first Select statement.
Thus, if the guitar_player attribute was renamed to first name, the result set would contain
“name” for the attribute name, whereas it is formed by the tuples from the saxophone player
table first.

alter table guitar player rename column name to first name;

select name, surname, personal id
from saxophone player
UNION ALL
select first name, surname, personal_ id
from guitar player;

SURNAME PERSONAL_ID

N8| Michael | Pearce 841106/3456
A Jack Smith 840312/7845
<3| John Young 860907/1259
“5| Carol Pearce 850130/3695
<1 Peter Roger 781015/4431
(| Wiliam | Whittel 830514/5341
74| Carol Pearce 850130/3695
¢ Wiliam | Whittel 830514/5341
N Mark | Bailey 800407/3522

Therefore, if a column alias is used, it must be placed in the first Select statement:

select name, surname, personal id as PID
from saxophone player
UNION ALL
select first name, surname, personal id
from guitar player;

‘ NAME ‘ SURNAME PID

1B Michael | Pearce 841106/3456
72| Jack Smith 840312/7845

244 Lab 8 — Advanced techniques of data retrieval

SURNAME
T John Young 860907/1259
“3| Carol Pearce 850130/3695
< Peter Roger 781015/4431
T Wiliam | Whittel 830514/5341
74| Carol Pearce 850130/3695
T Wiliam | Whittel 830514/5341
T Mark Bailey 800407/3522

Vice versa, the Order method can be set at the end of the last Select statement. Naturally,
it sorts the whole result set (do not place the Order by clause at the end of each statement,
it is not possible):

select name, surname, personal_id as PID
from saxophone player
UNION ALL
select first name, surname, personal_ id
from guitar player
order by PID;

Notice that defined alias must be used in the Order by clause. Original name (personal_id)
cannot be used.

8.7.2 Difference operation

Difference operation creates from two relations R;(4;, A, ..., Ay) and Rx(A;, Ao, ..., As)
the third relation R; with the same attribute definition R3(4;, A>, ..., A,), for which applies,
that data tuple is part of the result relation R3, if it belongs to input relation R;, but is not part
of the relation R»:

R

R:+-R,

Ro

Fig. 8.7: Relational algebra operation Difference

Graphical representation of the defined operation is following:

R 1 R2

R3
Fig. 8.8: Relational algebra operation Difference

Lab 8 — Advanced techniques of data retrieval 245

In Select statements, the solution can be provided using SET operators or by using MINUS
operation. Let’s get the list of the students, who study “Information systems” as a field,
but their specialization is not “Applied informatics”. For illustration purposes, create
two tables. Table ST AI will contain students of “Applied informatics”. ST IS will contain
all students of the “Information systems” as a field. Information systems field meets the value
field id = 200, Applied informatics is specialization_id = 2.

Create table ST AI
as select name, surname, personal id
from personal data p
where EXISTS (select 'X'
from student s
where p.personal id = s.personal id
and field id = 200
and specialization id = 2);

Create table ST_IS
as select name, surname, personal id
from personal data p
where EXISTS (select 'X'
from student s
where p.personal id = s.personal id
and field id = 200);

To get the results, the MINUS operator can be used.

select * from ST IS
MINUS
select * from ST AT;

The rest principles (aliases, sorting possibilities) are the same as described for the UNION
operation.

8.7.3 Intersection operation

Intersection operation creates from two relations R;(A4;, Az, ..., A) and Ry(4;, A, ..., An)
the third relation R; with the same attribute definition R3(4;, A, ..., A4), for which applies
that data tuple is part of the result relation R; if it belongs to input relation R; as well as to
relation R>:

R1

R1(\R2

Rz

Fig. 8.9: Relational algebra operation Intersection

246 Lab 8 — Advanced techniques of data retrieval

Graphical representation of the defined operation is following:

R4 R>

R3

Fig. 8.10: Relational algebra operation Intersection

For illustration purposes, let’s use previously created tables — saxophone player
and guitar_player table (export can be found in your CD, respectively server —
exp_music.exp).

To get the solution — students playing saxophone as well as guitar, operation INTERSECT
can be used:

select name, surname, personal id
from saxophone player
INTERSECT
select first name, surname, personal id
from guitar player;

NAME ‘SURNAME‘ PERSONAL_ID

Carol Pearce 850130/3695
Wiliam | Whittel 830514/5341

The rest principles (aliases, sorting possibilities) are the same as described for the UNION
operation.

8.8 Recursive relationships

A recursive relationship connects a single table to itself serving in another role (person
has his mother and father, who are also persons, the employee is obviously supervised by one
manager, whose data can also be found in the employee table). The recursive relationship
defines a reference of the foreign key to the same table. Therefore, the foreign key attributes
must be renamed.

Regarding the primary key, foreign key, and referential integrity definition.
Can a recursive relationship be defined as identifying? Why not?

Modeling principles have been described in Lab 4 — Data modeling, now will deal with
using recursive relationships in the Select statements.

Lab 8 — Advanced techniques of data retrieval 247

Principles will be described using Smith’s family tree. To store it in the database,
the person_rec table will be created with the explicit management of the parents (mother_id
and father id). Let’s have the following family tree (fig. 8.11):

Emily Burney

Adam Smith

Grace Smith

Bella Smith

Harry Smith

Daniel Phue Olivia Clarke

| James Smith | Sofia Smith | | LautaroSmithl

Jack Robinson

| Jacob Robinson || William Robinson |

Fig. 8.11: Family tree

For illustration purposes, each person will be delimited by the unique identifier
(person_id), which will also be the primary key of the table (fig. 8.12):

5
Harry Smith

Olivia Clarke

Emily Burney

H
H

Bella Smith

Grace Smith

Daniel Phue

9

10 1
| James Smith Sofia Smith | Lautaro Smith

Jack Robinson
=

| Jacob Robinson | William Robinson
I | I |

[] L]

Fig. 8.12: Family tree

248 Lab 8 — Advanced techniques of data retrieval

Next commands show the person_rec table definition:

create table person_rec(
person_id integer primary key,
name varchar2 (20),
surname varchar?2 (20),
mother id integer,
father id integer

alter table person_ rec
add foreign key (mother id)
references person_rec(person_id);

alter table person rec
add foreign key (father id)
references person_rec (person_id) ;

PERSON_REC

9= PERSON_ID _ Integer NN (PK)

a= MOTHER_ID Integer FR L,

9= FATHER_ID Integer FK) [o~ !
NAME Varchar2(30) NN !
SURNAME Varchar2(30) NN |

Fig. 8.13: Person_rec data model

Data shown in the previous figure are loaded into the database (script can be downloaded
from the server — family tree script.txt):

PERSON_ID NAME = SURNAME MOTHER ID FATHER ID

1 Emily Burney

2 Adam Smith

3 Grace Smith 1 2
4 Daniel Phue

5 Harry Smith 1 2
6 Olivia Clarke

7 Bella Smith 1 2
8 Peter Roger

9 James Smith 6 5
10 Sofia Smith 6 5
11 Lautaro Smith 6 5
12 Jack Robinson

13 Jacob Robinson 10 12
14 William | Robinson | 10 12

Fig. 8.14: Data in the person_rec table

Lab 8 — Advanced techniques of data retrieval 249

Task 1: Get the name of the mother for Sofia Smith

To get the required data, the relationship must be used; thus, the defined person_rec table
must be used twice and joined. For simplicity, imagine the table as two separate tables
connected using a non-identifying relationship:

VOTHER CHILD
4= PERSON_ID Inleger NN (PK) 4= PERSON_ID Integer NN (PK)
NAME Varchar2(30) NN Fo— — — —agdd= MOTHER_ID Integer (FK)
SURNAME Varchar2(30) NN NAME Varchar2(30) NN
SURNAME Varchar2(30) NN

Fig. 8.15: Mother, Child table model

select m.name, m.surname
from person _rec m join person_rec c on (m.person_id = c.mother id)
where c.surname = 'Smith' and c.name = 'Sofia';

The result should be “Olivia Clarke”:

Task 2: Get the name of the people, whose mother is Sofia Smith:

select c.name, c.surname
from person rec m join person rec c on (m.person_id = c.mother id)
where m.surname = 'Smith' and m.name = 'Sofia';

NAME SURNAME ‘

Jacob Robinson

William | Robinson

8.9 Using the same table multiple times in the Select
statement

Tables can be linked together using various relationship types. Moreover, several
relationships can be created between two tables (do you remember the table flight and airport
from the data modeling lab, don’t you?). If the departure airport, as well as the arrival airport
(names of the airports), should be listed for the defined flight, it is necessary to join table
airport twice — one join expresses departure, the second one reflects the arrival.

Let’s have the following example for dealing with the address. Town, region, and state
have been separated into separate tables as a result of data normalization. Thus,
for any person, airport, or company, the current address (street) is stored with reference
to town (e.g., act_zip).

250 Lab 8 — Advanced techniques of data retrieval

state
state_id Char(3) NN (PK]
name Varchar2(30) NN

T
J
\

i
region
region_id Char(2) NN (PK)
state_id Char(3) NN (FK)
name Varchar2(30) NN

T
J

person
J& id Char(11) NN (PK)
birth_zip Char(5) NN (FK)

town -

- — — act_zip Char(5 NN (FK
zp \thar;;ma"Z(so) HH (PK) j_ _____ -I-Ié narﬁep Varcrg‘;l}’2{20} NN o
name Varchar _—
region Char(2) NN (FK) sumame varchar2(30) NN

Fig. 8.16: Multiple relationships between Person and Town table

If you want to get the name list of the people living in the same town as they were born,
attributes birth_zip and act _zip can be compared.

select name, surname
from person
where birth zip = act_zip;

The previously defined statement will work; however, it will not provide desired data
based on the task. Once again, the aim is to get a name list of the people living in the same
town as they were born. Do not forget that multiple zip codes can delimit one town,
so the name of the towns must be compared (one name of the town can be used numerous
times in the world. Therefore, the comparison is based on region as well). In the following
example, tables must be aliased (whereas one table will be used multiple times), birth_town
table alias expresses the town of person birth, act fown table alias defines the actual town,
where the person is living.

select name, surname
from person join town birth town on (person.birth zip = birth town.zip)
join town act_town on (person.act_zip = act_town.zip)
where birth town.name = act_ town.name
and birth town.region = act town.region;

Can Join clause type USING be used? If not, why? If so, under what conditions?

8.10 Practice

1. Get the age of the oldest student at the time of leaving school (use the attribute
final_date in the student table).
2. List the name of the students who will celebrate a birthday next month (use actual

system time).

Lab 8 — Advanced techniques of data retrieval 251

10.

11.

12.

13.

14.
15.

16.

List the name of the students who will celebrate the anniversary this year (e.g., 25,
30, 35, ... years old).

Get the following statistics for each student — the best result, worst result,
and the total number of registered subjects in the school year 2008.

Get the name list of the students who have the grade average better than 3. At first,
transfer the character value to the particular coefficient. If the subject is failed,
it should be considered as the result 4.

o A=1

e B=15
e (C=2

e D=25
e E=3

e F Fx=4

List the names of the subjects, which at least 4 students have registered in the school
year 2006.
List the name of the students who have repeated some subjects. Each student should
be listed only once in the result set.
List the name of the students with the total number of subjects registered in the school
year 2008.
List the name of the subjects which have not been registered by any student
in the school year 2006 but were available (particular subject can be found
in the s¢_program table).
Get the number of days between the sign_date and exam_date for the subjects
with accreditation and exam (get the required information from ending type
parameter) in the subject year table.
e subject year.ending type:

o B =exam + accreditation to exam,

o E=exam,

o S =semester only (no exam).

List the name of the students and their subjects, which end with accreditation
to the exam and an exam. List only those where the difference between accreditation
and exam was at least 1 month.
List the name of the students who have never repeated any subject.
List the name of the students who have at least one subject, which the particular
student has not repeated.
List the total number of students in each class.
List the total number of students for each class and each study field
and specialization.
Get the list of the optional subjects for a student with student id = 500439.
The optional subject can be identified by the absence of mandatory or mandatory-
optional subject sets with an emphasis on the study field and specialization of the
student. However, be aware, if the subject is valid for the whole study field
(regardless of the specialization), the particular specialization_id in the st_program
table will have the value “0”.
e st program.mandatory_type:

o M = mandatory,

o O =optional,

o X =mandatory / optional.

252

Lab 8 — Advanced techniques of data retrieval

17.

18.

19.

List the name of the students who have never studied Information systems
(field_name).
List the name of the people with textual information about their student status.
If the person is not a student, write three dashes (---).
e student.status:
o S =student (actual),
o E =ended successfully,
o A =aborted
o X =fired due to disciplinary commission decision.

List the name of the mandatory subjects in the school year 2008 with the total number
of registered students for them. If there is none registered, write there dash (-)
symbol.

BONUS: Get the following statistics:

e Rows — individual study fields and specifications
e Columns — classes
e Cells — the total number of particular students

Adpvice: individual study fields and specifications will be in the group by section, numbers
should be calculated conditionally.

2.CLASS 3.CLASS 4.CLASS 5.CLASS

Information systems, Decision support systems 1 0 0 0 0
Computer engineering, 0 1 0 0 0
Computer engineering, 1 2 0 0 0
Management, 0 2 1 0 0
Information management, 1 0 1 0 0
Informatics, 2 4 1 0 0
Information systems, Applied informatics 1 4 0 0 0
Information systems, Information and communication 0 5 0 0 0
systems

Fig. 8.17: Required data layout

Lab 9 — Procedures, functions and packages 253

Lab 9 — Procedures, functions and packages

In this lab, the reader will get a complex overview of the procedural extension of the SOL
language (PL/SQL). It focuses on the named data blocks (procedures and functions), which
can be optionally grouped into the packages and managed as one unit. Vice versa, anonymous
blocks are executed only once with no consecutive evidence in the system nor the repeated
reference opportunity.

This lab summarizes the code preliminaries — variable definitions, assignments, NULL
handling, conditional processing and loops. Reader will get the complex overview. All
principles are explained in the examples.

Both procedures and functions can be executed from the block or by using the EXEC
command. If some prerequisites are passed, function can be executed using SOL, as well. The
reader will learn three types of passing parameters — position way, named reference, and
hybrid. Output can sent to the data structures, variables, etc. or can be printed to the console.
It is commonly done using the methods of the DBMS _OUTPUT package.

In this chapter, the reader will learn how to access table data inside the block. The output
of the Select statement must be stored into variables. Using Select ... Into variant, it must be
ensured that the particular statement returns one row (no more, no less). Otherwise, the
exception is raised.

The cursor provides the general solution, which associates the data with variables using
the loop. The reader will be provided with various cursor types. For the purposes of this book,
we will, however, just focus on the static cursor types.

9.1 Introduction

SQL itself is a non-procedural language — we define data we want to, but not how to get
them. Therefore, complex usage in an application environment is ensured only
in combination with procedural language or specific procedural database language, often
referred to as fourth-generation language. In this lab, we will shortly introduce the syntax
definition, specific clauses, and notations regarding standalone procedures and functions, but
also packages, which can group multiple methods into the common class. Procedures and
functions are created using PL/SQL (Procedural Language of SOL) and are called by their
names. The difference between procedure and function is based on the possibilities of
returning values. The function must have only one return value (which can also be
composite), whereas the procedure cannot return any value by its name definition. The only
way the procedure can return values are output (IN OUT or OUT) parameters. As we will
describe later, if the function meets the essential prerequisites, it can be called from the Select
statement (we have already dealt with the to_char conversion function, for example).

A significant advantage of the package is the possibility to group methods together.
Privileges granting and revoking is done on package level instead of single methods
(it is not possible to grant a privilege only to the particular method of the package). Moreover,
the packaged method can be overloaded, which is not feasible for standalone methods.

A particular case of the block is an anonymous type. The principles are the same
as a standalone procedure. However, such a block cannot pass parameters and is not stored

254 Lab 9 — Procedures, functions and packages

in the database. Thus, after its execution, it is removed from the system and cannot be called
anymore.

9.2 Code preliminaries

In the following part, we will describe the essential code characteristics.

9.2.1 Variable definition

When managing procedures and functions (optionally enclosed by the packages),
it is usually necessary to define local variables for the execution. Variable must have some
data type, which can also be based on the table attribute data type, the row of the table, or the
result of the cursor. It can be initialized to a specific value during definition or even be noted
as constant (there is no possibility of changing its value later).

We strongly recommend not to use the same name of the variable as the table attribute
name, mainly during the execution of the Select statement, whereas it can result in getting
incorrect data (table attribute has a higher priority than variable). Therefore, we prefer
the standard of naming — the first letter of the variable is “v”. In that case, there cannot
be any misunderstanding.

Variable definition:

I Variable data_type;

Definition and value initialization of the variable:

I Variable data_type := init value;

Defined variable has the same structure as the schema of the table (reflects the data types
and attribute names):

I Variable record table%rowtype;

Defined variable data type will correspond table attribute data type:

I Variable table.attribute%type;

Example of usage is following:

v_pid char(11); -- 11 character string
v_student id integer := 1; -- integer variable, value 1 is assigned
—-- during the definition
v_student data student%rowtype; -- variable is record, has the same
-- elements as table attributes
v_surname personal data.surnamestype; -- data type of the variable is
-- the same as data type
-- for attribute surname of
-- the table personal data

9.2.2 Assignment, NULL

Assignment inside the body of the expression value to the variable is done by the symbol
of a colon followed by the equality sign (:=).

I Variable := expression;

Lab 9 — Procedures, functions and packages 255

And also some examples. The result can be direct value, expression, or function result.

v_count := 10;

v_str := to char(sysdate, 'DD. Month YYYY');

No command block can be empty. Therefore another command has been introduced,
which, however, does not execute anything (NULL). It is primarily intended for testing
purposes, to cover branches for which we do not want to run any command. It can
also be placed in LOOPs and conditional processing (IF), with at least one command inside
each processing line.

NULL;

Naturally, each created code can be rewritten so that this command will not be used at all.

9.2.3 Conditional processing

Branching of the execution code can be done using IF — THEN — ELSE command type
or by using CASE.

IF condition

IF condition starts with the keyword “IF” followed by the condition, which should
be evaluated as Boolean (True, False). After that, the keyword “THEN” is used
and the commands of the positive branch. The negative branch is optional, characterized
by the “ELSE” keyword. Do not forget to add the “END IF” keyword after the command
itself to border it.

IF condition THEN
Commands_to_be_executed;
[ELSE
Commands_else clause;]
END IF;

The syntax mentioned above uses only one, respectively, two branches. However,
it can be extended by multiple branches forming more complex conditions. In this case,
the negative branch is divided into several IF conditions using the keyword “ELSIF”
(it is one word, character “e” is omitted). Thus, there can be several “ELSIF” conditional
branches in one “IF” condition.

Another solution is to divide the “ELSE” branch of the condition into several conditions,
which must also be enclosed by the “END IF” keyword.

IF condition THEN
Commands if;

ELSIF condition2 THEN
Commands_elsif;

[ELSE
Commands_else;]

END IF;

Therefore, notice a significant difference between “ELSIF” (part of the same IF
condition) and “ELSE IF” (forming new /F condition). Each /F branching command must
have pair — “END IF” keyword.

256 Lab 9 — Procedures, functions and packages

IF condition THEN
Commands ;
ELSE
IF condition2 THEN
Commands ;
[ELSE
commands;]
END IF;
END IF;

Condition-based on using /F conditions cannot be used in SQL statements like Insert,
Update, Delete, Select. However, do not be scared, CASE commands can replace them.

In the previous lines, we explained that the result of the condition to be evaluated must
be Boolean. But to be honest, it also reflects NULL, which can cause significant problems
because of the 3 valued logic and evaluation.

It is important to remember that any condition with NULL expression is evaluated
as NULL and led to the ELSE branch. Therefore, never compare values to NULL value using
the equality sign (=). Problems are shown in the following example. Let’s have the
uninitialized variable and IF condition comparing the defined variable. First of all, ensure
that variable with no explicit value assignment is treated as NULL. For these purposes, we
declare simple integer variable and IF condition for comparison. Make sure that comparison
is made using “LS NULL”. Put line method of the dbms_output package buffers data from
the parameter and sends them to the console output. More about the dbms_output package
can be found in chapter 9.5 Executing stored method.

declare
v_int integer;
begin
if (v_int is null) then
dbms output.put line('v_int IS NULL');
else
dbms_output.put line('v_int is NOT NULL');
end if;
end;

/

v_int IS NULL

PL/SQL procedure successfully completed.

Notice that the output display must be enabled to see the results. The SERVEROUTPUT
setting controls whether SQL*Plus prints the output generated by the dbms_output package
from PL/SQL procedures. It must be enabled for the session (or for the whole server) before
the first execution of the dbms output package (see chapter 9.5 Executing stored method).
Otherwise, no output will be printed to the user.

set serveroutput on

Set serveroutput on executed in SQL Plus executes behind the scene following command
(see chapter 9.5.2 Enable procedure):

dbms_output.enable (buffer size => NULL) ;

Lab 9 — Procedures, functions and packages 257

Vice versa, to disable output printed to the screen, Set serveroutput off can be used, which
reflects the calling disable procedure of the dbms_output package (see chapter 9.5.1 Disable

procedure).

set serveroutput off

I dbms_output.disable;

It is not possible to evaluate NULL value using the equality sign. As we can see,
regardless of the equality or even non-equality character, the condition is always routed
to the ELSE branch (the result of the condition is NULL).

declare
v_int integer;
begin
if (v_int = NULL) then
dbms_output.put line('v_int = NULL');
else
dbms output.put line('v_int != NOT NULL');
end if;
end;

/

declare
v_int integer;
begin
if (v_int != NULL) then
dbms output.put line('v_int = NULL');
else
dbms output.put line('v_int != NOT NULL');
end 1if;
end;

/

v_int != NOT NULL

PL/SQL procedure successfully completed.

v_int != NOT NULL
PL/SQL procedure successfully completed.

Notice that incorrect management of NULL values is a source of very severe problems,
and it is really very hard to find the reasons and solve the issue. Therefore, be strictly
attentive.

Moreover, also variables cannot be compared to nullity using the equality sign to get
information, whether such variables are the same or not. Simply, two NULL values are never
the same! Thus, let’s have the anonymous block containing two variable definitions,
which gets the NVULL values. Once again, such defined condition is always evaluated
as NULL and routed to the ELSE branch.

258 Lab 9 — Procedures, functions and packages

declare
v_intl integer;
v_int2 integer;
begin
if (v_intl = v_int2) then
dbms output.put line('are the same');
else
dbms output.put line('are NOT the same');
end if;
end;

/

are NOT the same

declare
v_intl integer;
v_int2 integer;
begin
if (v_intl != v_int2) then
dbms output.put line('are NOT the same');
else
dbms_output.put line('are the same');
end if;
end;

/

are NOT the same

I PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.

Also, a comparison based on mathematical operators lower than (<) or higher than (>)
can cause problems with NULL values. Its evaluation always ends in the ELSE branch
with strange results. The first evaluation result is that variable v_int! is lower, and the second
one evaluates variable v_intl as higher than variable v_int2.

declare
v_intl integer:=1;
v_int2 integer;
begin
if (v_intl > v_int2) then
dbms output.put line('v_intl is higher than v_int2');
else
dbms_output.put line('v_intl is lower than v_int2');
end if;
end;

/

v_intl is lower than v_int2

PL/SQL procedure successfully completed.

Lab 9 — Procedures, functions and packages 259

declare
v_intl integer:=1;
v_int2 integer;
begin
if (v_intl < v_int2) then
dbms output.put line('v_intl is lower than v_int2');
else
dbms output.put line('v_intl is higher than v_int2');
end if;
end;

/

v_intl is higher than v _int2

PL/SQL procedure successfully completed.

To have clear evidence, compare the evaluated condition based on “IS NULL”.
As you can see, it has been evaluated as NULL.

dbms_output.put line('treated as NULL');
dbms output.put line('NOT treated as NULL');
end 1if;
end;
/

treated as NULL

declare
v_intl integer;
v_int2 integer;
begin
if ((v_intl > v_int2) is NULL) then
else
I PL/SQL procedure successfully completed.

Fig. 9.1 shows the evaluation table of the conditions based on NULL values with an
emphasizing AND, OR, and inversion (NOT) condition grouping.

AND TRUE FALSE ‘ NULL
TRUE TRUE FALSE NULL
FALSE FALSE FALSE FALSE
NULL NULL FALSE NULL

OR
TRUE

IZVAY2Ml TRUE | FALSE | NULL
NULL TRUE | NULL | NULL
Fig. 9.1: Three-value logic

Condition CASE

There are two possibilities, how to deal with the CASE. The left part of the condition can
be covered on the top level (in that case, it is then compared based on only the values
themselves), or the conditions can be expressed on each level. It starts with the “CASE”
keyword and ends with “END CASE” for a procedural language. When using in SQL,
the keyword “CASE” is omitted from the end. Thus, there is “END”, not “END CASE”.

260 Lab 9 — Procedures, functions and packages

Moreover, in SQL value is evaluated and processed, there are no commands
after the Then keyword.

CASE value of condition
WHEN valuel THEN commandsl;
WHEN value2 THEN commands2;

[ELSE commands_else];
END CASE;

CASE
WHEN conditionl THEN commandsl;
WHEN condition2 THEN commands2;

[ELSE commands_else];
END CASE;

The “ELSE” clause is optional. However, if you do not define it explicitly, the database
system manager will automatically add it by raising an exception if no suitable processing
branch is found:

I ELSE RAISE CASE NOT FOUND;

Thus, create a simple anonymous block (all principles of the anonymous block will
be described a bit later, we will now highlight only CASE usage), declare two variables,
and see the principles. The first variable (v_personal_id) will deal with the personal id,
the second (v_month) will be the extraction of the birth month, and string text will be shown
as output. In this case, we use the first CASE principle — the value of the v_month is compared
with values covered in individual “WHEN?” parts.

declare
v_personal id char(11);
v_month integer;

begin
v_personal id := '690309/1234"';
v_month := substr(v_personal id, 3, 2);

case v_month
when 1 then dbms output.put line('January');

when 2 then dbms output.put line('February');
when 3 then dbms output.put_ line('March');
when 4 then dbms output.put line('April');
when 5 then dbms output.put line('May');

when 6 then dbms output.put line('June');

when 7 then dbms output.put line('July');

when 8 then dbms output.put line('August');
when 9 then dbms output.put line('September');

when 10 then dbms output.put line('October')
when 11 then dbms output.put line ('November'
when 12 then dbms_ output.put line ('December'
end case;
end;

/

’

) ;
)

The second CASE principle will look like the following example. The whole condition
is in each “WHEN” part.

Lab 9 — Procedures, functions and packages 261

declare
v_personal id char(11);
v_month integer;

begin
v_personal id := '690309/1234';
v_month := substr(v_personal id, 3, 2);
case

when v_month=1 then dbms_ output.

put line('January');

when v_month=2 then dbms output.put line('February');
when v_month=3 then dbms_output.put_line('March');
when v_month=4 then dbms_output.put_line('April');
when v_month=5 then dbms_output.put line('May');

when v_month=6 then dbms output.put line('June');

when v_month=7 then dbms_output.put_line('July');

when v_month=8 then dbms_output.put_ line('August');
when v_month=9 then dbms output.put line('September');

when v_month=10 then dbms output.put line('October');
when v_month=11 then dbms_output.put_ line ('November');
when v_month=12 then dbms_output.put_ line ('December');

end case;
end;

/

Do you consider the solutions to be correct? Why not? We do not care about women,
do we? What will happen if we change the personal id characterizing woman? Naturally,
an exception will be raised:

ERROR at line 1:

ORA-06592: CASE not found while executing CASE statement

ORA-06512: at line

7

Thus, for women, get the month's value by subtracting the third and fourth value
of the personal_id by 50 (we will use the mod function in the example to create a universal

solution).

declare

v_personal id char(11);

v_month integer;
begin
v_personal id :=

'695309/1234";
v_month := mod(substr(v_personal_ id, 3, 2), 50);

case
when v_month=1 then dbms output.put line('January');
when v_month=2 then dbms_ output.put line('February');
when v_month=3 then dbms_output.put line('March');
when v_month=4 then dbms output.put line('April');
when v_month=5 then dbms output.put line('May');
when v_month=6 then dbms_output.put line('June');
when v_month=7 then dbms_output.put line('July"');
when v_month=8 then dbms output.put line ('August');
when v_month=9 then dbms output.put line('September');

when v_month=10 then dbms_ output.put line ('October')
when v_month=11 then dbms output.put line ('November'
when v_month=12 then dbms output.put line ('December'

end case;
end;

/

) ;
).

’

262 Lab 9 — Procedures, functions and packages

Now, the solution is correct, however not so robust. What about typos in personal id
value? Naturally, an exception will be raised. To avoid it, add the “ELSE” branch of the case.

declare
v_personal id char(11);
v_month integer;

begin
v_personal id := '699309/1234';
v_month := mod(substr(v_personal id, 3, 2), 50);
case

when v_month=1 then dbms_output.put line ('January');
when v_month=2 then dbms output.put line('February');
when v_month=3 then dbms output.put line('March');
when v_month=4 then dbms_output.put line('April');
when v_month=5 then dbms_output.put line('May');
when v_month=6 then dbms_output.put line('June');
when v_month=7 then dbms_output.put line('July');
when v_month=8 then dbms output.put line ('August');
when v_month=9 then dbms_output.put line ('September');
when v_month=10 then dbms_output.put line ('October');
when v_month=11 then dbms_output.put line ('November');
when v_month=12 then dbms output.put line ('December');
else dbms output.put line('Unknown month...');
end case;
end;

/

Unknown month...

PL/SQL procedure successfully completed.

In the previous case, the solution provides correct results and is exception prove. Another
situation will, however, occur if you want to process the age of the person. Extracting
value_of condition from the “WHEN” branch does not provide sufficient power. Why?
It would be necessary to name all possible values separately (for simplicity, we declare
variable v_age defining a transformation from the personal id value):

declare

v_age integer;
begin

v_age := 19;

case v_age
when 1 then dbms output.put line('Child');
when 2 then dbms output.put line('Child');
when 3 then dbms output.put line('Child');
when 18 then dbms output.put line('Adult');
when 19 then dbms output.put line('Adult');
else dbms output.put line('?2?2?');

end case;

end;

/

It is too complicated and hard-coded, isn’t it? If you create the second CASE type,
comparison functions can be used, so the solution can be like following:

Lab 9 — Procedures, functions and packages 263

declare
v_age integer;
begin
v_age := 19;
case

when v_age between 0 and 17 then dbms_output.put line('Child');
when v_age > 18 then dbms_ output.put line('Adult');
else dbms output.put line('??2?');
end case;
end;

/

Significantly easier, isn’t it? So, which CASE type is better? The answer is a bit tricky.
Simply, it depends. One side of the issue is just the simplification of the code
for the programmer. The second aspect is, however, just the performance. If you use
the complex function, forming the whole condition requires evaluating it for each branch.
It can be time and resource-demanding. It can be partially solved by variable definition
for storing function result. Thus, each time, think of the consequences and try to optimize
your code.

9.2.4 LOOPs

Database systems provide us multiple tools for repeated processing of the same code
using LOOPs. In principle, we can distinguish these types:

Infinite loop, EXIT condition

LOOP
Commands ;
END LOOP;

In this case, there must be some condition, which will force the system to terminate cycle
processing and move to execute consecutive code parts. To do so, the command EX/T is used.
So, if the condition (condition) in the IF command is evaluated as “True”, the EXIT command
is executed, and Loop processing is terminated.

LOOP
Commandsl;
IF condition THEN
EXIT;
END IF;
Commands?2;
END LOOP;

Also, another syntax is possible to be defined. It can be considered as a particular type
of the /F command — EXIT WHEN condition. Functionality is the same.

LOOP
EXIT WHEN condition;
END LOOP;

The example can look like the following. The body of the Loop is executed three times.

264 Lab 9 — Procedures, functions and packages

declare
i integer;
begin
i :=1;
loop
dbms output.put line(i);
exit when 1 = 3;
i =i+ 1;
end loop;
end;

/

WHILE loop type

The execution of the cycle is delimited by the WHILE condition, which is evaluated
at the beginning of each round of the cycle.

WHILE condition LOOP
Commands ;
END LOOP;

The previous example rewritten using While is the following:

declare
i integer;
begin
i =1;
while i <= 3 loop
dbms output.put line(i);
i =1+ 1;
end loop;
end;

/

FOR loop type

The number of rounds in the cycle is directly delimited by the two numbers — starting
value (min) and maximal value (max). Each round of the cycle automatically increases
the control loop variable (control_variable). Such variable is defined implicitly, and its scope
is terminated after the cycle execution.

FOR control variable IN min..max LOOP
Commands ;
END LOOP;

It is strongly recommended not to name the control loop variable with the same name
as the existing parameter or variable. This is because, inside the cycle, the highest priority
has just control variable. However, always try to prevent possible problems by using correct
name notations.

begin
FOR i IN 1..3 LOOP
dbms output.put line(i);
END LOOP;
end;

/

Lab 9 — Procedures, functions and packages 265

Notice that the control loop variable cannot be changed in the loop body.

begin
FOR i IN 1..3 LOOP
i := 2; -- it is NOT possible
dbms output.put line(i);
END LOOP;
end;
/

There is also a particular case when the control loop variable starting position is delimited
by the maximal value, and its value is sequentially decreased (“-1”) during the execution.
This functionality can be provided by using the REVERSE keyword. However, the order
limitations (min, max) is the same as in the standard approach. Thus, the minimum value
is listed sooner:

FOR control variable IN REVERSE min..max LOOP
Commands ;
END LOOP;

begin
FOR i IN REVERSE 1..3 LOOP
dbms_output.put line(i);
END LOOP;
end;

/

9.3 PL/SQL anonymous block

PL/SQL block is a sequence of the commands to be executed. In principle, the structure
of such defined PL/SQL block can be divided into two groups based on the storage principles.
The first group covers an anonymous block, which has no name. Thus, it cannot be referenced
from any other blocks, as well as from functions or procedures. It is executed directly
after its definition.

Here is a simple example of the anonymous block.

begin
dbms output.put line('Welcome...');
end;

/

After the definition and execution of such a block, we have no evidence about the past
existence and processing. Thus, if we want to execute it once again, it is necessary to code
it again.

266 Lab 9 — Procedures, functions and packages

Next block shows the syntactical structure of the anonymous PL/SQL block:

[DECLARE
Variable datatype [:= init value];
1
BEGIN
Commands ;
[EXCEPTION
WHEN exception_typel THEN commands;
WHEN exception_typel THEN commands;

1
END;
/

Each PL/SQL block consists of the body, which is mandatory. It can also contain the
DECLARATION part (between keywords DECLARE and BEGIN) and EXCEPTION part
at the end of the body (enclosed between keywords EXCEPTION and END).

If you want to refer to the local variable, it must be first defined in the first part —
declaration. Usually, local variables are initialized to NULL. If there is any exception raised
in the body of the block, it can be processed using the EXCEPTION part of the body.
The order of the clauses in the EXCEPTION clause is critical — if it finds a suitable
EXCEPTION branch covering such a problem, it will not check later EXCEPTION
branches. Thus, it is processed by the first condition it meets. A typical example is OTHERS
as a type of the EXCEPTION, which covers all raised exceptions. Thus, none later defined
can be processed at all.

The second block type is stored definition — procedure/function.

9.4 Procedure, function

If you want to store PL/SQL block for later referencing and calling, it must be named and
stored as a procedure or function. In the following text, we will use the term method covering
both procedures and functions. The main difference between them is the one value, which is
returned using the function by its name. Thanks to that, the function can be used in the SQL
statements (if some conditions are fulfilled, which will be described later).

Lab 9 — Procedures, functions and packages 267

9.4.1 Procedure syntax

CREATE [OR REPLACE] PROCEDURE proc_name
[(parameterl [model] datatypel,
parameter2 [mode2] datatype2,
L.0)]
IS | AS
[variablel datatypel [:
variable2 datatype2 [:
..

init value];
init value];

BEGIN
Commands ;
[EXCEPTION
WHEN exception_typel THEN commands;
WHEN exception_type2 THEN commands;

1

END [proc_name] ;

/

The keyword “OR REPLACE?” is optional. However, very convenient, if you want to edit
the structure of the method. Thanks to that, it is not necessary to drop it and create a new
one. However, if it is defined without this clause, it cannot be replaced at all. It must be
simply dropped and recreated.

The method can have multiple parameters. Some of them can be optional (in that case,
the appropriate value must be obtained inside the procedure or replaced using the DEFAULT
value). Be aware. Parameter data types DO NOT contain the size of the string format.
Therefore, there is no CHAR(10) or VARCHAR(10), but there is only data type definition —
CHAR, VARCHAR. Additionally, each parameter can be delimited by its mode.

There are three types to be recognized:

e IN (default mode) — input parameter. It passes parameter from the calling
environment to method execution (constant or variable value). Inside the method,
it is noted as constant. If attempting to change will cause raising an error.

e OUT - output parameter. It passes a value to the calling environment code.
Therefore, the output parameter must be associated with a variable, not constant.

e IN OUT - input-output parameter. Similar to output parameter mode — it must be
associated with the variable. It passes input value from the environment, which can
be optionally (and even usually) changed during execution.

Tab. 9.1: Method parameters
IN ouTt IN OUT

can.be represented by a must be specified must be specified
variable (commonly) or . .

by the variable by the variable
constant
formal parameter works works like a non-initialized | works like an initialized
like constant variable variable

You can choose which keyword you will use (IS or AS). After this keyword,
there is a list of the local variables.

In the procedure body, the keyword RETURN can be used as well, but there is no value
connected to the procedure name to be processed as output. Using it means that no other code

268 Lab 9 — Procedures, functions and packages

after it will be processed inside the procedure at all. Thanks to that, it provides simpler
mechanisms to end processing.

9.4.2 Function syntax

CREATE [OR REPLACE] FUNCTION func name
[(parameterl [model] datatypel,
parameter2 [mode2] datatype2,
..2)]
RETURN datatype
IS | AS
[variablel datatypel [:
variable2 datatype2 [:
..

init value];
init value];

BEGIN
Commands ;
RETURN expression;
[EXCEPTION
WHEN exception_typel THEN commands;
WHEN exception_type2 THEN commands;

1
END [func_name] ;

/

The difference between procedure is just the Return clause characterizing the value
to be returned by the function name based on the defined data type specified in the function
header.

Be aware, after raising the RETURN keyword, no more code is processed,
and the management is returned to the calling environment. In function processing, be sure
that each branch is associated with the RETURN keyword.

In addition, the result of the function cannot be thrown away but must be assigned
to a variable, respectively, as a parameter to another function or procedure. The result can
also be used by the Select statement if some requirements are met.

To allow users to create (any) procedures and functions, the appropriate privilege must
be granted (this privilege does not differentiate between procedures and functions, thus if it
is granted, a particular user can create procedures and functions, t00):

GRANT CREATE ANY PROCEDURE TO username;

You must also distinguish another privilege, which allows the user to execute defined
procedure:

GRANT EXECUTE ON procedure_name TO username;

Notice that if you want to deal with the Select statement in the PL/SQL block, the results
must be stored (using SELECT INTO) or processed using cursors. If the Select Into type
is used, exactly one row must be returned. Otherwise, an exception will be raised.

Let’s have the following example. It returns name and surname in one string as well
as a group of the student delimited by the p_s¢ id parameter.

Lab 9 — Procedures, functions and packages 269

create or replace procedure query student proc
(p_st_id IN student.student id%type,
p_name OUT varchar2,
p_group OUT student.st group%type)
is
begin
select name || ' ' || surname, st group into p_name, p_group
from personal data join student using(personal id)
where student id = p st id;
end;

/

9.5 Executing stored method

Let’s have the previous procedure defined. To execute it, first of all, whereas two
parameters are OUT mode, it is necessary to define variables in the SQL environment.
Variable definition is provided using the variable keyword of the SQL. Notice that there is no
information for you after variable creation in the system.

variable v_name varchar2 (30)
variable v_group char (6)

Then, it is possible to execute that procedure. But be aware that SQL variable name must
be prefixed with a colon (:) when calling using procedure.

I EXECUTE query_student proc (501567, :v_name, :v_group);

After successful execution, you will get the following information:

I PL/SQL procedure successfully completed.

On the other hand, when you want to write the value of the SQL variable to the console,
there is no colon prefix:

I PRINT v_name v_group

And this is the output:

Wiliam Whittel

V_GROUP

5ZI000

As already mentioned, any PL/SQL block can call a stored data block (procedure,
function). Let’s have the following example — calling the procedure using anonymous block.

270

Lab 9 — Procedures, functions and packages

Calling defined procedure from the anonymous block looks like the following example:

declare
v_name varchar2(30);
v_group char(6);
begin
-- execute procedure
query student proc (501567, v_name, v_group) ;
-- get the variable values and show them on the console screen

dbms output.put line('Name: ' || v_name);
dbms output.put line('Group: ' || v_group);
end;
/

Values shown on the display are following:

Wiliam Whittel
5zI000

Name:
Group:

Realize that there is no “execute” keyword when calling the procedure from the PL/SQL

block.

At this point, other methods of the dbms_output package should be explained, which are

mostly used. Package dbms output allows you to send messages from the blocks
(anonymous, procedure, function, trigger) to the console output. It is beneficial for displaying

PL/SQL debugging information.
Package dbms_output contains these methods:

Tab. 9.2: Methods of the dbms_output package

Subprogram Description

DISABLE procedure Disables message output

ENABLE procedure Enables message output

GET_LINE procedure Retrieves one line from the buffer

GET _LINES procedure | Retrieves an array of lines from the buffer
NEW_LINE procedure | Terminates a line created with the PUT method
PUT procedure Places a partial line in the buffer

PUT _LINE procedure Places line in the buffer
Source: https://docs.oracle.com/database/121/ARPLS/d_output.htm#ARPLS67312

9.5.1 Disable procedure

This procedure disables calls to Put, Put line, New line, Get line, and Get lines

and purges the buffer of any remaining information.

DBMS_OUTPUT.DISABLE;

9.5.2 Enable procedure

This procedure enables calls to Put, Put line, New line, Get line,
Calls to these procedures are ignored if the dbms_output package is not activated.

DBMS_OUTPUT.ENABLE (buffer size IN INTEGER DEFAULT 20000) ;

and Get lines.

Buffer size parameter is an upper limit (in bytes) expressing the amount of buffered

information. A NULL value means no limit.

https://docs.oracle.com/database/121/ARPLS/d_output.htm#i999293
https://docs.oracle.com/database/121/ARPLS/d_output.htm#BABGBACJ
https://docs.oracle.com/database/121/ARPLS/d_output.htm#i1000253
https://docs.oracle.com/database/121/ARPLS/d_output.htm#i1000062
https://docs.oracle.com/database/121/ARPLS/d_output.htm#BABGHBIA
https://docs.oracle.com/database/121/ARPLS/d_output.htm#i1000105
https://docs.oracle.com/database/121/ARPLS/d_output.htm#ARPLS67312

Lab 9 — Procedures, functions and packages 271

9.5.3 Get_line procedure

This procedure retrieves a single line of buffered information.

DBMS_OUTPUT.GET_ LINE
(
line OUT VARCHAR2,
status OUT INTEGER
)

Line parameter returns a single line of buffered information, excluding a final newline
character. The maximal length for the parameter is 32767 (VARCHAR?2 (32767)) limited
by potentially raised exception ORA-06502: PL/SQL: numeric or value error: character
string buffer too small.

Status parameter expresses the evaluation result of the procedure. If the call completes
successfully, then the returned value is 0. Otherwise, the status will hold value 7.

9.5.4 Get lines procedure

This procedure retrieves an array of lines from the buffer.

DBMS OUTPUT.GET_LINES
(
lines ouT CHARARR,
numlines IN OUT INTEGER
)

DBMS_OUTPUT.GET_LINES

(
lines OouT DBMSOUTPUT_LINESARRAY,
numlines IN OUT INTEGER

)

9.5.5 New_line procedure

This procedure puts an end-of-line marker. As a result, the content of the buffer
is produced to the console output.

DBMS_OUTPUT.NEW_LINE;

9.5.6 Put procedure

This procedure places a partial line in the buffer.

DBMS OUTPUT.PUT (item IN VARCHAR2?) ;

Item parameter holds the item to buffer.

The function put works a bit differently as we know from the other programming
language, where data are shown, but there is no line spacing. In PL/SQL, the principle
is different. After the calling function put, data are only buffered but not written to display
at all. This is done just after calling put_line or new_line methods, which flush the buffer
by displaying data.

Let's have the following example. Function put is used. In the first case, no output
is printed. The second solution is extended by calling the new_line method causing data
to be displayed. Thus, be aware of it. Otherwise, no data will be written to the output.

272 Lab 9 — Procedures, functions and packages

begin
dbms_output.put ('Hello');
end;

/

PL/SQL procedure successfully completed.

begin
dbms output.put ('Hello');
dbms output.new_line() ;
end;

/

Hello

PL/SQL procedure successfully completed.

9.5.7 Put_line procedure
This procedure places a line in the buffer and sends it to the console output.

DBMS_OUTPUT.PUT_ LINE (item IN VARCHAR2) ;

Internally, it calls the new_line procedure.
Notice that the maximum /ine size is 32767 bytes. The default buffer size is 20000 bytes.
The minimum size is 2000 bytes, and the maximum is unlimited.
Following exceptions can be raised when dealing with buffers using the dbms_output
package:
Tab. 9.3: Exceptions of the dbms_output package

Error Description

ORU-10027 | Buffer overflow
ORU-10028 | Line length overflow

Let's move forward to the functions like having the following one. It reflects the easy
solution for getting the total amount of gained ects of the defined student. Notice
that for the real environment, data are not correct. Also, information about the sign_date,
result, exam_date, and ending type must be evaluated. Is it necessary to define exception
handling? No, because aggregate function SUM will always return one row. In this case,
if the student does not exist, a NULL value will be returned.

Create or replace function get ects count
(p_st_id student.student id%type)
return number

is
v_count study subjects.ects%type;

begin
select sum(nvl (ects, 0)) into v_count

from study subjects
where student id = p st id and result IN ('A', 'B', 'C', 'D', 'E');
return v_count;

end get ects count;

/

There are three possibilities how to execute the function. Compared to the procedure,
which offers two methods — calling from SQL or PL/SQL block, function definition

Lab 9 — Procedures, functions and packages 273

also allows calling from the queries (after passing some preliminary conditions). So, define
two variables — v_credit_count and v_st _id.

variable v_credit count number
variable v_st_id number

The variable assignment can be done by calling Execute command, like the following
example (assignment of the value to the variable can be therefore considered as a special case
of function calling):

EXECUTE :v_st id := 501567;

The function itself is also called using the Execute command. Returned value is assigned
into v_credit_count variable. The v_st id variable provides an identifier of the student.
However, whereas it is an input parameter, also constant can be used.

EXECUTE :v_credit count := get ects count (:v_st id);

Assigned values after function execution are obtained and written to the output using
the PRINT command.

print v_credit count

V_CREDIT COUNT

Naturally, it is possible to call the function from any PL/SQL block (anonymous block,
procedure, function).

declare
v_count integer;
v_student id integer := 501567;
begin
v_count := get ects count (v_student id);
dbms output.put line('Student ' || v_student id || ' has ' ||
v_count || ' credits.');
end;
/

Student 501567 has 19 credits.

9.6 Calling function from the Select statement

The function can be called from the SQL statement if it meets some requirements. Notice
that the procedure cannot be called at all, whereas it does not return any value from
the definition (only OUT parameters can be used, however, such parameters cannot be used
in SQL statements).

Limitation of the functions called from DML statements:

e function bodies cannot contain destructive DML statements (Insert, Update,
Delete),

e functions called from Update or Delete statement cannot include any DML
statement (/nsert, Update, Delete, Select) referencing the same table,

e functions called from any SQL statement cannot contain (or generate) 7CL
statement (Commit, Rollback),

274 Lab 9 — Procedures, functions and packages

e also, calling any method from them is prohibited if any of the above rules are
violated.

We have dealt with multiple functions called from SQL, like to_char, to_date, round,
trunc, and many others previously. Now, there is an example of calling a user-defined
function. Principles are the same in comparison with standard server functions.

select student id, name, surname,
get ects count(student id) as credit number
from personal data join student using(personal id)
where student id = 501567;

STUDENT ID NAME SURNAME CREDIT NUMBER
501567 Wiliam | Whittel 19

However, what will happen, if you do not specify the person for who the total number
of credits should be summed?

Will the error be raised? If yes, why?

Select Into statement used in the PL/SQL block requires one significant property — result
set of the statement must get exactly one row (no less, no more).

What will happen if the Select statement in the procedure or function does not return
any data? Think of the following example.

declare
v_count integer;
v_student id integer := null;
begin
v_count := get ects count(v_student id);
dbms_output.put line('Student ' || v_student id || ' has ' ||
v_count || ' credits.');
end;
/

A student cannot exist without an assigned student id value. Although an exception
will be raised, it will not be visible to the user.

I Student has credits.

Another example shows a similar situation. There is no student with student id=1.

declare
v_count integer;
v_student id integer := 1;
begin
v_count := get ects_ count (v_student id);
dbms output.put line('Student ' || v_student id || ' has ' ||
v_count || ' credits.');
end;
/

The exception will be raised. However, it will be “invisible”. Thus, please do not rely
on it and ensure that no exception can be raised, respectively manage them.
The next chapter deals with Exception handling.

Lab 9 — Procedures. functions and packages 275

9.7 Exception handling
The optional Exception handler can extend each PL/SQL block.

[DECLARE

Variable datatype[:=init_value];
]
BEGIN

Commands ;

END;
/

As already highlighted, a subgroup of the exception is covered by the super-group.
Therefore, the order of the Exception listed is critical.

System exceptions characterize the first category. The second category forms user-
defined exceptions. The user-defined exception is raised explicitly if some specific situation
(problem) occurs. However, do not replace standard conditions, code tracing,
and standard management by raising exceptions. They should cover only special cases,
not standard functionality.

User exceptions can be raised by two approaches. The first one is based
on the RAISE_APPLICATION ERROR method:

I RAISE_APPLICATION_ERROR (error_code, error_description);

The error_code must belong to interval <-20999; -20000>. There is no need for special
functionality to cover user-defined exceptions in the Exception handler.
Another approach is based on the variable declaration, raising exception and error
processing:
e Declaration — exception type:

I v_error_variable EXCEPTION;

e Exception raising:

I RAISE v_error_variable;

e Error handling and processing:

I EXCEPTION WHEN v_error variable THEN commands;

So, let’s have a simple example, on which we will demonstrate principles and
opportunities.

276 Lab 9 — Procedures, functions and packages

declare

v_name personal data.name%type;

v_surname personal data.surname$type;
begin

select name, surname into v_name, v_surname

from personal data
where personal id IS NULL;

dbms output.put line(v_name || ' ' || v_surname);

end;

/

After launching such code, an exception will be raised — Select Info has returned no value:

ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 5

Think of the previous example. If no row is returned in the SELECT INTO command
in the PL/SQL block, an exception is raised. So, to solve such situation, add an Exception
handler to manage that exception type:

begin
select name, surname into v_name, v_surname
from personal data
where personal id IS NULL;
dbms_output.put line(v_name || ' ' || v_surname);
EXCEPTION
WHEN no_data_found THEN
dbms_output.put line('Row with such defined personal id ' |
'does not exist');
WHEN others THEN
dbms output.put line('Not covered error raised...');
end;

/

What about the results? No_data_found exception raised:

Row with such defined personal id does not exist

declare
v_name personal data.name$type;
v_surname personal data.surname%type;
I PL/SQL procedure successfully completed.

However, what will happen, if you change the order in the Exception clause, “others”
type will also cover the “no_data_found” exception type.

Lab 9 — Procedures, functions and packages 277

declare
v_name personal data.name$type;
v_surname personal data.surname$type;
begin
select name, surname into v_name, v_surname
from personal data
where personal id IS NULL;
dbms output.put line(v_name || ' ' || v_surname);
EXCEPTION
WHEN others then
dbms output.put line('Not covered error raised...');
WHEN no_data_found then
dbms output.put line('Row with such defined personal id ' |
'does not exist');
End;
/

The result is that it is even not possible to build it:

I PLS-00370: OTHERS handler must be last among the exception handlers of a
block

So, notice that “Others” cover all exceptions, thus should be placed last.
The following table shows the most commonly used and raised standard (system
generated) errors. All of them with the description can be found in Oracle documentation.

Tab. 9.4: Exceptions

Oracle SQLCODE

Raised when
Error Value

Exception

Your program attempts to assign

ORA- values to the attributes
ACCESS_INTO_NULL 06530 | 6330 of an uninitialized (atomically
NULL) object.
None of the choices
ORA- in the WHEN clauses
CASE_NOT_FOUND 06592 -6592 of a CASE statement is selected,

and there is no ELSE clause.
Your program attempts to apply
collection methods other than
EXISTS to an uninitialized
COLLECTION IS NULL ORA- 6531 (atomically NULL) nested table
- = 06531 or varray. The program attempts
to assign values to the elements
of an uninitialized nested table
or varray.
Your program attempts to open
an already open cursor. A cursor
must be closed before it can be
CURSOR_ALREADY_OPEN ORA- 1 511 reopened. A cursor FOR loop
- - 06511 automatically opens the cursor
to which it refers. So, your
program cannot open that cursor
inside the loop.

278 Lab 9 — Procedures, functions and packages

Oracle SQLCODE

Raised when
Error Value

Exception

Your program attempts to store
ORA- duplicate values in a database
DUP_VAL_ON_INDEX 00001 -1 column that is constrained
by a unique index.

ORA- Your program attempts an illegal
INVALID CURSOR 01001 -1001 cursor operation, such as closing
an unopened cursor.
In a SQL statement, converting
a character string into a number
can generally fail because the
string does not represent a valid
number. (In procedural
ORA- statements, VALUE ERROR is
INVALID_NUMBER 01722 -1722 raised.) This exception is also
raised when the LIMIT-clause
expression
in a bulk FETCH statement
does not evaluate a positive
number.
ORA- Your program attempts to log on
LOGIN_DENIED -1017 to Oracle with an invalid
= 01017
username and/or password.
A SELECT INTO statement
returns no rows, or your program
references a deleted element in a
nested table or an uninitialized
element in an index-by table. SQL
aggregate functions such as AVG
ORA- and SUM always return a value or
NO_DATA_FOUND 01403 100 a NULL. So, a SELECT INTO
statement that calls an aggregate
function never raises
NO DATA FOUND.
The FETCH statement is
expected to return no rows
eventually, so when that happens,
no exception is raised.
Your program issues a database

NOT _LOGGED ON ORA- -1012 call without being connected to
01012
Oracle.
ORA- .
PROGRAM_ERROR 06501 -6501 PL/SQL has an internal problem.
The host cursor variable and
PL/SQL cursor variable involved
in an assignment have
ORA- incompatible return types.

ROWTYPE MISMATCH -6504 For example, when an open host
- 06504 . .
cursor variable is passed to
a stored subprogram, the return
types of the actual and formal
parameters must be compatible.

Lab 9 — Procedures, functions and packages 279

Oracle SQLCODE

Raised when
Error Value

Exception

Your program attempts to call

a MEMBER method on a NULL
ORA- instance. That is, the built-in
SELF_IS_NULL 30625 -30625 parameter SELF (which is always
the first parameter passed to a
MEMBER method) is null.
ORA- PL/SQL runs out of memory or
STORAGE_ERROR 06500 -6500 memory has been corrupted.

Your program references a nested
table or varray element using an

SUBSCRIPT BEYOND COUNT ORA- -6533 index number larger
06533 .
than the number of elements in
the collection.
Your program references a nested
SUBSCRIPT OUTSIDE LIMIT ORA- 6532 table or varray element using an
- - 06532 index number outside the legal
range (e.g. -1).
The conversion of a character
ORA- string into a universal ROIWID
SYS INVALID ROWID 01410 -1410 fails because the character string
does not represent a valid
ROWID.
TIMEOUT ON RESOURCE ORA- 51 A t.ir.ne-out occurs while Oracle is
- = 00051 waiting for a resource.
TOO MANY ROWS ORA- 1422 A SELECT INTO statement
- - 01422 returns more than one row.
Arithmetic, conversion,
truncation, or size-constraint error
occurs. For example, when your
program selects a column value
into a character variable,
if the value is longer than the
ORA- declared length of the variable,

VALUE _ERROR 06502 -6502 PL/SQL aborts the assignment
and raises VALUE ERROR.

In procedural statements,

VALUE ERROR is raised if the

conversion of a character string

into a number fails. (In SQL

statements, INVALID NUMBER

is raised.)
ZERO DIVIDE ORA- -1476 Your program attempts to divide
- 01476 a number by zero.

Source: docs.oracle.com

280 Lab 9 — Procedures, functions and packages

Raising user-defined exception using RAISE _APPLICATION_ERROR method:

CREATE OR REPLACE PROCEDURE
Proc register subj(p st id student.student id%type,
P subj id subject.subject id%type,
P year study subjects.school year%type)
IS
V_count integer;
begin
select count (*) into v_count
from student
where student id = p st id;
IF v_count = 0 THEN
RAISE_APPLICATION_ERROR (-20000, 'Such student does not exist...');
END IF;

select count (*) into v_count
from subject
where subject id = p subj id;
IF v_count = 0 THEN
RAISE _APPLICATION ERROR(-20001, 'Such subject does not exist...');
END IF;

select count (*) into v_count
from subject year
where subject id = p_subj id and school year = p year;
IF v_count = 0 THEN
RAISE APPLICATION_ ERROR(-20002, 'Such subject cannot be ' ||
'registered during defined school year...');
END IF;

select count (*) into v_count
from study subjects
where subject id = p subj id and school year = p year
and student id = p st id;
IF v_count = 1 THEN
RATSE APPLICATION ERROR(-20003, 'Such subject is already ' ||
'registered for particular student and school year');
END IF;

-- everything ok, new data row can be inserted
insert into study subjects(school year,student id,subject id, lecturer)
select school year, p st id, subject id, guarantee
from subject year
where subject id = p_subj id and school year = p year;
end;

/

An exception will be raised after launching a defined procedure because the determined
student does not exist.

execute Proc register subj(null, 'BIO6', 2015);

ORA-20000: Such student does not exist.

Lab 9 — Procedures, functions and packages

281

Now, try another example. Execute procedure with other parameters:

execute Proc register subj (550545,

year.

I ORA-20002: Such subject cannot be registered during the defined school

If you define the correct data, the procedure will be completed successfully.

execute Proc register subj (550545,

PL/SQL procedure successfully completed.

The second example is based on the RAISE command:

CREATE OR REPLACE PROCEDURE

Proc_register subj(p_st id student.student id%type,
P subj id subject.subject id%type,
P _year study subjects.school year%type)

IS
V_count integer;
Errl EXCEPTION;
Err2 EXCEPTION;
Err3 EXCEPTION;
Err4 EXCEPTION;
begin
select count (*) into v_count
from student
where student id = p_ st id;
IF v_count = 0 THEN
RAISE errl;
END IF;

select count (*) into v_count
from subject
where subject id = p_subj_ id;
IF v_count = 0 THEN
RAISE err2;
END IF;

select count (*) into v_count
from subject year

where subject id = p_subj_ id and school year

IF v_count = 0 THEN
RAISE err3;
END IF;

select count (*) into v_count
from study subjects
where subject id = p_subj id
and school year = p_year
and student_id = p_st_id;
IF v_count = 1 THEN
RAISE err4;
END IF;

= p_year;

282 Lab 9 — Procedures, functions and packages

-- everything ok, new data row can be inserted
insert into study subjects(school year, student id, subject id, lecturer)
select school year, p st id, subject id, guarantee
from subject year
where subject id = p_subj id and school year = p year;

EXCEPTION
WHEN errl
THEN dbms output.put line('Such student does not exist.');
WHEN err2
THEN dbms_output.put line('Such subject does not exist.');
WHEN err3
THEN dbms output.put line('Such subject cannot be registered during
the defined school year.');
WHEN err4
THEN dbms_ output.put line('Such subject is already registered for
particular student and school year');
WHEN others
THEN dbms_output.put line('Another exception has been raised...');
end;

/

Thus, how to define a function to get a total number of credits for a particular student
without raising any error? What about students with no registered (passed) subjects yet?

You can use QUTER JOIN to ensure that the total number will be processed. However,
an exception will be raised if you specify student_id, which is not assigned to any student.

Be aware, the name of the parameter or variable cannot be the same as the attribute
name of the table or view in the Select statement. It is a severe mistake, which the compiler
cannot distinguish. However, it can produce incorrect data results. The name of the attribute
has higher importance (weight).

9.8 Ways of passing parameters

Database system Oracle provides three ways to pass parameters to the stored PL/SQL
block — by pesition, by name or the combination of both previously mentioned.

9.8.1 Position way of passing parameters.

If the position way of passing parameters is used, in that case, the order of values
to be passed must reflect the order of definition of the stored PL/SQL block, so let’s have
the following example:

create or replace proc_register subj
(p_st_id student.student id%type,
p_subj id subject.subject id%type,
p_year study subjects.school year%type)

So, the first parameter should identify the student (p st id), then, you must write
an identifier of the subject (p_subj id), and the last one, there is information about the schoo!
year (p_year). By using position way, there is no possibility to change the order. If
some attribute value should be omitted, it must also be noted there (e.g., by using NULL
value):

I execute proc register subj (12345, 'BIO6', 2015);

Lab 9 — Procedures, functions and packages 283

I execute proc register subj (12345, 'BIO6', NULL);

Let’s have another example of the procedure:

create or replace procedure proc set exam result
(p_st_id student.student id%type,
p_subj id subject.subject id%type,
p_year study subjects.school year%type,
p_result study subjects.result%type,
p_date study subjects.exam date%type DEFAULT sysdate)

In the case of the position way approach, the execution command looks like following:

exec proc_set exam result(l, 'BI', 2014, 'A',
toidate(15.7.2017, 'DD.MM.YYYY")) ;

Notice the default value in the procedure header. DEFAULT values can be processed
only at the end of the definition. Thus, if we have the following header of the function,
we have to code each value for the first four parameters explicitly. The last one is enhanced
with a default value.

I exec proc_set exam result(l, 'BI', 2014, 'A'");

However, if you change the order in the definition, then the DEFAULT value cannot
be used when using position way:

create or replace procedure proc_set exam result
(p_date study subjects.exam date%type DEFAULT sysdate,
p_st id student.student id%type,
p_subj id subject.subject id%type,
p_year study subjects.school year%type,
p_result study subjects.result%type)

9.8.2 Passing parameters using names

Named way of passing parameters is another technique, each parameter value
is associated directly with the name. In that case, the order of parameter definition
(and DEFAULT values) is not important:

proc_set exam result (123 => p st _id,
sysdate-1 => p_ date,
'BI06' => p subj id,
2015 => p_year,
'c! => p result);

The default value can be assigned automatically by omitting a particular value during
the calling — p_date will be set based on the default value.

proc_set exam result (123 => p st id,
'BI06' => p subj id,
2015 => p year,

e => p result);

284 Lab 9 — Procedures, functions and packages

9.8.3 Hybrid passing

In this case, the first parameters can be passed using position, followed by naming
convention. However, be aware, all parameters after using any named convention must
be called by name. Hybrid passing is a combination of position and name passing.

Let’s have the following example again:

Create or replace procedure proc set exam result
(p_st_id student.student id%type,
p_subj id subject.subject id%type,
p_year study subjects.school year%type,
p_result study subjects.result%type,
p_date study subjects.exam date%type DEFAULT sysdate)

So, the first three examples are correct, however, the fourth cannot be used:

proc_set exam result (123, 'BIO6', 2015, 'A', sysdate);

proc_set exam result (123, 'BIO6', 'A' => p result, 2015 => p year,
sysdate => p date);

proc_set exam result (123, 'BIO6', 2015 => p year, sysdate => p date,
'A' => p result);

proc_set exam result (123, 'BIO6', 2015 => p year, 'A', sysdate);

In the following calling, default value for p_date will be used:

proc_set exam result (123, 'BIO6', 2015 => p year, 'A' => p result);

9.9 Differences between anonymous and stored (named)
PL/SQL block

The main difference between anonymous and stored (name) PL/SQL blocks is execution.
Anonymous block is executed directly after compilation, and its code is not stored
in the database. On the other hand, procedure and function are delimited by their unique
name, and its processing has two phases — compilation and execution. Once the stored
PL/SQL block is compiled, it can be used and executed multiple times without direct access
to the implementation code. Keeping the named (stored) PL/SQL block can be processed
more effectively based on optimization techniques (like using statistics). The code
of the named PL/SQL block is stored in the data dictionary. Original file with the code
of the method is not later necessary for the processing.

9.10 Removing procedures and functions
To remove stored PL/SQL block from the system, the following syntax should be used:

drop procedure procedure name;

drop function function_name;

drop procedure raise salary;

Lab 9 — Procedures, functions and packages 285

Result:

Procedure dropped;

Function dropped.

9.11 Select statement in PL/SQL

Results of the Select statement in the PL/SQL block must be stored for processing.
If the statement result is only one row, the SELECT ... INTO type definition can be used.
The cursor can provide generalization and can deal with any Select statement based
on resulting cardinality.

9.11.1 SELECT INTO type

To use the SELECT INTO type, the particular Select statement must return directly
one row. Otherwise, an Exception will be raised (no_data_found or ORA-01422: exact fetch
returns more than requested a number of rows).

After keyword INTO, there is a list of variables. The order must correspond
with the definition in the Select statement clause. For variables definition, the data type
can be copied from the table attribute (fable name.attribute name%type). Moreover,
the record can be defined to store all attributes together.

I SELECT list of attributes INTO list of variables
FROM ...

Example:

declare
v_name personal data.name%type;
v_surname personal data.surname$type;
v_count integer;
begin
select name, surname, count(subject id) into v_name, v_surname, v_count
from personal data JOIN student using(personal id)
LEFT JOIN study subjects using(student id)
where student id = 550545
group by name, surname, student id;
dbms output.put line('Total number of student ('

|| v_name || ' ' || v_surname
|| ') subjects is ' || v_count || '.");
end;
/
I Total number of student (Carol Pearce) subjects is 3.

Using record definition, the solution will look like the following. The record is defined
as the type with individual elements listed after the “is record” keyword. Each element

286 Lab 9 — Procedures, functions and packages

consists of the name and data type. The defined variable itself uses such type as data type
(v_rect _rec):

declare
type t_rec is record(
name personal data.name%type,
surname personal data.surname$type,
count integer
)i
v_rec t_rec;
begin
select name, surname, count(subject id) into v_rec
from personal data JOIN student using(personal id)
LEFT JOIN study subjects using(student id)
where student id = 550545
group by name, surname, student id;

dbms_output.put line('Total number of student (' || v_rec.name || ' '
|| v_rec.surname || ') subjects is '
|| w_rec.count ||'.');
end;

/

9.11.2 CURSOR

In this chapter, we will deal only with static cursor type. Dynamic cursor definition is out
of the scope of this subject. Using cursor definition, the total number of data rows in the result
set is not essential. However, they have to be processed sequentially. DBS Oracle
does not provide scroll cursor functionality for row identifier management and definition.
It can manage only sequential cursors.

There are many cursor definitions. Cannan [6] defines it as a mechanism allowing access
to table rows. Pokorny [68] extends the definition — a cursor is an object of SQL language,
which numbers the data in the record set obtained by the Select statement and allows to
update or delete currently addressed record tuple. Finally, Matiasko [49] [50] provides the
following definition — cursor is the object of SQL language, which makes entries available,
obtained from the Select statement.

We will distinguish three cursor types. The coding techniques only cause their difference.
However, they provide the same result sets.

Let’s have an anonymous block, by which we want to list the names and actual class
of the actual students:

The Select statement to provide required data will look like this:

select name, surname, student id, class
from personal data JOIN student using(personal_ id)
where final date IS NULL;

To encapsulate it into PL/SQL block, it is necessary to define a cursor.
Fig. 9.2 shows the commands for dealing with cursors — declare, open, fetch, process and
close.

Lab 9 — Procedures, functions and packages 287

No

DECLARE|—| OPEN |—| FETCH CLOSE

Fig. 9.2: Cursor processing step,; source: Oracle PL/SQL and administration materials

Cursor processing and management can be associated with the box (container)
in the memory. The Declaration clause creates the box with the data inside. Opening cursor
causes opening the box making data available. Individual fetch operations retrieve data until
the box is empty. Then, the defined box is closed and freed from the memory.

@ Open the cursor.

Cursor
pointer

Cursor

Fetch each row,
@ one at a time. pointer

@ Close the cursor.

Fig. 9.3: Cursor processing step; source: Oracle PL/SQL and administration materials

Cursor
pointer

Open command ensures these activities:
e the syntax of the Select statement checking,
e controlling access rights,
e checking the existence of the tables and columns inside,
e specifies the active set,
e allocates memory for the defined command,
e sets the pointer to the beginning of the memory space.

Close command:

e undefines the active set,
o releases and frees allocated memory.

The cursor itself can be used after the declaration and opening cursor itself. Otherwise,
an exception will be raised.

Fetch command is a core part of the cursor definition — moves the pointer to the current
(consecutive) row of the active set and enforces the data selection of the current row
from the database by placing it into allocated memory.

Notice that DBS usually locks all rows, which are accessed using a cursor. Therefore,
commit and rollback commands close all opened cursors and release locks.

288 Lab 9 — Procedures, functions and packages

The following example shows the cursor's explicit definition and manages it explicitly
by opening, fetching, and closing the cursor.

declare
cursor cur_st IS select name, surname, student id, class
from personal data JOIN student using(personal_id)
where final date IS NULL;
v_row cur_ stsrowtype;
begin
open cur_st;
loop
fetch cur st into v_row;
exit when cur st%notfound;
dbms output.put line(v_row.name || ' ' || v_row.surname || ', ' |
v_row.student id || ', class: ' || v_row.class);
end loop;
close cur_ st;
end;

/

The results will look like this:

Milan Clarke, 500426, class: 2
Hugo Davis, 500425, class: 2
Michael Pearce, 501512, class: 3
Carol Pearce, 550545, class: 1
John Pearce, 550698, class: 2

Do not forget to close the cursor at the end of the execution, although it will be closed
automatically after the execution. However, if you would like to process data multiple times
using the same cursor in one PL/SQL block, it must be opened before processing (an open
operation can be made only if the cursor is in the closed state).

For example purposes, we have used the record v_row defined automatically
with the same structure as the cursor. Thus, the data type will be defined like this —
cur_st%rowtype.

An infinite loop is used with the command Exit when cur_st%notfound to ensure
the limitation of the processing. If no other data can be obtained, processing in the loop ends.

Be careful. When using this cursor processing type, the following keywords must
be present (in the following order) when coding — open, loop, fetch, exit, end loop, close.

Another cursor type is easier for coding because open, close, and fetch operations
are managed automatically using the code and should not be written explicitly. It is based
on using FOR loop:

declare
cursor cur st IS select name, surname, student id, class
from personal data JOIN student using(personal id)
where final date IS NULL;

begin
for v_row in cur_st loop
dbms output.put line(v_row.name || ' ' || v_row.surname || ', ' |

v_row.student id || ', class: ' || v_row.class);
end loop;
end;

/

Lab 9 — Procedures. functions and packages 289

Using this FOR loop approach, FOR keyword expresses and also executes automatic
OPENing of the cursor. Each transition reflects FETCH operation. END LOOP command
also executes the CLOSE operation. Therefore, they cannot be coded explicitly. If you try
to close the cursor after processing explicitly, an exception will be raised:

declare
cursor cur st IS select name, surname, student id, class
from personal data JOIN student using(personal id)
where final date IS NULL;
begin
for v_row in cur_st loop
dbms output.put line(v_row.name || ' ' || v_row.surname || ', ' |
v_row.student id || ', class: ' || v_row.class);
end loop;
close cur_st;
end;
/
I ORA-01001: invalid cursor |

A particular case of the FOR loop processing with emphasis on the cursor is based
on the direct association of the FOR loop with the cursor definition by the Select statement.
Thus, there is no defined variable for the cursor. However, if you want to use such a cursor
twice or more times, every time, it must be coded explicitly without any possibility
to reference it once again.

begin

dbms output.put line(v_row.name || ' ' || v_row.surname || ', ' |
v_row.student id || ', class: ' || v_row.class);
end loop;
end;

/

Likewise, FOR loop implicitly defines the structure for result fetching. The structure
is the same as the data inside the cursor.

Although it can also be defined in the declare section, they are separate variables
with differing relevance, as demonstrated by the following example.

declare
control integer := 1;
begin
for control in (select student id from student) loop
dbms output.put line (control.student id);
end loop;
dbms output.put line(control);
end;

/

550123
550127
550807
550945

290 Lab 9 — Procedures, functions and packages

There is no possibility to manage variable “control” inside the loop because, in that block,
it is predefined using FOR loop.

Be sure implicitly defined variable “control” inside the FOR loop is always record,
although only one attribute or function is referenced inside the particular Select statement.
Name of the attribute or alias (if dealing with functions creating an attribute, the result must
be aliased to be possible to reference them) delimits the structure of the record.
Thus, in standard conditions, inside the FOR loop, the only reference to particular record
can be done:

declare
control integer := 1;
begin
for control in (select student id from student) loop
control.student id := 10;
control := 1; --it is impossible to perform
dbms output.put line(control.student id);
end loop;
dbms_output.put line(control);
end;
/

However, do not be confused. It is available to reference and overlap individual validities.
Individual parts of the code can be named, and by using such names, the individual variable
scope can be delimited to potential problems. How does it work? The principles
can be effectively described in the example:

<<main>>
declare
control integer:=0;
begin
<<inner>>
for control in (select student id from student) loop
main.control := main.control + 1;

dbms output.put line (control.student_id);
dbms output.put line (inner.control.student_id);
dbms output.put line (main.control);

end loop;
dbms_output.put_line(control);
end;

/

Provided results:

500422
500422
2
500423
500423
3
500424
500424
4

In that case, in the inner block, a higher priority gets the record. Thus, it can be referenced
directly (control.student id) or by using name of the block (inner.control.student id).

Lab 9 — Procedures, functions and packages 291

But referencing variable defined in the outer (<<main>>) block, it is necessary to use
also its name — block name (main. control).

So, as you can see, you can have multiple structures with the same name, but it is not very
convenient to use it. Developers and programmers managing code can be confused.

As procedures and functions, also cursors can depend on parameters, which are
then obviously reflected as conditions. Parameters are defined after the name of the cursor:

declare
cursor cur_st (p_class integer) is
select name, surname, student id
from personal data join student using(personal id)
where class = p_class;

begin
for v_row in cur st(l) loop
dbms output.put line(v_row.name || ' ' || v_row.surname || ', ' |
v_row.student id);
end loop;
end;
/

Jack Robinson, 501333
Mark Bailey, 501555
Carol Pearce, 550545
John Young, 550127
Suzanne Walker, 550123
Mark Vox, 501448

To conclude the processing data generated by the Select statement in the PL/SQL block,
let’s show you one more complex example of cursor processing. The aim is to create a header
for each student followed by his registered subjects. The solution will be based on two
cursors. One of them will make a header. The second one will list the registered subjects. As
you can see, the second cursor (cur_subj) will be used multiple times but with different
parameters. Therefore, proper managing of the CLOSE operation is significant.

For the explanation purposes, lines are numbered:

1 declare
2 cursor cur_st is select name, surname, student id
3 from personal data join student
using (personal id);

4 cursor cur_ subj (st id integer) is (select subject id, name

5 from study subjects join subject
using (subject id)

6 where student id=st id);

7 v_student cur st%rowtype;

8 v_subject cur_ subj%rowtype;

9 begin

10 open cur_ st;

11 loop

12 fetch cur st into v_student;

13 exit when cur_ st%notfound;

14 dbms output.put line('Name: '|| rpad(v_student.name,15) ||

15 'Surname: ' || rpad(v_student.surname,15) |

16 'ID: ' || rpad(v_student.student id,15));

17 open cur_subj (v_student.student id);

292 Lab 9 — Procedures, functions and packages
18 loop
19 fetch cur subj into v_subject;
20 exit when cur subj%notfound;
21 dbms output.put line('...' || rpad(v_subject.subject id,8) |
v_subject.name) ;
22 end loop;
23 close cur subj;
24 end loop;
25 close cur_st;
26 end;

Lines 1-8 are used for variables declaration. There are two cursors defined — the second
one is parametrical. Fetched records of the cursors are assigned to defined variables (lines
7,8). Lines 10-26 form the body of the PL/SQL block. First, the cursor for managing students
is opened (line 10), then individual student records are subsequently assigned to a defined
variable (/ine 12) and written to the console (/ine 14-16). The limitation of the LOOP
processing is provided by /line 13. If the row has been read, a particular student identifier
(student id of the v_student variable) is passed as a parameter to the second cursor (line 17),
which lists the subjects for a particular student (/ine 18-23). If you omit to CLOSE the second
cursor (/ine 23), during the processing of the second student, an exception will be raised:

ORA-06511:

PL/SQL: cursor already open.

The output will look like this:

Name: Jacob

...BN1O
...BI10
...BI06
Name: Jack
...BIOG6
...BI06
...BS03
Name: Mark
...BIO3
...BI23
...BALO
Name: Sim
...BIOG6

Surname: Murgas ID: 550945
Communication technologies
Java
Database systems - the best subject :)
Surname: Clever ID: 501003

Database systems - the best subject :)
Database systems - the best subject :)
Software engineering

Surname: Vox ID: 501448
Programming language C
Object programming
Theory of managing schedules

Surname: Eas ID: 501559
Database systems - the best subject :)

9.12 Increasing control — access rights

The standard method management approach is based on accessing objects owned
by the owner of such a method. Thus, if there is no fully qualified object name (owner_name.
object_name), the owner schema object is accessed by default. Let’s have a simple example,
which gets the number of rows of the student table. Let’s assume that such a procedure
is created by user Kvet (Kvet is the owner of the procedure).

Lab 9 — Procedures, functions and packages 293

create or replace procedure get student count
is
v_count integer;
begin
select count (*) into v _count from student;
dbms output.put line('Number of rows in the student table is: ' ||
v_count) ;
end;

/

Regardless of who executes the procedure, the result will be 37.

-- KVET
execute get student count;

Number of rows in the student table is: 37

Then, grant execute privilege to Kmat:

-—- KVET
grant execute on get_ student count to Kmat;

And execute defined procedure by user Kmat:

-— KMAT
execute kvet.get student count;

Number of rows in the student table is: 37

To demonstrate that it reflects the table of the Kvetr schema, let’s remove all data
from the student table of the user Kvet (be careful with referential integrity):

-— KVET

delete from study subjects;
delete from student;
commit;

The result of the calling procedure by both users is value 0:

-- KVET
execute get student count;

Number of rows in the student table is: 0

-- KMAT
execute kvet.get student count;

Number of rows in the student table is: 0

Some cases require increasing control access rights mechanism to the used objects.
One way to deal with it is to transfer control rights to the user who wants to execute
a particular method.

If we want to control user access rights, who wants to execute the method, it is necessary
to define it in the particular method using the AUTHID CURRENT_USER clause. It means
that the default approach controlling the owner of the method is redefined and moved
to the user, who executes the method (default schema for object access is redefined).
Thus, control mechanisms (rights on objects used in the method) are performed before
the execution itself. If no AUTHID CURRENT USER clause is defined, only rights
to execute a particular method are controlled (EXECUTE privilege). Notice that

294 Lab 9 — Procedures, functions and packages

in the previous example, user Kmat does not need to have privileges to the student table
of Kvet schema.

Let's have the following example.

First of all, user Kvet creates a table converting the exam percentage to the string format.

—-— KVET
Create table result tab
(perc from integer,
perc_to integer,
result char(l),
description varchar?2 (50));

Then, the table is filled.

-— KVET
insert into result tab values(93, 100, 'A', 'excellent results');
insert into result tab values (85, 92, 'B', 'results above average');
insert into result tab values(77, 84, 'C', 'results on average');
insert into result tab values (69, 76, 'D', 'acceptable result');
insert into result tab values (61, 68, 'E',

' results fulfilling the minimum requirements') ;
insert into result tab values (0, 60, 'F',

' failed - further work required');

commit;

Afterward, user Kvet creates function get_result and authorizes the user who wants
to execute such function.

return varchar2
AUTHID CURRENT USER

v_Result varchar2(35);
begin
select result tab.result || ' - ' || description into v_result
from kvet.result tab
where p _points between perc from and perc_to;
return v_result;
EXCEPTION
when others then return 'unknown';
end;

Add privileges to Kmat a let him execute the defined function.

—-— KVET
grant execute on get result to KMAT;

—-— KMAT
select KVET.get result(95) from dual;

—-— KVET
| Create or replace function get result (p_points integer)

What will be the result? Will it be associated with result “4”? No, at all. The result will
be “unknown”.

KVET.GET RESULT (95)

unknown

Lab 9 — Procedures, functions and packages 295

Try to explain the reason why that happened.

The reason is that exception has been raised because user Kmat does not have
the privilege to access the result table table of the user Kvet. Whereas the OTHERS type
in the EXCEPTION covers all exception types, it has been processed by it.
That is the consequence of using AUTHID CURRENT USER, so access rights to the table
must be granted to the caller. Notice that the owner of the table inside the function is defined
explicitly. A side effect of using the AUTHID CURRENT USER clause is checking access
rights for the objects inside the method.

Therefore, if the table privilege is granted, results are corrected (notice that the table
in the query inside the function contains the fully qualified name of the table
(kvet.result tab)):

-— KVET
grant select on result tab to KMAT;

Then, the results of the method are correct — privileges are successfully checked,
table of kvet user is accessed:

GET RESULT (95)

A - excellent results

By the definition of access rights controlling, one stored PL/SQL block can deal
with multiple tables based on the schema of the caller. So, if the table name in the Select
statement in the PL/SQL block is not prefixed by the user schema, the caller schema will be
used during the execution.

Let’s create the function in the KVET schema and grant the EXECUTE privilege to
KMAT:

—-— KVET
create or replace function get result (p points integer)
return varchar2
AUTHID CURRENT USER
is
v_Result varchar2(35);
begin
select result tab.result || ' - ' || description into v_result
from result tab
where p _points between perc from and perc_to;
return v_result;

EXCEPTION
when others then return 'unknown';
end;
/
== VgL
grant execute on get result to KMAT;

Now, let’s have the fable result_tab in KVET and also KMAT schema. What will happen
if the data in the tables are not the same (realize that the table inside the function does

296 Lab 9 — Procedures, functions and packages

not denote schema explicitly)? They will get different results, although both call the same
function. Let’s have the example:

—-— KMAT

Create table result tab(perc from integer,
perc_to integer,
result char(l),
description varchar2 (30));

-— KMAT
insert into result tab values (90, 100, 'A', 'excellent results');
insert into result tab values (80, 89, 'B', 'results above average');
insert into result tab values (70, 79, 'C', 'results on average');
insert into result tab values (60, 69, 'D', 'acceptable result');
insert into result tab values (50, 59, 'E',
' results fulfilling the minimum requirements') ;
insert into result tab values (0, 49, 'F',

' failed - further work required');

What about the results? Emphasize the results:

-- KVET
select KVET.get result(90) from dual;

GET_ RESULT (90)

B - results above average

-- KMAT
Select KVET.get result(90) from dual;

GET RESULT (90)

A - excellent results

Thus, be aware each user processes his own table representation. Therefore, they can
get different results.

9.13 Packages

A package is a schema object which can group multiple types, items, and subprograms
(procedure and functions). Compared with standalone function or procedure, the package
supports the overloading of the methods.

The package usually has two parts — specification and body. However, the body
is optional but traditionally defined, too (if the specification does not have a method
definition, there is no necessity to define the body. Otherwise, it is required — all methods
must be implemented in the body). The specification defines the interface between
the implemented code of the subprograms and the user interface (application interface).
It contains all variables, constants, cursors, exceptions, and header of the methods, which
can be called from the outside environment, so it is a public part of the package. On the other
hand, there is also a private part, called a body. It contains the implementation of all methods,
regardless of whether they are public or private, and also it deals with local (private)
variables, cursors, and exceptions. Private methods and items can be managed only inside
the package by the implemented methods. There is no possibility to deal with them externally.
There is also possible to authorize the caller (AUTHID CURRENT USER), but that clause

Lab 9 — Procedures, functions and packages 297

is associated with the whole package, not with individual methods, and should be listed
in the specification. The following figure shows the principles of the package definition
and association with the applications, and then, the syntax is defined.

specification

o body

application

database

Fig. 9.4: Package

9.13.1 Package specification syntax

CREATE [OR REPLACE] PACKAGE package_ name
[AUTHID {CURRENT USER | DEFINER}]
{IS | AS}
[PRAGMA SERIALLY REUSABLE;]
[collection_type definition ...]
[record type definition ...]
[subtype definition ...]
[collection declaration ...]
[constant declaration ...]
[exception declaration ...]
[object declaration ...]
[record declaration ...]
[variable declaration ...]
[cursor_ spec ...]
[function_spec ...]
[procedure_spec ...]
[call spec ...]
[PRAGMA RESTRICT REFERENCES (assertions) ...]
END [package name];
/

298 Lab 9 — Procedures, functions and packages

9.13.2 Package body syntax

[CREATE [OR REPLACE] PACKAGE BODY package name {IS | AS}
[PRAGMA SERIALLY REUSABLE;]
[collection type definition ...]
[record type definition ...]
[subtype definition ...]
[collection declaration ...]
[constant declaration ...]
[exception_declaration ...]
[object declaration ...]

[record declaration ...]
[variable declaration ...]
[cursor_body ...]
[function_spec ...]
[procedure spec ...]

[call spec ...]

[BEGIN
sequence of statements]

END [package name] ;]

/

When trying to compile the package, at first, compile specifications. It is impossible
to compile the body successfully without the compilation of specifications without errors.
Moreover, the specification can be used without a body, but no body can exist without
specification.

Be aware that each package specification and package body, as well as standalone
procedure or function, MUST end with the command “END;* followed by the slash (/)
in the separate line. If it is missing, during the compilation, the system will wait to complete
the definition. We want to highlight it because often, students are confused and do not know
why the defined method is not compiled. Slash is a default delimiter of the code block.

Example of the package specification:

Create or replace package pack student
is
Procedure Register subject(p st id integer,
p_subj_id char,
p_year study subjects.school year%type);
Procedure Set result(p st id integer,
p_subj id char,
p_year study subjects.school year$type,
p_result study subjects.result%type);
Procedure Set result(p st id integer,
p_subj id char,
p_year study subjects.school year$type,
p_result study subjects.result%type,
p_exam_date date);
end;

Lab 9 — Procedures, functions and packages 299

Example of the package body:

Create or replace package body pack student
is
procedure register subject(p st id integer,
p_subj id char,
p_year study subjects.school year%type)
is
v_count integer;
begin
select count (*) into v_count
from student
where student id = p st id;
IF v_count = 0 then
RAISE APPLICATION_ERROR(-20000, 'Such student does not exist...');
END IF;

select count (*) into v_count
from subject
where subject id = p subj id;
IF v_count = 0 then
RAISE_APPLICATION_ERROR(-20001, 'Such subject does not exist...');
END IF;

select count (*) into v_count
from subject year
where subject id = p subj id and school year = p year;
IF v_count = 0 then
RAISE APPLICATION_ ERROR(-20002, 'Such subject cannot be registered
during defined school year...');
END IF;

select count (*) into v_count

from study subjects

where subject id = p_subj id and school year = p year and
student id = p st _id;

IF v_count = 1 then

RAISE APPLICATION_ ERROR (-20003, 'Such subject is already registered

for particular student and school year');

END IF;

-- everything ok, new data row can be inserted
insert into study subjects(school year, student id, subject id,
lecturer)
select school year, p st id, subject id, guarantee
from subject year
where subject id = p_subj id and
school year = p_year;
end register subject;

Procedure Set result(p_st id integer, p subj id char,
p_year study subjects.school year%type,
p_result study subjects.result%type)
is
v_count integer;

300 Lab 9 — Procedures, functions and packages

begin
select count(*) into v_count
from study subjects
where school year = p year
and student id = p st id
and subject id = p subj_id;

IF v_count=0 then
RAISE_APPLICATION_ ERROR(-20004, 'Such subject has not been
registered for particular student and school year');
END IF;

select count(*) into v_count
from study subjects
where school year = p year
and student id = p st id
and subject id = p subj_id
and RESULT IS NULL;

IF v_count=0 then
RAISE APPLICATION ERROR(-20005, 'Such subject has been already
evaluated by the result. You cannot change it.');
END IF;

-- everything ok, row can be updated
update study subjects
set result = p result, exam date = sysdate
where school year = p year
and student_id = p st _id
and subject_id = p_subj_id;
end Set result;

Procedure Set result(p st id integer, p subj id char,
p_year study subjects.school year%type,
p_result study subjects.result%type,
p_exam date date)

is

v_count integer;
Begin
select count(*) into v_count
from study subjects
where school_year = p_year
and student id = p st id
and subject id = p subj_id;

IF v_count=0 then
RAISE_APPLICATION_ ERROR(-20004, 'Such subject has not been
registered for particular student and school year');
END IF;

select count(*) into v_count
from study subjects
where school year = p year
and student id = p_ st _id
and subject id = p subj_id
and RESULT IS NULL;

Lab 9 — Procedures, functions and packages 301

IF v_count=0 then
RAISE APPLICATION_ ERROR (-20005, 'Such subject has been already
evaluated by the result. You cannot change it.');
END IF;

-- everything ok, row can be updated
update study subjects
set result = p result, exam date = p exam date
where school year = p year
and student id = p st _id
and subject id = p_subj_id;
end Set result;

end pack student;
/

What about if you want to change the implementation of any procedure? No problem,
existing applications are associated with package specification. Thus, only the package body
is needed to be recompiled. If you want to add a private method, you can make the change
and then recompile only the package body.

However, the problem can occur if you want to change the package specification.
If the specification is modified, it has to be compiled. Moreover, also package body should
be recompiled.

Let's have the following example. We want to add a public function, which will express
whether such student has already passed successfully defined subject (return value
will be TRUE), otherwise, return value will be FALSE. Alter package is used.

Alter package pack student
add function student pass(p st id integer, p subj id char)
return boolean rebuild;

Now, new functionality is added to package pack student specification. However,
it cannot be used because the package body does not reflect the change, so it is necessary
to add its implementation to the package body. Notice that such added function cannot
be used in SQL statements because it returns non-SQL data type result (boolean).

Packages have a lot of advantages in comparison with standalone methods. It is possible
to group related actions and types together with regards to overloading, which is not possible
to be done directly (without packaging). Moreover, we can define private methods,
which will not be available outside the package. Also, private items (constants, variables, ...)
can be defined.

9.13.3 Overloading

As you can see in the previous example, one of the main advantages of the package
is overloading technology (only methods in the package can be overloaded). In that case,
methods can have the same name, but they differ in parameters — multiple solutions can have
the same name). However, take care of implicit conversions when using overloading.
If various methods can be used, the system cannot evaluate which one it should use
so that the exception will be raised.

Let’s see the following example. There is no problem distinguishing between methods
to be used because each one has another number of parameters.

302 Lab 9 — Procedures, functions and packages

Create or replace package pack student
is
procedure Register subject(p st id integer,
p_subj id char,
p_year
study subjects.school year%type);
procedure Set_result(p_st_id integer,
p_subj_id char,
p_year study subjects.school_year3%type,
p_result study subjects.result%type);
procedure Set_result(p_st_id integer,
p_subj_id char,
p_year study subjects.school_year3%type,
p_result study subjects.result$%type,
p_exam date date);
end;

/

However, let’s have another example. Can you assume, which procedure will be used,
when calling? No, because both procedures have the same name and compatible parameter
data type, which can be converted to each other implicitly. In that case, the system cannot
decide which one should be used.

Create or replace package pack overloading
is

Procedure proc (str char) ;

Procedure proc (str warchar) ;
end;

/

However, if the names of the parameters differ, the named notation can be used
to distinguish the method to be called.

create or replace package pack overloading
is

Procedure proc(strl char);

Procedure proc(str2 varchar) ;
end;

/

exec pack overloading.proc('some string' => strl);

9.13.4 Initialization block

An optional part of the package is an initialization block, which is executed only once
when there is the first reference on the package — when it is loaded to the memory.
Initialization block is located at the end of the package body, started with the BEGIN

Lab 9 — Procedures, functions and packages 303

command, until the end of the body. Notice there is no extra END command
of the initialization, only the global end of the package body:

[CREATE [OR REPLACE] PACKAGE BODY package name {IS | AS}
[PRAGMA SERIALLY REUSABLE;]
[collection type definition ...]
[record type definition ...]
[subtype definition ...]
[collection_declaration ...]
[constant declaration ...]
[exception_declaration ...]
[object declaration ...]

[record declaration ...]
[variable declaration ...]
[cursor_body ...]
[function_spec ...]
[procedure_spec ...]

[call spec ...]

[BEGIN
sequence of statements]

END [package name] ;]

/

So, let’s have the following example — create a package with one public procedure,
which can set the private variable and one public function to get the actual value of it.
Let’s create an initialization block and see the principles and results:

create or replace package pack init
is
procedure Set value proc(p_id integer);
function Get value func return integer;
end;

/

create or replace package body pack init
is
value integer;

procedure Set value proc(p_id integer)
is
begin
value := p_id;
end;

function Get value func return integer
is

begin
return value;
end;
begin
value := 1;
end pack_init;

/

So, execute the following statement sequence. What about the results? Think and check
your assumption (results are bold).

304 Lab 9 — Procedures, functions and packages

select pack init.Get value func() from dual;

PACK_INIT.GET VALUE FUNC ()

exec pack init.Set value proc(2);

PL/SQL procedure successfully completed.

select pack init.Get value func() from dual;

PACK_INIT.GET VALUE FUNC ()

Be aware. The defined package is loaded into memory during the first reference.
However, it is loaded to PGA (Process Global Area), not SGA (System Global Area), causing
that every process (each session) has its own values and variables of the package.
Thus, one session does not affect the other:

Add user “Kmat” privilege to execute such defined package:

I grant execute on pack init to Kmat;

Now, execute the following methods by user “Kver” and “Kmar” and compare results.
See that the results do not influence another user.

-— Kvet
select pack_init.Get value func() from dual;

PACK_INIT.GET_ VALUE_FUNC ()

exec pack_init.Set value proc(2);

PL/SQL procedure successfully completed.

select pack_init.Get value func() from dual;

PACK INIT.GET VALUE FUNC ()

-- Kmat (immediately after)
select kvet.pack init.Get value func() from dual;

PACK_INIT.GET_ VALUE_FUNC ()

exec pack _init.Set value proc(3);

PL/SQL procedure successfully completed.

select pack _init.Get value func() from dual;

PACK_INIT.GET VALUE_ FUNC ()

1 1. 11 B __ ' _®E_I1 B I |
N

Lab 9 — Procedures, functions and packages 305

-- Kvet (immediately after)
select pack init.Get value func() from dual;
PACK_INIT.GET VALUE FUNC ()

2

The same results will be reached if two sessions of the same user are used.

9.14 Practice

1. Create procedure Get_group proc, which will consist of these six parameters:
e Workplace (abbreviation of the town — first letter):
o Z—Zilina
o P —Prievidza
e Field (its numerical value) — a reference to s¢_field table
e Specialization (its numerical value) — a reference to s¢_field table
e Class
o Sequence number of the group (1,2,3,... A,B,C ..)
e St group as an OUTPUT parameter

The aim is to create the value for the study group and return it using the output
parameter st_group.
Example: input: Z, 100, 0, 1, 2 output: 521012

input: Z, 101, 0, 3, A output: 5ZP03A

Abbreviations for fields and specializations can be found in the table
ABBREVIATION _TAB in the KVET ENG schema.

I desc kvet eng.abbreviation tab
Name Null Type
FIELD ID NOT NULL NUMBER (3)
SPECIALIZATION_ID NOT NULL NUMBER (1)
FIELD ABBR CHAR (1)
SPEC_ABBR CHAR (1)

2. Rewrite the previous procedure and create a similar function (Get_group func).
The value to be returned is a study group.
3. Try to use such function (Get_group_func) in the Select statement. Is it possible?
4. Create procedure Add subject proc, which will execute Insert statement
of the new subject into the subject table.
Try to insert the following data. Is it possible? If not, why?
e Subject id: BI14, name: Advanced database indexing
e Subject id: BI12, name: Introduction to studying
e Subject id: BI12, name: Introduction to studying

5. Extend the previous procedure (4dd_subject_proc) by adding particular exception
handling. Test it.
6. Try to use the previous procedure (Add_subject proc) to add the following data
to the table. Is it possible? If not, why?
e Subject id: null, name: Unknown subject name

306 Lab 9 — Procedures, functions and packages

7. Extend the previous procedure (Add_subject proc) by adding particular exception
handling. Test it.

8. Create function Get_student_count_func, which will have two parameters (subject
identifier and school year). The result of the processing should be the total number
of students who registered for a particular subject at a defined school year.

9. List the name of the subjects with the total number of students by using the previous
function (Get_student _count_func).

10. Create the function Register_func, which will register the student for a particular
subject. The school year should be based on the actual date:

o if the actual month belongs to the following interval <1,8>, the school year
should be decreased by one,

e if the actual month belongs to the following interval <9,12>, use the actual
school year.

Example: actual date: 23.3.2016 --> 2015
1.11.2016 -->2016

Check the conditions before attempting to /nsert new data. Return information (boolean)
expresses whether it is possible to add it or not. Can we use that function in the Select
statement? If not, adjust it and recompile once again.

Homework practice:

1. Create function Get_birth_func, which parameter will be personal_id, and the return
value will be the birth date.

2. Create function Change _subj func, which will perform the Update operation
of the subject name. Input parameter will be the identifier of the subject and new
name. The return value should be:

e The old name of the subject (if the defined subject exists),
o Constant string “nothing”, if no subject with defined identifier was found.

3. Create package pack management and define methods ensuring the following
requirements:

e Register students for the particular subject. It can be done only if he has not
already passed it successfully before (also during another study of a particular
person).

e Get the actual value of the credits associated with the student (only if the
subject is passed successfully (based on ending_type)).

Attribute ending_type of the subject_year table:
o B exam + accreditation to exam,
o E exam,
o S semester only (no exam).

e Get the length of the study of the defined student.

e Register (insert) new student into the system. Ensure that he has no parallel
study during a defined time.

4. Create procedure List stud proc, which will list all students
(using dbms_output.put line method) who achieved at least 40 credits (based
on attribute ects) (take into account only subjects, which are passed successfully).

5. Create procedure Delete_stud _proc, which will accept one parameter — identifier
of the student. 1t will delete data from the student table (emphasizing referential
integrity). If he has no other references in the student table, remove his information
from the personal_data table.

Lab 10 — Triggers 307

Lab 10 — Triggers

This lab provides the reader a complex integrity management overview using the trigger
associated with Insert, Update or Delete statement forming the DML trigger. It is a specific
functionality that is fired automatically if a particular event occurs. The trigger can be
statement type (fired only once regardless of the number of changed rows) or row (fired once
for each applied row). In this lab, the reader will be navigated through the syntax and
definition restrictions. He will learn how to influence the values manipulated through the
operations (records) and limit the trigger firing to specific conditions.

As discussed in the section, triggers provide a robust solution for maintaining integrity.
However, some constraints can be ensured using easier solutions, like CHECK constraints,
default values, etc.

In section 10.11, the reader will learn the sequences, their definitions, and parameters,
which can provide sufficient solutions for the primary key definition. The trigger commonly
does association. There are two methods for obtaining value — NEXTVAL by applying the
specified INCREMENT and CURVAL getting the current value.

Finally, the reader will get an overview related to the DDL and event triggers.

10.1 Introduction

The trigger is a stored procedure associated with the object or object type. Oracle manager
automatically executes a trigger (independent of user or application that ran particular
command) if the defined conditions are met. DML trigger can be fired only with destructive
DML statements (Insert, Update, Delete). The important fact is that one trigger can be
associated only with one object (table or view). It cannot be associated with the Select
statement at all. Moreover, it cannot accept arguments.

Triggers provide a wide range of possibilities; the main tasks for them are following:

e ensure complex data security,
restrict undesirable activities,
allow creating strategic application rules,
monitor user activity and data processing (audits),
ensure synchronization,
create statistics about the table management and activities,
ensure consistency and referential integrity for all nodes in a distributed
environment,

A particular category is formed using DDL triggers. They deal with creating persistent
database objects and reflect the security politics.

The central part of this lab focuses on DML triggers. We will just briefly introduce
principles of DDL trigger as well in the second part of the lab.

308 Lab 10 — Triggers

10.2 Syntax

CREATE [OR REPLACE] TRIGGER [schema.]trigger name
{ {BEFORE | AFTER}
{INSERT | DELETE | UPDATE [OF column_namel [column2 [, ...]]]}
OR {DELETE | INSERT | UPDATE [OF column namel [column2 [, ...]]11}
[...]
|
INSTEAD OF {INSERT | UPDATE | DELETE}}
ON [schema.]table name
[REFERENCING {OLD [AS] old name | NEW [AS] new_name}]
[FOR EACH ROW]
[WHEN (condition)]
trigger_ body

Each trigger must have its name. The firing position can be either before or after
the associated operations. We can define one trigger for multiple operations, but only for one
object (table or view). Triggers can be fired either at all times or when the conditions are met.
By using the UPDATE [OF column_namel [column? [, ... |] clause, the number of times
the trigger is fired is reduced — trigger is not associated only with the update statement itself,
but also particular attributes must be updated. List of them is in UPDATE
[OF column_namel [column?2 [, ...]] clause.

Referencing clause allows renaming referential records. However, it can be used only
for triggers, which are launched for each changed row. Thus, it must contain For Each Row
clause to express it. Two records can be recognized — the new record can be used
only for the Insert and Update statement operation (Delete statement naturally has the only
old image of the row). The old record can be used only for the Update and Delete statement.
The structure of the New and Old record is the same as the associated table or view schema
(e.g. when the trigger is associated with student table, the particular record has these elements
— student_id, personal id, field id, specialization_id, class, st_group, final date, status,
and first_date). Using New and Old records can identify attribute changes with the Update
operation. Some specific conditions and checks can be done using them.

Notice that new or old values must be colon prefixed. However, in the When clause,
particular records New and Old are not prefixed by the colon (:).

:new.personal_id
:old.class

One of the essential parameters influencing how many times the trigger is launched
for a particular statement is based on using or not using For Each Row clause.

Let’s have the following example. Create log fable consisting of the username
(user_name) and the actual time of the command execution (exec_date):

Create table log_table(user_name varchar2(20), exec_date date);

Create a trigger (associated with the Update operation, it can be executed before as well
as after performing Update statements, whereas it deals with another table) with no For Each

Lab 10 — Triggers 309

Row clause (in that case, we can say that trigger type is Statement Trigger — executed only
once regardless the number of processed rows):

Create or replace trigger trig log_ ss
after update on study subjects
begin
insert into log table
values (user, sysdate);
end;

/

Now, update multiple rows using only one Update statement:

update study subjects
set school year = 2009
where school year = 2008;

As aresult, five rows are updated.

I 5 rows updated.

However, how many rows have been inserted into log table? Only one, whereas trigger
has been executed once for the whole statement.

COUNT(®

Also, notice that in that case, New or Old records cannot be used at all.

If you want to execute it for each changed row, an additional clause For Each Row
has to be added. In that case, each row change is reflected by the log table, and the trigger
is considered as Row Trigger. Moreover, in this case, it is also possible to get and store
historical value (using Old record) and actual record (using New record).

So, if the previous Update statement is executed once again (active transaction is rolled
back) and five rows are updated, also five rows are inserted into log_table:

rollback;

Create or replace trigger trig log ss
after update on study subjects
FOR EACH ROW
begin
insert into log table
values (user, sysdate);
end;

/

As evidence, update multiple rows using only one Update statement. What will happen?

update study subjects
set school year = 2009
where school year = 2008;

5 rows updated.

In this case, the trigger is fired for each influenced row. Check the number of log records:

I select count (*) from log table;

310 Lab 10 — Triggers

COUNT(*)

So, now, let’s create another logging table (log student) containing information
about the original and new attribute values:

Create table log student

(student id integer,

new field integer,
new_specialization integer,
old field integer,

old specialization integer,
old st group integer,
new st group integer,

27

The original attribute value is stored in the particular attribute prefixed by “Old”,
new values are stored using “/New” prefix of the attributes:

Create or replace trigger trig st
before update on student
for each row
begin
insert into log student
values (:new.student id, :new.field id, :new.specialization_id,
:old.field id, :old.specialization id, ...);
end;

/

However, what data are stored in the individual records if the value does not change?
NULL or not? Let’s examine the following example. Create log_table to manage the status
of the student, associate it with the trigger and execute the Update statement:

Create table log_ table(old status char(1l),
new_status char (1)
user name varchar2
exec date date);

(20),

Create or replace trigger trig student status
before update on student
for each row
begin
insert into log table
values (:o0ld.status, :new.status, user, sysdate);
end;

/

update student
set final date = sysdate
where student id = 550945;

1 rows updated.

What about the data in the log_table? Realize that the status of the student has not been
updated.

select old status as "OLD", new_status as "NEW", user name, exec date
from log table;

Lab 10 — Triggers 311

OLD NEW USER NAME EXEC DATE

N N KVET_ENG 06.02.2017

Even though attribute value has not been changed, particular record elements store
the real values (new — after the operation, old — original values).

10.3 Restrictions for trigger definition

There are several restrictions to be highlighted dealing with the trigger definition and
management, namely:

The trigger's body can contain data manipulation language (DML) statements,
but it cannot handle the same table. Select statements themselves must
be encapsulated by the cursors or should return only one row. In that case, the
Select Into type can be used.

No TCL statements are allowed (Commit, Rollback, and Savepoint), whereas
processed data changes would become permanent, respectively, they would
be immediately abolished.

DDL statements are not allowed inside the trigger body at all. Why? Naturally,
because of the transactions.

Variables with data types Long and Long Raw cannot be used with Old and New
records.

Moreover, these requirements also apply to methods, which are called inside the
body of the trigger.

10.4 Triggers turning on and off

The trigger can be associated with multiple operations and is fired automatically.
Database systems allow you to manage triggers with emphasis on their enabling or disabling.
In general, when the trigger definition is compiled, the particular trigger is turned on.
However, if it is necessary to suspend the trigger, two possibilities are proposed — using alter
trigger characteristics — it is used to disable the trigger temporarily.

ALTER TRIGGER [schema.]trigger {ENABLE | DISABLE};

To disable all triggers associated with the particular table, it is not necessary to do it
sequentially for each trigger, but all of them can be managed using one command:

ALTER TABLE [schema.]table name {ENABLE | DISABLE} ALL TRIGGERS;

Another approach is to drop the trigger. However, after that, there will be no information
about the trigger's existence nor the body of the trigger.
To remove the trigger from the system, use the following command code:

DROP TRIGGER [schema.]trigger;

10.5 Changes monitoring

The trigger can provide a powerful solution for change monitoring over time. For these
purposes, a row trigger should be defined for accessing individual changes. If you want to add
only changed data to the log table, the following solution can be introduced. However,
remember that NULL value, in this case, delimits no change. Even if NULL values have

312 Lab 10 — Triggers

special meaning in a given system, no conflict can occur because if the value is changed
in one record, it can be easily discovered (the original and new value would not be the same).

Let’s have the table personal data from our labs. As we can see, the majority of attributes
can be NULL.

Which attributes will change their values? How often? Typically, the name is not changed
frequently (rarely). Another case, however, occurs with the surname. If the woman gets
married, in our region, she typically takes the surname of her husband. Thus, for men,
changes are not performed. For women — it is usually a question of one update. Sure, a few
exceptions are allowable. Vice versa, a person's address can be changed unlimited times.
Thus, individual attribute changes have a different granularity of the changes. Therefore,
NULL can mainly solve those granularity inconsistencies.

So, let’s demonstrate the situation. Let’s have the log fable and particular trigger
for managing changes. It will be associated with the Update statements.

Create table log person
(personal id char(11),
old name varchar2(15),
old_surname varchar2(15),
old street varchar2(20),
old town varchar2 (50),
old zip char(5),
old nationality char(2),
new_name varchar2 (15),
new_surname varchar2(15),
new_street varchar2(20),
new_town varchar2 (50),
new zip char(5),
new nationality char(2));

The body of the trigger should evaluate individual attribute changes. Notice that you
cannot change New or Old record values because if so, the change will be reflected
in the database by the Update statement.

Thus, we will define a local variable for each attribute and evaluate the change between
Old and New record in the body:

create or replace trigger trig person_change

before update on personal data

for each row
declare

v_personal id personal data.personal id%type;
-- old

v_old name personal data.name%type;

v_old surname personal data.surname%type;

v_old street personal data.street%type;

v_old town personal data.town$%type;

v_old zip personal data.zip%type;

v_old nationality personal data.nationality%type;
-- new

v_new_personal id personal data.personal id%type;

v_new_name personal_ data.name%type;

v_new_surname personal data.surnamestype;

v_new street personal data.street%type;

v_new town personal data.town%type;

v_new zip personal data.zip%type;

v_new nationality personal data.nationality%type;

Lab 10 — Triggers 313

begin
if :new.name <> :0ld name then
V_New_name := :New.name;
v_old name := :old.name;
end if;

if :new.surname <> :0ld surname then

V_new_surname := :new.surname;
v_old surname := :old.surname;
end if;

if :new.street <> :0ld street then

V_new_street := :new.street;
v_old street := :old.street;
end if;

if :new.town <> :0ld town then

v_new_town := :new.town;
v_old town := :old.town;
end if;

if :new.zip <> :0ld zip then

v_new_zip := :new.zip;
v_old zip := :old.zip;
end 1if;

if :new.nationality <> :0ld nationality then

v_new nationality := :new.nationality;
v_old nationality := :old.nationality;
end if;

insert into log person values(:new.personal id,
v_old name, v_old surname, v_old street,
v_old town, v_old zip, v_old nationality,
V_new_name, V_new_surname, V_new_street,
v_new_town, v_new zip,
v_new nationality);
end;

/

String variables are implicitly defined as NULL. If that is not so, we can initialize values
in the variable definition part or add the Else clause of the processing.
The following example is based on adding the Else clause.

if :new.name <> :0ld name then

V_New_name := :iNnew.name;
v_old name := :old.name;
else
v_new_name := NULL;
v_old name := NULL;
end if;

Another solution is based on using the Initialization clause.

314

Lab 10 — Triggers

Create

before update on personal data
for each row
declare
v_personal id personal data.personal id%type;

-- old
v_old name personal data.name%type := NULL;
v_old surname personal data.surname$type := NULL;

or replace trigger trig person change

Be aware, an empty string is considered as the NULL:

declare
v_str varchar2(10) := ''; -- there cannot be any character inside!

begin

if v
dbms_output.put_line('Variable is NULL');

else

dbms output.put line('Variable is empty, but NOT NULL');
end if;

end;

/

str IS NULL then

When executing the defined block, the following result will be obtained:

I Variable is NULL

Question for thinking about — what is the limitation of the Row and Statement trigger?
Can they be directly replaced by each other?

10.6 Default values

Default values can be assigned to the table attribute in the definition. If no attribute value
is set, the value to be stored to be used is replaced by the default value. However, be aware
no value, in this case, does not equal NULL value, as it already shows the following

example:

create

table TAB(id integer not null primary key, val integer DEFAULT 3); |

insert
insert
insert

into TAB values(1l, 1);
into TAB values (2, null);
into TAB(id) values(3);

Data in the table are following:

I select

* from TAB;

ID ‘IDZ

1 1
2 (null)
3 3

Thus, as you can see, if a NULL value is written explicitly, the default value
will not be used at all.

To remove that limitation, the trigger for setting value can be defined. In that case,
it can also be extended for NULL values — if the NOT NULL value is required, the predefined

Lab 10 — Triggers 315

value will be used. However, it cannot be said, and it is the default value because
of the keyword of the database system. The following solution is prone to NULLs.

create table TAB2(id integer not null primary key, val integer);

Create or replace trigger trig Tab2 default
before insert on TAB2
for each row
begin
if :new.val IS NULL then
:new.val := 3;
end if;
end;

/

Perform three Insert statements and compare the results with the previous example.

insert into TAB2 values(l, 1);
insert into TAB2 values (2, null);
insert into TABR2 (id) values(3);

select * from TABR2;

ID ‘IDZ

1 1
2 3
3 3

In Oracle 12c¢ version, a new clause — default on null — was introduced. Thus, if the value
is undefined or not specified, it will be replaced by the default value. Consequently, a NULL
value is replaced, as well.

create table TAB3(id integer not null primary key,
val integer DEFAULT ON NULL 3);

insert into TAB3 values(l, 1);
insert into TAB3 values (2, null);
insert into TAB3 (id) values(3);

Data in the table are following:

I select * from TAB3;

ID ‘IDZ

1 1
2 3
3 3

10.7 Conditions for trigger firing

Typically, some data portions can be made only by privileged people. Grant command
cannot be directed for particular table rows, only for the whole object (table). Thus, if you
Grant the user KMAT privilege to Update table Employee, in that case, KMAT can update
any attribute of the particular table. To highlight the problem and propose a solution, create
the table Employee, insert one row to it, end successfully transaction (Commit) and grant

316 Lab 10 — Triggers

privileges to KMAT. Consequently, his task will be to update the existing row
of the Employee table owned by KVET.

—-— KVET

Create table employee (emp id integer primary key,
date from date not null,
date to date,
salary integer);

insert into employee values(l, sysdate, null, 1000);
commit;
grant update on employee to KMAT;

Notice that in the previous definition, there is no necessity to write the Commit command
explicitly. The reason is based on the Grant command definition, which is automatically
associated with Commit (when managing transactions, once again, never forget that all 7CL,
DDL, and DCL always commands end transaction successfully (implicit Commit)).

select * from employee;

EMP_ID DATE FROM DATE_TO ‘ SALARY‘
1 06.02.2017 (null) 1000

If the user KMAT performs an Update statement in the Employee table owned by KVET,
it will not be automatically visible to other sessions because of the transaction isolation
property. So, what must be done to do so?

-- KMAT
update kvet.employee set salary = 5000;

-- KVET
select * from employee;

EMP ID DATE FROM DATE_TO
1 06.02.2017 (null) 1000

-- KMAT
select * from kvet.employee;

EMP ID DATE FROM DATE_TO
1 06.02.2017 (null) 5000

Sure, to see the same results, began transaction of the KMAT user must be confirmed.

commit;

Now, also user KVET will see the same results as user KMAT.

-- KVET
select * from employee;

EMP ID DATE FROM DATE TO ‘ SALARY‘
1 06.02.2017 (null) 5000

Lab 10 — Triggers 317

To prevent users from changing sensitive data, the trigger can be added limiting
a particular operation to a specific user or group based on defined conditions:

Create or replace trigger trig emp
before update of salary on employee
for each row
when (user not in 'KVET')
begin
raise application error(-20000, 'Sorry, you cannot change salary.');
end;

/

Any attempt to update the Employee table except owner (KVET) will end with raising
an exception. Thus, no data will be updated.

-- KMAT
update kvet.employee set salary = 3000;

ORA-20000: Sorry, you cannot change salary.
ORA-06512: at "KVET.TRIG EMP", line 2
ORA-04088: error during execution of trigger 'KVET.TRIG EMP'

How does it work? When will the trigger be fired? What are the conditions?
When will be the When clause executed?

The trigger is fired only if the condition in When the clause is evaluated as True.
Thus, for user KVET, no trigger is fired.

-- KMAT
I update kvet.employee set date to = sysdate; -- trigger does not fire...

I 1 row updated.

However, an attempt to update also salary attribute will activate the trigger,
and an exception will be raised:

—-- KMAT
update kvet.employee
set date to = sysdate+30, salary = 2000;

ERROR at line 1:
ORA-20000: Sorry, you cannot change salary.
ORA-06512: at "KVET ENG.TRIG EMP", line 2

Whereas exception has been raised, a particular statement (not the whole transaction)
is rolled back. Thus, the date_to attribute value is not updated, too.

What about the difference and performance consequences if the When clause is omitted,
respectively moved to the trigger's body? Will it be better, or not?

In the following example, the trigger will always be fired, and if the condition is met,
an exception will be raised. Thus, also for KMAT, as well as KVET, the trigger is fired.

318 Lab 10 — Triggers

Create or replace trigger trig emp
before update on employee
for each row

begin
if (user not in ('KVET') and :new.salary <> :old.salary) then
raise application error(-20000, 'Sorry, you cannot change salary.');
end if;
end;
/

The solution to using When clause looks like following:

Create or replace trigger trig emp
before update on employee
for each row
when (user not in ('KVET') and new.salary <> old.salary)
begin
raise application error(-20000, 'Sorry, you cannot change salary.');
end;

/

Notice that using an update of the clause is more convenient and effective:

Create or replace trigger trig emp
before update of salary on employee
for each row
when (user not in 'KVET')
begin
raise application error(-20000, 'Sorry, you cannot change salary.');
end;

/

10.8 One trigger — multiple operations

One trigger can be associated with multiple DML operations specified in the header
of a particular trigger. However, it can be associated only with one table or view. If you create
a trigger for logging, it will be necessary to distinguish also operation, which has been
performed. For these purposes, the condition IF INSERTING, IF UPDATING,
or IF DELETING can be used. Let's create atable for logging performed operations
on the student table. If such a table exists in your system, you can drop or rename it.

Create table log_student
(old student id integer,
new_ student id integer,
operation char (1),
username varchar2 (30),
exec date date);

We will define only one trigger for all destructive DML operations. In the body
of the trigger, conditions are used to distinguish between performed operations. Such
a solution aims to group and manage common code together. However, the same solution
would be obtained if you divide the solution into three separate triggers that call the same
stored procedure/function with emphasis on parameter values (differentiating the operation).

Lab 10 — Triggers 319

Create or replace trigger trig log st
before insert or update or delete
on student
for each row
begin
if inserting then
insert into log student
values (null, :new.student id, 'I', user, sysdate);
end if;

if updating then
insert into log student
values (:o0ld.student id, :new.student id, 'U', user, sysdate);
end 1if;

if deleting then
insert into log student
values (:o0ld.student id, null, 'D', user, sysdate);
end 1if;
end;

/

This trigger ensures that each performed destructive operation will be logged.
This information of activity will be stored:
e name of the user, who performed the operation,
e when the operation has been performed,
e which operation type has been executed.

In that case, any update operation will be logged. If you want to reduce individual
operations to be logged (e.g., only for status updating), a particular condition is extended
by the name IF UPDATING('attribute_name’) like in the following example:

Create or replace trigger trig log st
before insert or update or delete
on student
for each row
begin
if inserting then
insert into log student
values (null, :new.student id, 'I', user, sysdate);
end 1if;

if updating('status') then
insert into log student
values (:o0ld.student id, :new.student id, 'U', user, sysdate);
end if;

if deleting then
insert into log student
values (:o0ld.student id, null, 'D', user, sysdate);
end if;
end;

/

Each update operation of the attribute status will be logged. However, what will happen,
if you update such attribute value with its original one? Will it be logged?

320 Lab 10 — Triggers

I update student set status=status;

I 37 rows updated.

All rows in the student table will be updated. However, the new value will be the same
as the original. Thus, as a consequence, another 37 rows will be inserted into the log student
table by the trigger. To overcome this deficiency, implemented conditions of the Update
statement are extended, as follows:

Create or replace trigger trig log st
before insert or update or delete
on student
for each row
begin
if inserting then
insert into log student
values (null, :new.student id,'I', user, sysdate);
end 1if;

if (updating('status') and :o0ld.status<>:new.status) then
insert into log student
values (:old.student id, :new.student id, 'U', user, sysdate);
end 1if;

if deleting then
insert into log student
values (:o0ld.student id, null, 'D', user, sysdate);
end if;
end;

/

10.9 Referential integrity management

The trigger can also be defined for referential integrity management. If you want
toremove a student from the system, particular references must be solved sooner
(information about studied subjects must be deleted sooner). The trigger can be defined
to provide the desired functionality to remove the necessity of explicit management of such
a situation.

Let’s have the following trigger to provide cascade operations — to delete registered
subject data before attempting to delete the student data themselves.

create or replace trigger trig st del cascade
before delete on student
for each row
declare
v_count integer;
begin
select count (*) into v_count
from study subjects
where student id = :old.student id;
delete from study subjects
where student_id = :old.student id;
dbms output.put line(v_count ||
' rows have been deleted from the study subjects table');
end;

Lab 10 — Triggers 321

To avoid querying table study subjects twice (select and delete), a predefined function
for getting the RowCount of the last processed operation can be used:

create or replace trigger trig st del cascade
before delete on student
for each row

begin
delete from study subjects
where student id = :old.student id;

dbms output.put line (SQL$¥ROWCOUNT | |

' rows have been deleted from the study subjects table');
end;

/

A bit complicated situation can occur if you want to deal with the referential integrity
in cascade type for the table personal data. If you want to remove a person from the system,
particular references must be solved sooner (student data must be deleted sooner). However,
when dealing with a student removal, information about studied subjects must be deleted.
The trigger can be defined to provide the desired functionality to remove the necessity
of explicit management of such a situation. However, how to get the identifier of the student?
Can the SELECT ... INTO statement type be used? Why not?

Let’s have the following trigger to provide cascade operations for deleting data
from the personal_data table. First, student identifier (student id) for such a person
is obtained and processed using a cursor. For each student found, particular study subjects
are deleted, followed by the student delete himself. Then, the personal_data row is deleted
automatically (after execution of the trigger).

create or replace trigger trig person del cascade
before delete on personal data
for each row
declare
cursor st _cur (p_person_id char) is select student id
from student
where personal id

= p person_id;
v_count_ st integer:=0;
v_count_subj integer:=0;
begin
for rec in st cur(:old.personal id) loop
delete from study subjects
where student id = rec.student_ id;
v_count subj := v_count subj+SQL%ROWCOUNT;
delete from student
where student id = rec.student_ id;
v_count_subj := v_count_ subj+l;
end loop;
dbms_output.put_line (v_count st ||
' rows has been deleted from the student table');
dbms_output.put_ line(v_count subj ||
' rows has been deleted from the study subjects table');
end;

/

However, is it possible to simplify the previous code to avoid using cursors? If not, why?

322 Lab 10 — Triggers

The solution is based on using subqueries.

create or replace trigger trig person del cascade
before delete on person
for each row
begin
delete from study subjects where student id IN (select student id
from student
where
personal id = :old.personal id);
dbms output.put line (SQL%ROWCOUNT | |
' rows has been deleted from the student table');
delete from student where personal id = :old.personal id;
dbms output.put line (SQL%ROWCOUNT | |
' rows has been deleted from the study subjects table');
end;

/

10.10 Changing the value of the primary key

The problem can arise if there is a necessity to update the primary key value. If the primary
key consists of the value obtained by the sequence (chapter 10.11 Sequences and triggers),
there is no reason to update it. This is because it does not have a specific meaning. However,
what about our student model and table personal data? The primary key of the table
personal_data is personal_id and reflects the birth_date and gender of the person. If there
is any mistake when adding a new person to the database, it is necessary to correct it later
(when the error is discovered).

Direct Update statement of the primary key of the table personal data is not possible due
to referential integrity. Then, we will try to update the personal id of the person Jack
Robinson from the value “791229/5431” to “790229/5431”. It would be possible
for a person who is not a student to execute it like this.

update personal data
set personal id = '790229/5431"'

where personal id = '791229/5431"';
ORA-02292: integrity constraint (KVET ENG.SYS C00552853)
violated - child record found

To solve the problem without using triggers, we have to perform multiple DML
operations (INSERT INTO PERSONAL DATA, UPDATE STUDENT, DELETE FROM
PERSONAL _DATA), whereas the personal_id value is referenced in the student table.

The aim is to update the personal_id of the person Jack Robinson from the value
“791229/5431” to “790229/5431”. In the following example, the new value
of the personal_id attribute is written as constant in the Select statement forming Insert
operation.

insert into personal data(personal id, name, surname,
street, zip, town, nationality)
(select '790229/5431', name, surname, street, zip, town, nationality
from personal data
where personal id = '791229/5431") ;

Lab 10 — Triggers 323

update student
set personal id = '790229/5431"'
where personal id = '791229/5431"';

delete from personal data
where personal id = '791229/5431"';

A bit complicated, isn’t it? However, changing the primary key's value using a trigger,
the solution is more accessible, whereas integrity constraints are checked after the trigger
operation.

CREATE OR REPLACE TRIGGER trig cascade pid
AFTER UPDATE OF personal id ON person
FOR EACH ROW
BEGIN
UPDATE student SET personal_id = :new.personal_id
WHERE personal id = :old.personal_id;
END;
/

10.11 Sequences and triggers

A sequence is a database object mainly used for assigning a value to the attribute
(like autoincrement, which is not directly defined for Oracle DBS). Each sequence can be
identified by its unique name and can provide two methods:

e to get actual value — seq_name.currval
e to get the following value-based on definition — seq_name.nextval.

10.11.1 Sequence syntax

CREATE SEQUENCE [schema.]sequence name
[{INCREMENT BY | START WITH} integer]
[{MAXVALUE integer | NOMAXVALUE}]
[{MINVALUE integer | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE integer | NOCACHE}]
[{ORDER | NOORDER}] ;

All of the proposed clauses are self-explanatory. However, some principles will be
described using examples. Create the following sequence.

create sequence seql
start with 100
increment by 10
maxvalue 200
cycle;

Such a defined sequence has the following parameters:
e starting value (start with) is 100,
e executing next_val function means adding the increment (value 10) to the actual
value,
e maximal value (maxvalue) for associating values is 200,
o if the maximal value is reached, the CYCLE keyword forces the sequence to be
restarted.

324 Lab 10 — Triggers

So, if the sequence is created, we can use it, e.g., in Select statements. However, to use
such a defined sequence, it must be at first initialized by calling its function — nextval. If not,
an exception will be raised:

select seqgl.currval from dual;

ORA-08002: sequence SEQ1.CURRVAL is not yet defined in this session

Thus, the initialization is done by calling the rextval function.

I select seqgl.nextval from dual;

I 100

Recalling of the function nextval will provide value 110.

I select seqgl.nextval from dual;

l 110

The last value in the first round is 200. If the second round is started, what value
will be used? One hundred? Or one?

It is necessary to differentiate between starting value and minimal value (which is not set
using our defined sequence, so default value “1” will be used automatically). Thus, if there
is no minimum value set, the next value will be one. So, let’s assume that the actual value
of the sequence is 200. Calling the function nextval will provide the value 1.

I select seqgl.nextval from dual;

I 1

If you create another sequence with the minimal value, when reaching 200,
the new associated value will be 100.

create sequence seqg2
minvalue 100
start with 100
increment by 10
maxvalue 200
cycle;

See the demonstration of the solution, assume the actual value of the sequence — 200
(nextval function has been performed 11 times):

select seg2.nextval from dual;

200

select seqg2.nextval from dual;

100

select seqg2.nextval from dual;

110

Lab 10 — Triggers 325

If the VOCYCLE keyword is added and maximal value is reached, by calling the nextval
function, an exception will be raised:

create sequence seq3
start with 100
increment by 10
maxvalue 200
nocycle;

Once again, assume that the actual value of the sequence is 200. The exception will be
raised after trying to get the next value:

select seg3.nextval from dual;

200

select seqg3.nextval from dual;

ORA-08004: sequence SEQ2.NEXTVAL exceeds MAXVALUE and cannot be
instantiated

Notice that all sequence properties can use default values (in a standard environment,
the default value for sequence property is “17).

Adding the CACHE keyword makes it possible to store a predefined number
of consecutive values in memory.

Typically, sequences are associated with identifiers of the objects — the primary key.

A particular value from the sequence is then automatically assigned. Thanks to that,
no problem with the uniqueness of the primary key can occur (if no CYCLE keyword
is used). So, create a sequence and assign it to the primary key of the table student.

create sequence seq st id
start with 1
increment by 1;

However, is such start position (1) correct? Think that some data portions are already
stored in that table.

Existing sequence properties can be changed using Alfer sequence command.
It is necessary to adjust starting, respectively actual sequence position (current value)
in our case. To get the value by which the sequence should be altered, use the following
command (whereas we will use the nextval method, the result should be lowered by 1):

select max value - seq_st id.nextval -1
from (select max(student id) as max value
from student) ;

550943

By using Alter Sequence command, we can change the actual position of the sequence
by using three steps (whereas there is no actual position, which can be set directly).
First of all, the current increment is changed to a previously obtained value. Then, the current
position is shifted to a consecutive one. Finally, the increment is changed to value “I”
and the sequence is ready to deal with new primary key values.

alter sequence seq st id increment by 550943;

Now, if you write a query to get the nextval of the sequence, the result will be correct:
550944.

326 Lab 10 — Triggers

I select seq st id.nextval from dual; |

I 550944

In the end, it is necessary to change the increment step to the value “I1”.

I alter sequence seq st id increment by 1; |

Particular values can be associated with the primary key. The following code shows
the result of calling the nextval function of the sequence.

select seqg st id.nextval from dual; |

550945 |

select seq st id.nextval from dual;

|
550946 |

Altering sequence provides a powerful tool for influencing sequence characteristics.
All of the clauses of the definition can be updated. There are some examples of the Alter
Sequence operation:

I alter sequence teacher seq MAXVALUE 1500; |

I alter sequence teacher seq NOCYCLE CACHE 5; |

If the value of the sequence is set, we can create the trigger to set primary key values.

create or replace trigger trig ins_st
before insert on student
for each row
begin
:new.student_id := seq_st id.nextval;
end;

/

Notice that since Oracle 12c, DBS allows you to create autoincrement column directly.
However, internally, it is managed using sequence and trigger.

Another example can be based on the management personal id of the personal data
table. If you want to add a new person to the system, the primary key must be set
before inserting. Therefore, there are two possibilities — generate it or use the explicitly
written, if possible. In that case, the condition inside the trigger body can look like this:

if :new.personal id IS NULL then
:new.personal_id := GeneratePID
end if;

As well as other objects, the sequence can also be dropped:

I drop sequence seq_name; |

10.11.2 Sequence and transaction correlation

As has been already mentioned, values of the sequences are often used for primary key
definitions. A transaction is a base unit of the database system management. It influences

Lab 10 — Triggers 327

processing. If the transaction is rolled back, all changes associated with the particular
transaction are removed. However, sequences are not affected by the transactions abort —
the assigned value of the sequence is not moved backward (lowered). 1t can be incremented
using the nextval function. The position can be exclusively changed using the Alfer sequence
command described in the previous part.

Principles are described in the following example. Create a simple table (7ablel)
containing only one attribute (va/). Also create sequence (seq_val) and use it for inserting 3
rows into a defined table. Then, successfully end transaction using Commit command. Insert
another 3 rows. Then, rollback the transaction. Get the actual value of the sequence. Is it 3 or
6?

create table Tablel (val integer);

create sequence seq val;

insert into Tablel values (seqg_val.nextval);
insert into Tablel values (seq val.nextval);
insert into Tablel values (seqg_val.nextval);

commit;

insert into Tablel values(seq_val.nextval) ;
insert into Tablel values(seq_val.nextval);
insert into Tablel values(seq_val.nextval);

rollback;

select seq_val.currval from dual;

6

10.12 DDL triggers

Database systems also provide a technology for DDL triggers management. They are
associated with the data definition language (DDL — Create, Alter, Drop) statements.
If any of them is executed, the particular trigger is fired automatically.

CREATE [OR REPLACE] TRIGGER trigger name
BEFORE | AFTER
[ddl_eventl [OR ddl event2 OR ...]]
ON DATABASE | SCHEMA
trigger_ body

Ddl_event can be Create, Alter, Drop. Moreover, the trigger is defined either for schema
or database:
e on database — trigger will be fired for all objects in any schema,
e on schema — trigger will be fired only for DDL operations on particular user
objects.

However, there is impossible to associate a specific operation with an exactly defined
object:

BEFORE DROP study subjects

328 Lab 10 — Triggers

BEFORE DROP TABLE

To do that, a When clause must be used, associate it with the defined table name (a type
of the object must be “table”).

create or replace trigger ddl trigger
before drop on schema
when ((ora_dict_obj_name = 'STUDY RESULTS')
and (ora dict obj_ type = 'TABLE'))
begin
raise application error(-20000, 'Such data table cannot be dropped!');
end;

/

So, if you try to drop table Study Results, it will not be possible:

drop table study results;

ORA-00604: error occurred at recursive SQL level 1
ORA-20000: Such data table cannot be dropped!
ORA-06512: at line 2

However, if you try to drop table s¢_program, there will be no problem:

drop table st program;

Table dropped.

So let’s have the tricky example. Create a trigger, which will not allow the user to drop
any object:

create trigger trig drop

before drop on database
begin

raise_application_error(-20001, 'No object cannot be dropped at all.');
end;

/

Trigger created.

Try to drop the defined sequence. Is it possible?

drop sequence seq3;

ERROR at line 1:

ORA-00604: error occurred at recursive SQL level 1
ORA-20001: No object cannot be dropped at all.
ORA-06512: at line 2

No, nor the table, even trigger cannot be dropped.

drop table TAB1;

ORA-00604: error occurred at recursive SQL level 1
ORA-20001: No object cannot be dropped at all.
ORA-06512: at line 2

So, as you can see, no object can be dropped at all. So, what to do now? How to solve
that problem? Is it even possible to drop any object? Sure, the question is positive.

Do you think that the database administrator (DBA) can do that? Sure, he can.
But it is coded safe, so the object owner can also drop the object (only that one!), although it

Lab 10 — Triggers 329

should be prohibited from the definition. For the object owner, in that case, the trigger will
not be fired.

Drop trigger trig ins_st;

Trigger dropped.

10.13 Event triggers

The last category of the triggers is event trigger, which can be associated with special
events on the database server. Whereas such trigger fires only if the database is available,
there are some restrictions on firing time — either just before or after the event associated
or before finishing work of the DBS, signing in or out from the system.

Tab. 10.1: Triggering time & events

Event Triggering time Description

Startup After Instance starting
Shutdown | Before Shutting down the instance
Servererror | After Server error raising

Logon After Sign in of the user

Logoff Before Sign out of the user

Let’s have the following table (log table) consisting information about the user, time
of event occurrence, IP address (IP address is obtained using sys_context('userenv’,
ip_address') function) and event. The table is created based on the Select statement and will
be empty, whereas there is a condition that cannot be True at all.

create table log table
as
select user user name, sysdate occur_date,
sys_context ('userenv', 'ip address') as ip,
'xxxxxx' event
from dual
where user is null;

Let’s create triggers to monitor server activities. The first one monitors logons
on the database and stores login, actual time, and IP address. The second one watches logoffs.

create or replace trigger logon_trigger
after logon on database
begin
insert into log table
select user, sysdate, sys context('userenv', 'ip address'), 'logon'
from dual;
end;

/

create or replace trigger logon trigger
before logoff on database
begin
insert into log table
select user, sysdate, sys context ('userenv', 'ip address'), 'logoff'
from dual;
end;

/

330 Lab 10 — Triggers

Notice that it is impossible to put both triggers together into a single one because one
operation should be fired before, the second one should be fired after.

USER NAME ‘ OCCUR_DATE ‘ IpP EVENT

KVET_ENG 06.02.2017 158.193.138.18 | logon
KVET1 06.02.2017 158.193.138.18 | logon
MATIASKO 06.02.2017 192.200.193.1 logoff
SYSTEM 06.02.2017 158.193.138.12 | logon

10.14 Practice

This practice aims to create triggers and verify developed functionality and correctness
of the results using Insert, Update and Delete statements. During the lab, focus on answering
the following questions:

e What should trigger type be defined? Row, statement, or it does not matter.
e What trigger event should be used? Before, after, or it does not matter.
e Which record can be used (if available)? New, old, both, or none.

Be aware once again. Never catch the exception in the body of the trigger.

1. Extend the study subjects table using these two attributes — user and execution_date.
Then, create a trigger that stores information about the change to the defined
attributes (user, execution_date). Ensure that those data cannot be directly changed.

2. Create trigger functionality to ensure that no student can register the same subject

more than twice (operations Insert and Update). Verify the functionality. If it is ok,

drop the defined trigger.

Create a trigger for cascade changing of the student identifier (student id).

4. Create a log table consisting of operations (Insert, Update, Delete) performed
in study_subjects tables. Information about the user, date, performed operation,
and information about the original row should be stored (except for Insert statement).

5. Create a trigger, which prohibits deleting any row from the study results table.
Subsequentially, try to remove some data from that table.

6. Deactivate defined trigger. Try to remove data from the study results table. Enable
defined trigger.

7. Drop trigger from the previous step.

8. Create a log table (log_table2) containing this information (name of the table, owner,
creator, and date of creation). Define trigger to provide such data if a particular
operation is executed. Use the following information:

e ora_sysevent — which operation has been performed (in our case, it will be
Create),

e ora_dict obj owner — the owner of the table,

e ora_dict obj name — the name of the defined table.

W

9. Map previous trigger solution also for dropping commands (use only one trigger
to provide desired functionality).

10. Rewrite the previous trigger. It should be fired only if the table is created or dropped
during the weekend.

Lab 11 — Relational integrity 331

Lab 11 — Relational integrity

Relational integrity is a core element of the validity and reliability of the database system
itself. Relational integrity is commonly associated with data consistency. Transaction shifts
the database from one consistent image to another, which is also consistent.

The reader of this book will get complex overview and the categorization of the relational
integrity — entity, referential, user, column, and domain. When dealing with the user integrity,
the focus is done on the whole hierarchy, from the superkey definition, through the primary
key candidate and alternative key up to the primary key itself, as one element of the primary
key candidate set. Related to the referential integrity, the reader will learn about the
referential integrity check protocols, which can be done as part of the statement itself or
moved to the end of the transaction. Shifted evaluation brings easier management of the
referential integrity (like cascaded update operations) or is used in cases where the
relationships between the tables form a reference cycle.

11.1 Introduction

Relational integrity in the area of databases is understood as a meaningfulness and data
consistency supported by security and often associated with confidentiality. The integrity
itself aims to provide data accuracy, correctness, and value for any changes in the database.
Errors or subsequent data inconsistencies may arise from data input, operator errors, program
errors, or deliberate damage to the database.

The concept of data consistency is closely related to the concept of integrity,
and these terms are often considered synonymous. This is especially true in situations if there
are changes in multiple database objects at the same time or when users in the multiuser
system manipulate the same data set in parallel, which could ultimately lead to incorrect
results. Therefore, the operator of the integrity definition is just a transactional management
system that guarantees the transition of a database from one consistent state to another
consistent state covered by the operations that manipulate the database's data.

Relational integrity is an inseparable part of the relational model and is currently
considered one of the most elaborate areas of relational database systems. Values stored
in the database must always represent reality modeled in the proposed system. Moreover,
particular values must be correct and meaningful. This implies the need to define integrity
rules that allow the DBS to work with real-system constraints.

11.2 Integrity constraints classification

Integrity constraints form design, implementation, and usage rules, which must be applied
to data stored in the database. They are based on the conceptual model, as well as, covered
by requirements for the modeled information system.

The following classification of integrity constraints represents relational integrity:
Column integrity C
User integrity U
Referential integrity R
Entity integrity E
Domain integrity D

332 Lab 11 — Relational integrity

Some constraint definitions are optional and can evolve dynamically. However,
each database system management must ensure at least these requirements — entity
and referential integrity.

11.3 Entity integrity

Ensuring entity integrity is an essential requirement for database consistency.
This integrity constraint defines the property of the primary key in the sense that the primary
key must always have a defined value (each attribute forming the primary key must have
a defined value — NOT NULL). For these purposes, the principle of the primary key definition
and process of its selection is defined in the following section.

11.3.1 Primary key candidate

The primary key candidate (cpk, kpk) is a set of the attributes that meet these conditions:
e Uniqueness — there are no two or more data tuples with the same values
of the attributes forming the primary key candidate.
o Minimum (no redundancy) — no subset of the primary key candidate attributes
meets the requirement of uniqueness.

personal _data

personal _id
ICN

name
surname
street

town

Zip
nationality

Fig. 11.1: Personal data table

For that table, the following candidates can be identified:
CKP;: personal_id
CKP;: ICN (identification number of passport)
CKP;3: name, surname — only in assumptions that the pair is unique.

Notice that the pair {personal_id, ICN} is unique but is not considered as a candidate
because of the minimum requirement.

The primary key itself is selected from the primary key candidate set to minimize storage
requirements or based on the application usage.

In the relational scheme, we designate the primary key with #.

11.3.2 Primary key

Primary key (PK) can also be understood as the set of attributes K = (4;, 4>, ..., 4)
of the R relation, selected from other such potential sets (primary key candidate set),
which values uniquely determine the row of the R relation. PK is minimal (non-redundant).

Lab 11 — Relational integrity 333

PK can directly distinguish individual rows. Attributes that are part of a PK are called the key.
Other attributes are called non-key.

Each table must be delimited just by only one primary key. Entities that have few
attributes and cannot create a primary key are called weak entities (the subordinate entity
is usually a weak entity, and then the primary key of the weak entity is defined as the primary
key of the strong entity + discriminator to distinguish weak entities). Entities that have
enough attributes are called strong entities. However, this problem needs to be addressed
when creating a conceptual model.

11.3.3 Alternative key

Alternative key (4K) is formed by the set of attributes, which are primary key candidates
but are not designated as the primary key.

11.3.4 Superkey

A super-key is a set of R relation attributes that contain a candidate for the primary key.
A super-key is a set of attributes that meet the condition of uniqueness but does not
necessarily fulfill the condition of minimalism.

11.4 Referential integrity

The second important and inevitable part of the consistency definition is referential
integrity, currently supported by DDL statements in most database systems. This constraint
describes the relationship between data of two relations. It is based on the foreign key
referencing the primary key —a connection between tables.

As already noted, the foreign key is an attribute (or group of attributes), which value
is either undefined (NULL) or must contain the value of the primary key (unique index)
of the referenced table. These tables are usually called master (parent, principal) and slave
(child, dependent). The primary key refers to the master. The foreign key is associated
with slave relation.

Referential integrity groups individual cardinality possibilities — /:/, I1:N, M:N — see
Lab 4 — Data modeling. A particular case of the referential integrity and foreign key definition
is just self-relationship. In that case, the foreign key refers to the same table. Thus, just to
remind you, self-relationship must always be non-identifying.

11.4.1 Referential integrity rule

The foreign key can acquire the value of the primary key of the referenced table
or the undefined (NULL) value.

If we have two relations R/ and R2, where the attribute PK/ is the primary key
of the relation R/, and the FK attribute is in relation R2 that represents the connection
between relations R/ and R2, then the FK value is PK/ or NULL. If the FK is part
of the primary key in relation R2, then it is impossible to take an undefined value
because of the entity integrity constraint.

334 Lab 11 — Relational integrity

11.4.2 Referential integrity consequences

To ensure database consistency, it is necessary to consider which operations
(such as DELETE, UPDATE) should be rejected or accepted. There are two fundamental
questions:

What to do if we try to delete a row for which reference (foreign key in another table)
exists?

Let’s try to delete the subject that some students have enrolled in. The solution could
cover these three options:

e To allow such operation. In that case, it is necessary to ensure cascading
cancellation of all the rows that refer to the deleted row of the base (master) table.

e To reject such operation completely.

e There may be situations that we want to delete a row from the base table but to
keep all rows in the slave relation. How to do that? To comply with the referential
integrity, the particular foreign key value is replaced by the undefined value
(NULL).

A similar situation can occur if we attempt to change the value of the primary key,
to which reference exists in the slave table. In general, there are two possibilities:
e Refuse execution of such operation.
e Allow cascade change based on referential integrity requirements.

In SQL, you can use one of the following options for UPDATE and DELETE operations
to select an operating mode:
e RESTRICTED,
e CASCADE,
e NULLIFIED.

The RESTRICTED mode means that the operation will be rejected if there is at least one
row with an FK equal to the PK value of the modified (corrected) relation row in the slave
table.

If there is a reference path in the data model set in CASCADE mode for UPDATE
or DELETE operation, then database changes will be reflected in all relations defined
in the reference path.

NULLIFIED mode (in some literature, called only NULL) means that the operation
will be enabled, but the FK value will be changed to NULL.

11.4.3 Cascade option example

Cascade option changes values of the foreign key in each table, which reference particular
primary key value. It can be done directly using multiple DML statements (Insert, Update,
Delete) or by the trigger. The following code shows the principles of changing the student id
value. It must also be reflected in the study subjects table.

Based on referential integrity, the following operation will not work (it will be executed
successfully only if there is no registered subject for a particular student).

update student
set student id = 550021
where student_id = 550020;

Lab 11 — Relational integrity 335

To solve the problem, a new row is inserted into the student table with the same values
(for a particular student), but the student id value is replaced by a newer, corrected value:

insert into student
(select 550021, personal id, field id, specialization id,
class, st _group, final date, status, first date
from student
where student id = 550020);

Then a connection can be made for the study subjects table — reference is changed
to the newly inserted student.

update study subjects
set student id = 550021
where student id = 550020;

Finally, an original row in the student table is deleted.

delete from student
where student id = 550020;

A similar solution can be obtained by trigger definition.

create or replace trigger trig upd student id
before update on student
for each row

begin
update study subjects
set student_id = :new.student_ id
where student_id = :old.student_id;
end;
/

When dealing with the change of the primary key of the personal data table, similar
principles are used. However, in that case, two tables must be managed based on referential
integrity — table contact and student. The straightforward solution will, therefore, require four
statements. The solution can look like the following:

insert into personal data
select '841108/3456', name, surname,
street, town, zip, nationality
from personal data
where personal id = '841106/3456';

update contact
set personal id = '841108/3456"'
where personal id = '841106/3456"';

update student
set personal id = '841108/3456"
where personal id = '841106/3456"';

delete from personal data
where personal id = '841106/3456"';

336 Lab 11 — Relational integrity

The trigger can provide an easier solution:

create or replace trigger trig upd personal id
before update on personal data
for each row

begin
update contact
set personal id = :new.personal_ id
where personal id = :old.personal id;
update student
set personal id = :new.personal id
where personal id = :old.personal id;
end;
/

11.4.4 Restricted option example

In this section, the Restricted option example is proposed. In that case, the Update
statement operation will be executed successfully only if no reference to the particular
primary key isused. We assume that Cascade operations have been executed,
thus, particular data exist.

Changing the value of the student id can be done, if there are no registered subjects
for such student:

update student
set student id = 550020
where student_id = 550021
and student_id not in (select distinct student_ id
from study subjects);

A similar situation is used for changing the value of the personal id. However,
one more condition is used, whereas two table data must be checked.

update personal data
set personal id = '841106/3456"
where personal id = '841108/3456"
and personal id not in (select distinct personal_ id from contact)
and personal id not in (select distinct personal id from student);

When defining a trigger, reference existence is checked and maintained.

create or replace trigger trig restrict
before delete on personal data
for each row
declare
v_count integer;
begin
select count (*) into v_count
from contact
where personal id = :old.personal id;
if v_count <> 0 then
RATISE APPLICATION ERROR (-20000, 'Operation refused - contact table.');
end 1if;

Lab 11 — Relational integrity 337

select count (*) into v_count
from student
where personal id = :old.personal id;

if v_count <> 0 then
RAISE_APPLICATION_ERROR (-20000, 'Operation refused - student table.');
end if;
end;

/

11.4.5 Nullified option example

The nullified option replaces values of the foreign key with NULL values if the row
with the particular primary key is to be removed. Naturally, other constraints must allow such
activity — foreign key cannot be denoted as NOT NULL.

For exemplary purposes, prepare the following data tables:

Table subject? is a copy of the subject table. Table teacher2 is a copy of the teacher
table. Moreover, attribute supervisor is added to the subject? table as a reference
to the teacher. Corresponding values are loaded from the study subjects table. Notice
that the supervisor attribute can hold NULL values.

SUBJECTZ TEACHERZ2
2= SUBJECT D Chard) NN (PK) 9= TEACHER_ID Char(5) NN (PK)
4= SUPERVISOR Char(5) (FK) Bt — — — o

Fig. 11.2: Subject2, Teacher? table

create table subject2 as select * from subject;
create table teacher2 as select * from teacher;

alter table subject2 add supervisor char(5);
alter table subject2 add foreign key (supervisor)
references teacher2 (teacher id);

update subject2 s2
set supervisor = (select lecturer
from study subjects s
where s.subject id=s2.subject id and rownum=1);
commit;

The direct approach is reflected by two operations — Update statement, which changes
foreign key values to NULL followed by the Delete statement (naturally, principles are same
also for Update statements):

update subject2

set supervisor = null

where supervisor in (select teacher id
from teacher
where name = 'Rachel'
and surname = 'Vargas');

delete from teacher2

where name = 'Rachel' and surname = 'Vargas';

338 Lab 11 — Relational integrity

Solution with a trigger is following:

create or replace trigger trig null
before delete on teacher2
for each row

begin
update subject2 set supervisor = null
where supervisor = :old.teacher id;
end;
/

11.5 User integrity

User integrity allows defining integrity constraints that support application logic.
This kind of integrity constraint can be ensured either declaratively or procedurally.
A declarative way means that when the table is defined, check constraints of some attributes
are defined that extend the domain and column integrity options. Usually, it is necessary
to ensure user integrity procedurally because it involves multiple tables, and thus it is
impossible to provide such requirement in a declarative way. Some examples
of user integrity are following:

e The student must be older than 18 when registering to the university.

e A student cannot study more than 15 subjects a year.

e The discarded book cannot be lent anymore.

e The first date of the student registration must be lower than the final date, etc.

It is usually secured by the triggers.

create or replace trigger trig age
before insert or update on student
for each row
begin
if get age(:new.personal id) < 18 then
RATISE APPLICATION ERROR('-20000','Too young person to be a student');
end 1if;
end;

/

Notice that the get_age function is user-defined.

11.6 Column integrity

For each table attribute, it is possible to define additional column constraints besides the
domain integrity constraints.
Column integrity constraints are following:

1. Additional constraints for a range of values that are a subset of the domain,
2. NULL or NOT NULL,
3. DISTINCT or DUPLICATE.

For each attribute, it is possible to define further limitations of the range of allowable
values that domain integrity constraints have defined. Each column may or may not acquire
a NULL value (undefined value). Moreover, it is also possible to determine whether attribute
value should be unique or can hold duplicate value in the table scope.

Lab 11 — Relational integrity 339

The following example shows the constraint on the study subjects table:

alter table study subjects modify lecturer NULL;

11.7 Domain integrity

Domain integrity represents a set of integrity constraints that share all attribute values
associated with this domain.
Domain integrity restrictions are:
e data type,
e set of permissible values,
e sortability — whether the relational operator >,>=, <= or < can be used to compare
domain values.

Domain can be enhanced by the Check constraint discussed in chapter 4.

11.8 Integrity constraints controlling and processing

Because of the result correctness necessity, it is necessary to process integrity constraints
properly at each step of the processing. In relational databases, two stages
can be distinguished:

o Column — the integrity constraint is never checked later than at the end
of any relational type request processing. Typically, the request is part
of the application program or is interactively specified by the user. Thus, it is
managed automatically by the database manager.

e Transactional (multitable) — control mechanisms are launched at the end
of the transaction, which includes the request.

Individual integrity constraint definitions are part of the system tables, managed
automatically. The following algorithm is used:

1. At the beginning of the processing, the database manager determines which
constraints and types are related to the request.

2. Column constraints concerned with the one table are identified.

3. Before the processing completion, the database manager determines whether
the specified requirement matches defined column integrity constraints.

4. Database manager identifies and processes multitable constraints.

5. Before the change confirmation, such defined multitable constraints are checked.

11.9 Practice

1. Change the schema of the table study subjects, that attribute lecturer can hold NULL
values. Which integrity type is covered by that functionality?

2. Change the schema of the table study_subjects, that attribute ects cannot hold NULL
values. Moreover, a particular value cannot be negative. Which integrity type
is covered by that functionality?

3. Ensure that the number of reached ects for the student of a particular subject
is the same as defined in the subject year table (based on school year
and subject_id) or zero if such person has already passed that subject successfully
during his previous study. Which integrity type is covered by that functionality?

4. Ensure that the student cannot register for the subject, which he passed sooner
successfully. Which integrity type is covered by that functionality?

340

Lab 11 — Relational integrity

Ensure that the value of the final date attribute is higher than a first_date attribute
value. Which integrity type is covered by that functionality?
Ensure that the attribute status of the student can hold only these values — S, E, A,
and X.
e student.status:
o S =student (actual),
o E =ended successfully,
o A = aborted,
o X = fired due to disciplinary commission decision.

Which integrity type is covered by that functionality?

Change the value of the subject_id from “BI06” to “BX06” (notice that BX06 does
not exist). Is it possible to do it with only one Update statement? If not, why?
Which integrity constraint type has been raised?

Change the value of the subject_id from “BI06” to “BL06” (notice that BL0OG6 exists).
Is it possible to do it with only one Update statement? If not, why? Which integrity
constraint type has been raised?

Solve the previous problem by trigger definition.

. Try to insert a new person into the personal_data table without the personal_id value

(it will be denoted as NULL). Is it possible? If not, why? Which integrity constraint
type has been raised?

Lab 12 — Views 341

Lab 12 — Views

The view is a named Select statement, which can be referenced as a common table.
In this lab, the reader will get the syntax overview, usage in terms of producing only a subset
of the original data and triggers, which can be associated with the views. Generally, views
are complex and formed by multiple tables. Thus, INSTEAD OF trigger types are defined just
to replace the original view change operation into multiple operations respecting the
integrity.

By using views, it is, in principle, allowed to operate the data, which will not be visible
through the view. Therefore, the reader will be emphasized by the CHECK OPTION clause,
which checks the original and inherited Where clauses anytime the data are to be manipulated
(Insert, Update or Delete).

12.1 Introduction

The view is a logical data object associated with the Select statement (usually complex,
dealing with multiple tables and aggregations). The view itself does not contain any data.
Thus, when dealing with a view, it is automatically replaced by a defined Select statement
during the execution. Characteristics are stored in the data dictionary (Lab 14 — Data
dictionary views).

12.2 Syntax

CREATE [OR REPLACE] [FORCE | NOFORCE]
VIEW [schema.]name [(column_aliasl, [, ...])]
AS select_statement
[WITH [READ ONLY | CHECK OPTION [CONSTRAINT constraint name]]]
|
CREATE [OR REPLACE] VIEW [schema.]name [(column_aliasl, [, ... 1)]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]

SCHEMA — defines the name of the schema under which the view will be created.
If omitted, the current user schema is used.

OR REPLACE keyword forces the system to redefine view if existing. However, some
database systems do not support that keyword. In that case, it is necessary to drop the existing
view and create a new one. Notice that if the object has been created without this keyword,
it is impossible to replace it later. Therefore, to redefine it — it must be dropped (drop
command) and replaced by the new one (create command).

FORCE keyword allows you to create the view without raising errors during
the compilation, even if the SELECT statement encapsulated in it includes references
to objects (tables, views), which do not exist at that time, respectively the user has
no particular privileges.

NOFORCE is an implicit value (inverse option to Force). In that case, it is possible
to define view only if it passes all control mechanisms — used tables must exist and can be
directly queried by the particular user.

342 Lab 12 — Views

READ ONLY keyword ensures that no destructive DML statements (Insert, Update,
Delete) can be made using such a defined view.

CHECK OPTION - ensures passing conditions defined in the WHERE clause during
executing destructive DML statements. Using this keyword, you cannot change data values
that will not be visible using that view. Thus, it is impossible to manage not handled
(invisible) data for the defined view.

CONSTRAINT keyword allows you to name the constraint.

CASCADED — provides condition checking by derived views.

LOCAL — condition control mechanism is restricted only for actual limitations defined
in the view (regardless of the inherited conditions).

The following code shows a simple example — name and surname are selected
from the personal_data table.

create view vl
as
select name, surname
from personal data;

After its definition, it can be used as a standard table in the Select statement:

I select * from vl;

The second example extends the view of the gender definition. Each attribute formed
by the function must have its alias — the new name of the column for referencing in the query.

create view v2
as
select name, surname,
decode (substr (personal id, 3, 1), 5, 'F', 6, 'F', 'M') as sex
from personal data;

If no alias is added, an exception will be raised, and no view will be created.

create view v2
as
select name, surname,
decode (substr (personal id, 3, 1), 5, 'F', 6, 'F', 'M'")
from personal data;

ERROR at line 3:
ORA-00998: must name this expression with a column alias

Moreover, if keyword OR REPLACE is used, if no alias is defined, the original view will
remain valid.

12.3 Exceptions

Exception emphasis must be given to the functions, which can raise exceptions. Let’s
have a simple example. It creates a view consisting of three attributes — name, surname, and
date of birth.

Lab 12 — Views 343

create view v3
as select name, surname,
to date(substr(personal id, 1, 2)
| | mod(substr(personal id, 3, 2), 50)
|| substr(personal id, 5, 2), 'RRMMDD') as birth date
from personal data;

Such a view will be naturally created. However, an exception will be raised if the query
based on this view will contain data that personal _id value cannot be transformed to date
of birth. The exception itself will depend on properties and the current situation (invalid
number, not a valid month, etc.).

SQL> select * from v3;
select * from v3

ERROR at line 1:
ORA-01722: invalid number

Fig. 12.1: Exception — invalid number

SQL> select * from v3;
select * from V3

P
ERROR at line 1:
ORA-01843: not a valid month

Fig. 12.2: Exception — not a valid month

Now, we will highlight the problem of the invalid month. An exception can be raised.
The following example shows and highlights the consequences of the implicit conversions.
Zero values from the first positions are automatically removed if the day, month, and year
elements are treated as numbers. Thus, the input does not contain six digits. However,
how to convert it to the date subsequentially? In our example, the first and second digits
express year, the third and fourth characterize month (for the women, we have to subtract the
value 50). The last two digits represent the day. But as you can see in the following example,
the first zero value is removed (separately from the year, month, and day value).
Thus, the length of input values is not 6.

To see the problem, let’s create another view.

create view v4 as
select name, surname,
substr (personal id, 1, 2)
|| mod(substr (personal id, 3, 2), 50)
|| substr(personal id, 5, 2) as birth
from personal data;

The query result is the following.

344

Lab 12 — Views

NAME ‘ SURNAME BIRTH

Michael Smith 601224
Darl Peterson 601224
Peter Allison 74210 ;:
Paul Casey 550947 ==
Peter Roger 781015
Jack Robinson 791229
Mark Bailey s0407 =1
Thomas Hall 81101 ¢

To convert values to date data type, an exception will be raised. The consequence
of the raised exception in the query is the fact no data are provided (even though only one
row is “corrupted” and the rest are correct). Simply, an exception has been raised, resulting
in the query to rollback. Therefore, the question of thinking — how would you solve it? How
would avoid raising exceptions? Is it even possible? Sure, it is.

In principle, we have various possibilities how to solve that problem. All of them are
based on converting the value to the string format because they do not suffer such deficiency.
The next two examples show the solution principles. The first one is based on elements
of the date separation by characters (like dots, slashes, dashes, etc.). It prevents the possibility
of automatic conversion to a numeric format. Another solution is to define conversion
explicitly by calling the zo_char method with two parameters — input_value to be converted
and the format itself (see chapter Conversion functions - TO_CHAR):

I to_char (input value, [format])

Value “99” as format forces the system to use two digits in output format (number of “9”
expresses the number of digits in the result set).

create view v5
as select name, surname,
to_date(to_char(substr(personal_id, 1, 2), 99) ||
to _char (mod(substr (personal id, 3, 2),
to_char (substr (personal_id, 5, 2), 99),
'RRMMDD"') as birth date
from personal data;

A similar solution will be obtained, if managing input date elements as strings by using

character delimiters (in the following case, character “.” is used):

create view v5
as select name, surname,
to_date(substr(personal_id, 1, 2) [| '".' |
mod (substr (personal _id, 3, 2), 50) || '.' |
substr (personal id, 5, 2), 'RR.MM.DD') as birth date
from personal data;

12.4 Managing data in views

Let’s have the following simple example:

create view vl
as select name, surname
from personal data;

Lab 12 — Views 345

What will happen if you update data using a view? Will the table/view be updated?
Of course.

update vl
set name = 'Philippe'
where name = 'Thomas' and surname = 'Hall';
I 1 row updated.

However, to be sure, check the values by querying view vI.

I select * from vl where surname = 'Hall';

Philippe | Hall

However, what about the table data? Will they be the same, or original value (“Thomas™)
will be present? Why?

select name, surname
from personal data
where surname = 'Hall';

NAME SURNAME
Philippe | Hall

Sure, they must always be the same, whereas view itself is the only representation
of the stored Select statement.

What will happen if you delete a row using a view? The principle is the same
as the Update statement.

On the other hand, what about executing the Insert statement? Is it even possible? Why?
Why not? Under what conditions is it possible? Remember the prerequisites for the Insert
statements.

Solution — it is possible to add new data only if all constraints are met. Let’s have
a practical example. Use the previously defined view (vI) based on the name and surname
attributes of the personal data table.

create view vl
as select name, surname
from personal data;

Try to Insert a new row into the table using such a view. Is it possible? No, at all...

I insert into vl values('Michael', 'Flower');

ERROR at line 1:
ORA-01400: cannot insert NULL into
("KVET_ENG" 5 "PERSONAL_DATA" 5 "PERSONAL_ID")

However, if you define a view consisting of the personal_id attribute, the Insert statement
can be executed without raising an exception (if entity and domain integrity constraints
are passed).

Notice that the view must be dropped before redefinition, whereas it has not been created
with the Or Replace keyword, nor it will not help us if we write Create Or Replace now.
Simply, if there is no Replace keyword in the beginning, the only solution is to drop
the object and create a new one.

346 Lab 12 — Views

drop view vl;

create view vl
as select personal_id, name, surname
from personal data;

insert into vl values('601224/6526', 'Mark', 'Flower');

1 row created.

Naturally, it is possible to add new data into a personal_data table using the defined view.
Values for attribute personal id, name, and surname are listed. The rest of the attribute values
(street, town, zip, nationality) will hold NULL values, whereas they are not defined
in the Insert statement. Notice that for attributes name, surname, street, town, zip,
and nationality, NULL values are applicable).

insert into vl (personal id) values('601224/6537'");

1 row created.

As evidence, this is the control Select statement:

select personal id, name, surname
from vl
where personal id like '601224/%';

And the provided results:

PERSONALJD‘ NAME SURNAME

601224/6526 Mark | Flower
601224/6537 (null) | (null)

Another critical question is whether it is possible to insert new data into the table
using a defined view if it does not contain all NOT NULL attributes. The answer
is undoubtedly positive. However, how would you do it?

Let's have the view consisting of actual students (status of the student is “S™). Such view
will be based on personal_id, field id, and specialization_id attributes.

create or replace view v_student
as select personal id, field id, specialization_id
from student
where status = 'S';

Using this view, it is impossible to add new data to the student table. Why? Because
the value of the primary key is not provided. However, we can define a trigger, which will
replace the value student id automatically. Thanks to that, the Insert statement will pass.

See the following example. We will create a sequence for providing a new student
identifier (maximal number of the student id is 550945, therefore, it will start
with the consecutive value) and associate it with the trigger to automatize operation.

create sequence seq student
start with 550946;

Lab 12 — Views 347

create or replace trigger trig st
before insert on student
for each row

begin
:new.student id := seq student.nextval;
end;
/
I insert into v_student values('740210/6525', 200, 2);

What about the real data in the student table? Student id will be provided using
the sequence and trigger. However, be aware, although a view has been created based
on actual student condition (status="S"), such condition IS NOT copied to the new row image.

STUDENT_ID PERSONAL_ID FIELD_ID SPECIALIZATION_ID ‘ CLASS ST_GROUP FINAL_DATE STATUS FIRST DATE

550947 740210/6525 200 2 (null) (null) (null) (null) (null)
A A

1) u

12.5 Attribute name redefinition in views

As it has been partially mentioned, each attribute must have its name, by which it can
be identified in queries. If the attribute is function-dependent, it must have its alias.
Moreover, such defined views should be READ ONLY — you cannot change the output value
of the function, can you? Definitely no.

However, it is possible to rename the column in the view definition using the same way
as for function. Thus, it is possible to rename any attribute name.

create view v2
as select name, surname as last name, personal_id as pid,
decode (substr (personal_id, 3, 1),'5', 'female',
'e', 'female',
'male') as sex
from personal data;

Another solution is a bit syntactically different. In that case, new attribute names
are placed before the Select definition itself.

create view v2 (name, last name, pid, sex)
as select name, surname, personal id,
decode (substr (personal id, 3, 1),'5', 'female',
'6', 'female',
'male')
from personal data;

12.6 Check option clause

Let’s have the following view:

create view v3
as select name, surname, personal id
from personal data
where surname like 'S%';

Is it possible to add new data to the table using this view? Sure, it is if it passes
personal_id constraint checking (it is the primary key, so it should be wunique

348 Lab 12 — Views

and NOT NULL). However, this view lists only persons with a surname passing the format:
‘$%’.
So, try it, insert these two rows. What will happen? Data will be inserted successfully.

I insert into v3 values('Simone', 'Smith', '845210/6525"); |

I insert into v3 values('John', 'Bush', '860412/6536'"); |

However, what about Select statements? Will inserted rows be visible using a defined
view? Whereas the view is an only predefined Select statement, the answer is NO. But data
will be present in the table:

select name, surname, personal id
from v3
where personal id like '860412%';

no rows selected

select name, surname, personal id
from personal data
where personal id like '860412%';

NAME SURNAME PERSONAL ID
John Bush 860412/6536

To prevent adding (or changing) “invisible” data of the table using view, it is possible
to add keyword WITH CHECK OPTION to the view definition, ensuring managing only
data, which pass conditions also after data changes:

create view v4 as select personal id, name, surname
from personal data
where surname like 'S%'
WITH CHECK OPTION;

It is possible to add a new person, whose surname starts with letter “S”:

insert into v3(personal_ id, name, surname)
values ('930930/7426', 'Frederico', 'Smith');

I 1 row created. I

However, it is not possible to add a person whose surname is ‘Ducato’. It would raise
the following exception: ORA-01402: view WITH CHECK OPTION where-clause
violation.

insert into v3(personal_ id, name, surname)
values ('860712/6475', 'Frederico', 'Ducato'):;

Let’s have another example.
The first view will consist of name, surname, and personal id of the people,
whose surname starts with “S”:

create view view personl
as select name, surname, personal id
from personal data
where surname like 'S$';

Lab 12 — Views 349

Using this view, any data respecting primary key constraint can be added. Thus, the
surname can start with any letter:

insert into view personl
values ('Carol', 'Matiasko', '770724/2227"');

1 row created.

Then, create a new view derived from the defined one (by using WITH CHECK OPTION
keyword):

create view view person2
as select * from view personl
where personal id like '75%'
WITH CHECK OPTION;

New data cannot be added if they do not meet specified conditions using a previously
defined view. Specifically, there is one direct condition (personal id like '75%’),
and the second one is derived (surname like 'S%'). All of them must be passed to allow
the user to add new data (a similar principle is also for Update statements).

Let’s have the following examples, think, whether it is possible to /nsert or not (solution
is always above the statement).

insert into view person2
values ('Carol', 'Matiasko', '790501/2227');

Such a row cannot be added because it does not reflect the first (surname) nor the second
condition (year of birth).

insert into view_person2
values ('Carol', 'Smith', '770501/2227');

It will not be executed successfully due to personal_id restrictions.

insert into view_person2
values ('Carol', 'Smith', '750501/2229');

These data will be inserted. No error will be raised.
Thus, remember that WITH CHECK OPTION clause controls also derived conditions.

12.7 Read only view

This keyword ensures, that no data can be changed using such a defined view. No Insert,
Update and Delete statements execution is allowed:

create view v5 as select personal id, name, surname
from personal data
where surname like 'S%'
WITH READ ONLY;

Any attempt for destructive DML operation will fail:

insert into v5 values('900101/0095', 'Simone', 'Bris');

ERROR at line 1:
ORA-42399: cannot perform a DML operation on a read-only view

350 Lab 12 — Views

12.8 View based on multiple tables and triggers

The view can be based on data from multiple tables. However, is it possible to /nsert new
data using such a defined view?
Let’s have the following example.

create or replace view view student
as select name, surname, personal id, student id, field id,
specialization_id
from personal_data join student using(personal_ id);

insert into view student
values ('George', 'Smith', '440922/9220', 552312, 202, 0);

An exception has been raised because of dealing with multiple tables using one /nsert
statement. As we have described sooner, each destructive DML statement can manage
only one table, thus, it is not possible. On the other hand, specialized tools can also be defined
to provide desired functionality and cover that problem.

12.9 Triggers associated with views

Trigger is a specific functionality associated with the change data operations. It can also
be correlated with the view replacing the original written statement. As stated, individual
Insert, Update or Delete statements must deal just with one table, which is not common in
complex views. Thus, original statement (referencing the view) is divided into multiple
operation respecting the table structure, as well as referential integrity. Trigger associated
with the view is replacing the original statement, therefore the firing option is delimited by
the Instead Of keyword.

create or replace trigger trig st view ins
INSTEAD OF INSERT on view student
begin
insert into personal data (name, surname, personal id)
values (:new.name, :new.surname, :new.personal id);
insert into student (student_id, personal id, field id,
specialization_id)
values (:new.student id, :new.personal id, :new.field id,
:new.specialization id);
end;

/

Integrity control mechanisms are launched after the trigger execution. Thus the order
of operations is essential; reference for the personal data table must be inserted
after the value of the corresponding primary key in the personal data table. Keyword
INSTEAD OF reflects the replacement of real operation with the trigger body.

Similar to the previous example, also Delete statement based on more than one table must
be replaced using trigger functionality:

create or replace view view student
as select name, surname, personal id,
student id, field id, specialization id
from personal data join student using(personal id);

The solution is based on physically replacing the original statement with two physically
executed Delete statements — from the table student and from the table personal data

Lab 12 — Views 351

(the order of operations is also significant). Referencing to actual row is provided
by the :0ld.personal _id value.

Notice that there is no FOR EACH ROW keyword, but it works correctly. The reason is
that each trigger firing instead of operation on view is automatically reflected as FOR EACH
ROW, so it is not necessary to define it explicitly (but you can if you wish).

create or replace trigger trig st view del
INSTEAD OF DELETE on view student

begin
delete from student
where personal id = :old.personal id;
delete from personal data
where personal id = :old.personal id;
end;
/

delete from view_student
where personal id = '440922/9220"';

12.10 Summary

o If the Select statement forming the view contains the primary key and all NOT
NULL attributes of the table, then Insert statement to the particular table can be
executed successfully. Naturally, it must be based on only one table, otherwise, the
trigger must be defined.

o If the view is defined as READ ONLY, no Insert, Update and Delete statements
can be performed.

o If the view is defined using WITH CHECK OPTION keyword, then the particular
data must meet all defined (and also derived) conditions (in the Where clause).

o If the Select statement forming the view consists of multiple tables, destructive
operations must be replaced by several operations performed by the trigger type
INSTEAD OF.

12.11 Practice

1. Define the view view_st containing the name, surname, study group, and the actual
age of the students.

2. Define the view view_tch containing the name list (name, surname) of the feachers
who taught some subject in the school year 2007. Try to add a new teacher and some
lectured subject using a defined view, which passes the defined condition of the view.

3. Define the view view_teacher based on attributes name, surname. Is it possible
to Insert new data into the particular table using that defined view? If not,
restructuralize that view.

4. Define the view view_person based on name, surname, and personal_id attributes.
Use only personal_data table.

5. Choose one of the students (whatever), remember his name, surname, personal_id,
and student id. Next, remove his student data (emphasizing all reflected tables
to ensure consistency). Next, remove his data using the view view person.
What happened? What information about him can be found and where?

6. Define the view view_student based on name, surname, personal_id, and student _id
attributes.

352

Lab 12 — Views

10.

11.

12.

13.

14.

Choose a random student, remember his student id, name, surname,
and personal id. Then, remove all his studied subjects. Then, delete his data using
the view based on the student id attribute. What happened? Check his data using
the view and by querying the particular table.

Choose a random student, remember his student id, name, surname,
and personal_id. Delete all his studied subjects. Then, delete his data using the view
based on the personal_id attribute. What happened? Check his data using the view
and by querying the direct table.

Create a trigger to ensure consistent data removal from the view view_student.
Then, check the correctness of the results.

Define the view view_bachelor_subj — list of subjects for the bachelor study
(use the table subject, the first letter of the bachelor subject is “B”). Do not use
keyword WITH CHECK OPTION.

Try to add a new subject using defined view — XX01 — Database architectures.
Is it possible? Will defined data be visible using the view?

Define the view view_bachelor _subj2 — list of subjects for the bachelor study
(use the table subject, the first letter of the bachelor subject is “B”). Use keyword
WITH CHECK OPTION.

Try to add a new subject using defined view view_bachelor_subj2 — BX0I1 —
Database architectures. s it possible? Will defined data be visible using the view?
Try to add a new subject using defined view view_bachelor_subj2 — XX02 —
Database architectures. s it possible? Will defined data be visible using the view?

Lab 13 — Date and Time value management 353

Lab 13 — Date and Time value management

The final part related to the Select statement is covered by this lab introducing the Date
and Time management complexity. It focuses on the Date and time data types and available
existing functions, focusing on the limitations. After studying this lab, the reader will
understand the complexity of Date and Time management, covered by the time zone
management, regions, and NLS parameters. There is also discussion about the duration
management, operated by two values or interval data types. The definitions are covered by
really many examples focusing on individual problems related to Date and Time management.

Database Systems (DBS) currently offer comprehensive support for working with time
in the form of data types and methods. In this chapter, we will describe the possibilities
of the Oracle database system, which is most often used due to its complexity and offers
of sophisticated solutions, by keeping SQL standards. We also highlight the main mistakes
when dealing with Date attribute values. Notice that corresponding data types and methods
may vary in other database systems, especially in performance, but the principles remain
the same.

Generally, database systems provide four categories of data types — Date, Timestamp,
Time (PostgreSQL), and Interval. Data type Interval represents the duration itself
with no specific image at a time (we cannot determine the start point of the validity,
only duration itself is maintained).

Data types Date, Time, and Timestamp are similar. However, they differ in the way
of storing data and granularity. In comparison with other database systems, the data type Date
in DBS Oracle includes not only the date itself but also the time up to the level of seconds.
Thus, value consists of a component of the year, month, day, hour, minute, and second: YYYY-
MM-DD HH:MI:SS. Other DBS have a specific data type for date and time (elements are
separated). Notice that result of two Date values subtraction is the number of days between
them (see chapter 13.9 Get the difference between Date values).

The timestamp data type can work with finer granularity — specifically with the second
part (fraction) up to the level of nine decimal places. The optional parameter n in
the declaration of an attribute or a variable of type timestamp(n) defines the scope and
precision by a number of decimal places (fraction). If the value parameter is not specified,
DBS automatically uses a parameter with a value of 6 (six decimal places for the second
part), so data type Timestamp and data type Timestamp(6) are identical. The timestamp data
type is stored as the time elapsed from a defined period — /.7/.71970 and therefore allows
the definition of variable size.

It is also possible to define time zones, either as a timestamp(n) with local time zone
or timestamp(n) with time zone. The differences are described in the following example.

Let’s have 2 sessions (S7 and S2). In one of them, set the time zone to "-7: 0". Then,
create a simple table (7/) characterized by a single attribute — sequentially: Timestamp,
Timestamp(n) with local time, and Timestamp (n) with time zone. Let’s insert to such table
the current value of the systimestamp from both sessions. Note the differences by executing
the Select statement from both sessions. The order or individual commands to be executed is
important.

354

Lab 13 — Date and Time value management

-- session 1
alter session
set nls date format='DD.MM.YYYY
HH24:MI:SS';
alter session
set nls timestamp format=
'DD.MM.YYYY HH24:MI:SS.FF';

select sysdate from dual;

SYSDATE

15.03.2021 13:16:09

create table Tl (val timestamp);

insert into T1
values (systimestamp) ;

commit;

-- session 2
alter session
set nls date format='DD.MM.YYYY
HH24:MI:SS';

alter session

set nls timestamp format=
'DD.MM.YYYY HH24:MI:SS.FF';

alter session
set time zone='7:0';

insert into T1
values (systimestamp) ;

commit;

By executing the Select statements, the following values are obtained — values are the

same:

-- session 1

VAL
15.03.2021 13:16:09.185371
15.03.2021 13:17:43.964973

-- session 2

VAL
15.03.2021 13:16:09.185371
15.03.2021 13:17:43.964973

Now, repeat the previous example, but replace the data type Timestamp and use
Timestamp with time zone. Before the processing, the previously defined table is dropped.

Lab 13 — Date and Time value management

355

-- session 1

alter session
set nls date format=
'DD-MM-YY HH24:MI:SS';

alter session
set nls timestamp format=
'DD-MM-YY
HH24:MI:SS.FF';

create table T1

(val timestamp
with time 2zone);

insert into T1
values (systimestamp) ;

commit;

-- session 2

alter session
set nls date format=
'DD-MM-YY HH24:MI:SS';

alter session
set nls timestamp format=
'DD-MM-YY
HH24:MI:SS.FF';

alter session
set time_ zone='7:0';

insert into T1
values (systimestamp) ;

commit;

-- session 1

15-MAR-21 13:24:32.840097 +01:00
15-MAR-21 13:24:37.913932 +01:00

-- session 2

15-MAR-21 13:24:32.840097 +01:00
15-MAR-21 13:24:37.913932 +01:00

Compared to the previous example, the time zone value is obtained with emphasis on time
zone parameter settings. As you can see, if the time zone on the session is changed,
the particular obtained value (time zone) is still the same.

By modifying the data type to Timestamp with local time zone, local session values

are transformed using the time zone.

356

Lab 13 — Date and Time value management

-- session 1

alter session
set nls date format=
'DD.MM.YYYY HH24:MI:SS';

alter session
set nls timestamp format=
'DD.MM.YYYY
HH24:MI:SS.FF';

create table T1
(val timestamp
with local time zone);

insert into T1
values (systimestamp) ;

commit;

-- session 2

alter session
set nls date format=
'DD.MM.YYYY HH24:MI:SS';

alter session
set nls timestamp format=
'DD.MM.YYYY
HH24:MI:SS.FF';

alter session
set time_ zone='7:0';

insert into T1
values (systimestamp) ;

commit;

-- session 1

15.03.2021 13:41:30.882184
15.03.2021 13:41:39.668943

-- session 2

15.03.2021 19:41:30.882184
15.03.2021 19:41:39.668943

In this case, provided values reflect the local time zone. Thus, if changed, particular
values are recalculated to current settings on the client-side.

The above examples show that the data type Timestamp with local time zone should
be used if calendar data must be synchronized with different time zones. Suppose you are
planning some consultations with people from other regions. In that case, such an attribute
can ensure that everyone will get the correct result transformed using his defined time zone

regarding the local time used by all of them.

As already mentioned, data types Date and Timestamp are similar and directly

transformable by implicit conversion methods.

The result of the sysdate (or by calling current_date) function execution is the value

of the Date data type.
create table tl as select sysdate val from dual;
desc tl;
Name Null Type
VAL DATE

If you want to create the table based on the Select statement using functions, do not forget
to define column alias (for consecutive naming). Otherwise, an exception will be raised.
The output data type of the systimestamp or current timestamp function is Timestamp.

Lab 13 — Date and Time value management 357

create table tl as select current timestamp val from dual;
desc tl;

Name Null Type

VAL TIMESTAMP (6) WITH TIME ZONE

If the current timestamp function is used in the Select statement, the value will also be
extended by the time zone spectrum.

select current timestamp from dual;

16.03.2017 04:34:15.669952 +02:00

Vice versa, if we want to get local value, the localtimestamp function should be used
(value will be normalized base on client timezone settings.

select current timestamp from dual;

16.03.2017 06:34:15.669952

Timestamp attributes can be transformed each other also in tables by changing
the granularity and precision of the value. However, it can be done only if a particular table
is empty or does not contain any NOT NULL value.

I alter table tl modify val timestamp (8) ;

Otherwise, one of these exceptions will be raised (based on performed activity).

SQL Error: ORA-01439: column to be modified must be empty to change the
datatype
01439. 00000 - "column to be modified must be empty to change datatype"
SQL Error: ORA-30082: datetime/interval column to be modified must be
empty to decrease fractional second or leading field precision

30082. 00000 - "datetime/interval column to be modified must be empty to
decrease fractional second or leading field precision”
*Cause: datetime/interval column with existing data is being modified
to decrease fractional second or leading field precisions.
*Action: Such columns are only allowed to increase the precisions.

Data types Date and Timestamp are similar, which means that the database system uses
automatic conversion between them by increasing, respectively decreasing the granularity
and format. Therefore, all these following cases will work correctly. The results of the first
Select statement are formatted using the method fo_char based on the granularity of seconds
(limitation of the data type Date definition). The difference occurs when viewing the results
based on the second part (fraction).

Create table Tl (val date);
Insert into Tl values (sysdate) ;
Select to char(val, 'DD.MM.YYYY HH24:MI:SS') from tl;

I 16.03.2017 04:55:12

358

Lab 13 — Date and Time value management

Insert into Tl values (systimestamp) ;
Select to_char(val, 'DD.MM.YYYY HH24:MI:SS') from tl;

16.03.2017 04:55:17

Create table Tl (val timestamp);
Insert into T1 values (sysdate) ;
Select to char(val, 'DD.MM.YYYY HH24:MI:SS:FF') from tl;

16.03.2017 04:55:12.000000 |

Insert into Tl values (systimestamp) ;
Select to char(val, 'DD.MM.YYYY HH24:MI:SS:FF') from tl;

16.03.2017 04:55:17.285000 |

13

.1 NLS parameters & session format

NLS parameters define National Language Support and locale for server and also client
environment determining format and language of the result set. There are four ways how NLS

parameter values can be specified and set:

e Setting initialization parameters in the parameter file (spfile, pfile) specifying
the default session NLS environment. These settings do not affect the client-side;
they control the server's behavior and are the default for the client.

e Setting environment variables on the client-side influencing behavior of the client.
It can override used default values for the session.

e ALTER SESSION parameters, which are used for changing session NLS
parameters. It can override the initialization parameters as well as environment
variables.

o SOL function parameters — NLS parameter values can be explicitly coded in the
SQOL function invocation to determine the provided result set format.

The following diagram shows the priorities and properties of overriding.

— - - Highest priority
Explicitly set in SQL functions

Set by an ALTER SESSION statement

Set as an environment variable

Specified in the initialization parameter file

Default

ik wWIN| =

Lowest priority
Fig. 13.1: Properties level priority

Session configuration and actual settings can be obtained using the following Select

statement. Notice that the nls session parameters view consists of two attributes —
parameter and value.

desc nls session_ parameters

Name Null? Type
PARAMETER VARCHARZ (30)
VALUE VARCHAR?2 (64)

Lab 13 — Date and Time value management 359

Offered language support parameters are following:

select * from nls session parameters;

NLS_LANGUAGE= 'AMERICAN';

NLS_TERRITORY= 'AMERICA';

NLS_CURRENCY= 'S';

NLS_ISO_CURRENCY= 'AMERICA';
NLS_NUMERIC_CHARACTERS= '.,';

NLS_CALENDAR= 'GREGORIAN';

NLS_DATE_FORMAT= 'DD-MON-RR';

NLS_DATE_LANGUAGE= 'AMERICAN';

NLS_SORT= 'BINARY';

NLS_TIME FORMAT= 'HH.MI.SSXFF AM';
NLS_TIMESTAMP_FORMAT= 'DD-MON-RR HH.MI.SSXFF AM';
NLS_TIME_ TZ_FORMAT= 'HH.MI.SSXFF AM TZR';
NLS_TIMESTAMP TZ FORMAT= 'DD-MON-RR HH.MI.SSXFF AM TZR';
NLS_DUAL_CURRENCY= '$';

NLS_COMP= 'BINARY';

NLS_LENGTH_SEMANTICS= 'BYTE';
NLS_NCHAR_CONV_EXCP= 'FALSE';

The following sections will describe the main parameters for dealing with Date
and Timestamp values. The complete specification can be found in the documentation
(https://docs.oracle.com/cd/A84870 01/doc/server.816/a76966/ch2.htm#92653).

13.1.1 NLS Language

NLS Language specifies the default conventions for the following session characteristics:
e language for server messages,
e language for day and month names and their abbreviations (specified in the SQL
functions 7O _CHAR and TO_DATE),
e symbols for equivalents of AM, PM, AD, and BC,
e default sorting sequence for character data when ORDER BY is specified
(GROUP BY uses a binary sort, unless ORDER BY is specified).

The value specified for NLS Language in the initialization file is the default
for all sessions in that instance.

The following example shows the text information reflecting the execution
based on defined language. Database systems response is in selected language:

alter session set nls language = 'Slovak';

relacia zmenena

drop table tab _non_existing;

ERROR v riadku 1:
ORA-00942: tabulka alebo pohlad neexistuje

alter session set nls language = 'English';

session altered.

drop table tab _non_existing;

ERROR at line 1:
ORA-00942: table or view does not exist

https://docs.oracle.com/cd/A84870_01/doc/server.816/a76966/ch2.htm#92653

360 Lab 13 — Date and Time value management

13.1.2 NLS_Territory

NLS Territory specifies conventions for these date and numeric formatting

characteristics:
e date format,

decimal character and group separator,
local currency symbol,
ISO currency symbol,
dual currency symbol,
week start day,
credit and debit symbol,
ISO week flag,
list separator.

Characteristics and limitations will be described later.

13.1.3 NLS_Date Language

This parameter defines the language for the Date attribute value text format — spelling
of the day and month names for the functions 7o char and To date by overriding
NLS Language parameter value. NLS Date Language has the same syntax
as an NLS Language parameter and can hold the value of any supported language.

Tab. 13.1: NLS Date Language

Parameter type: String

Initialization parameter, Environment variable,
and ALTER SESSION

Default value: Derived from NLS Language

Parameter scope:

V.U LAY T Any valid language name

Let's have the following example. If the NLS Date Language parameter is changed,
different values of the day and month in text format will be obtained.

alter session set nls_date_ language = 'Slovak';

select to_char(sysdate, 'DD') as Day num,
to_char (sysdate, 'Day') as Day_text,
to char (sysdate, 'MM') as Month num,
to char(sysdate, 'Month') as Month text,
to_char (sysdate, 'Mon') as Month abr
from dual;

DAY NUM | DAY TEXT MONTH NUM = MONTH_TEXT MONTH_ABR

03 Streda 05 Maj Maj

alter session set nls date language = 'English';

select to char(sysdate, 'DD') as Day num,
to char(sysdate, 'Day') as Day text,
to_char (sysdate, 'MM') as Month num,
to_char (sysdate, 'Month') as Month text,
to char(sysdate, 'Mon') as Month abr
from dual;

Lab 13 — Date and Time value management 361

DAY NUM | DAY TEXT MONTH NUM MONTH TEXT MONTH _ABR

03 Wednesday 05 May May

13.1.4 NLS Date format

NLS Date format defines the default format of the Date value used by calling implicit
To char and To date functions. NLS Territory determines the default value
of this parameter. Any format mask can determine the definition. Moreover, if the constant
string is added, such value must be enclosed with double-quotes.

Tab. 13.2: NLS Date Format

Parameter type: String

Initialization parameter, Environment variable,
and ALTER SESSION

Default value: The default format for a particular territory

Parameter scope:

YOI AT TTO Any valid date format mask

alter session set nls_date format='"Current date:"
DD.MM.YYYY ", " HH24:MI';

select sysdate as formatted string from dual;

FORMATTED_STRING
Current date: 17.03.2017, 13:36

13.2 Transformation of the personal id into the date of
birth

Transformation of the personal id attribute value to the date of birth (in Date data type)
can be generally done in two ways. Both are based on Select statements. The first one is based
on direct transformation in the Select statement. In this case, the input personal_id value must
be separated into individual elements — day, month, and year. It cannot be done directly
as the whole part, due to adding value 50 to the month definition for women. So, it is solved
by executing a substr function for each element, managing the month definition,
and consequently, by forming the string for Date value conversion using concatenation
and fo_date function. This approach is unhealthy due to no exception resistance. If any value
cannot be transformed into a Date value due to an incorrect value (like month outside
the range <1;12>), the whole operation is rolled back, resulting in providing no data result.
Imagine that there can be thousands of people, and only one of them has incorrect personal_id
value caused by typos.

Therefore, another solution should be introduced, isolating exceptions to the separate
layer. Thanks to that, problems can be solved without raising exceptions externally.
Therefore, for the next examples and definitions, reflect the following function code for
personal_id transformation. If it is impossible to transform parameter value, an exception is
raised, consequently returning the virtual date of birth. Thanks to that, incorrect data (typos
of the personal _id values) can be evaluated and found easily.

For illustration purposes, a local variable is defined and loaded step by step using day,
month, and year elements.

362 Lab 13 — Date and Time value management

create or replace function PIDtoBirthDate (pid varchar?2)
—-— VARCHAR WITHOUT SIZE ELEMENT

return date

is
v_str varchar2(10);

begin
v_str := substr(pid, 5, 2) || '-'; -- DAY
if (substr(pid, 3, 1) = 5 OR substr(pid, 3, 1) = 0) then
v _str := v str || '0"'" || substr(pid, 4, 1);
else
v_str := v _str || 'l' || substr(pid, 4, 1);
end if;

-- MONTH, attention for female PID definition!
v_str := v_str || '-19' || substr(pid, 1, 2); -- YEAR
return to date(v_str, 'dd-mm-yyyy'):
-- If the PID is not correct - cannot be transformed
-- into date of birth, exception will be raised.
-- In that case, virtual date of birth will be returned.
EXCEPTION WHEN OTHERS THEN
return to date('01-01-0001"', 'dd-mm-yyyy'):
end;

/

In a real environment, it would be done in one step. Even local variables can be omitted
and directly transformed into Date data type values.

create or replace function PIDtoBirthDate (pid varchar2)
return date
is
v_str varchar2(10);
begin
v_str := substr(pid, 5, 2) || '-' || mod(substr(pid, 3, 2), 50) |
'-19' || substr(pid, 1, 2);
return to date(v_str, 'dd-mm-yyyy'):
-- If the PID is not correct - cannot be transformed into
-- date of birth, exception will be raised.
-- In that case, virtual date of birth will be returned.
EXCEPTION WHEN OTHERS THEN
return to date('01-01-0001', 'dd-mm-yyyy');
end;

/

13.3 Get the list of persons who celebrate a birthday today

Managing and comparing Date values is often a problem and source of errors. The aim
is to get the list of the persons, who celebrate a birthday today. The previously defined
function can be used.

We will list typical mistakes made by students or programmers, which leads to processing
incorrect data if some data portions are returned.

Let’s evaluate the following code. What about the results? Is there any problem?

select name, surname
from personal data
where PIDtoBirthDate (personal id) = sysdate;

Lab 13 — Date and Time value management 363

Syntactically not, but no data will be returned. Can you explain the reason? Reflect
on the following example. A simple table is created with only one attribute. The current value
of the date is inserted and consequently selected based on the sysdate function. No data will
be returned because of the time spectrum of the Date attribute.

Thus, the previous example managing date of birth would list only persons born today
during midnight (00:00:00).

select name, surname, PIDtoBirthDate (personal id)
from personal data;

SURNAME PIDTOBIRTHDATE(PERSONAL ID)

Michael | Pearce 06.11.1984 00:00:00

1
A Jack Smith 12.03.1984 00:00:00
< John Young 07.09.1986 00:00:00

To move to the next step, remove the time spectrum when comparing. What about
the result? Are they correct?

select name, surname
from personal data
where PIDtoBirthDate (personal_id) = trunc(sysdate);

No, at all. The result set consists of the people born today (during this day regardless
of the time). The correct solution is based on comparing only day and month elements:

select name, surname
from personal data
where to_char (PIDtoBirthDate (personal_ id), 'DD.MM')
= to_char(sysdate, 'DD.MM') ;

13.4 Get the list of students who passed the exam this month

This section points out the facts of the month evaluation with regards to the current date.
Several solutions will be listed with false solutions to achieve the correct answer at the end.
The aim is to list the students who passed the exam this month (similar to the last 30 days).
Many times, only the month element itself is evaluated, which is, of course, incorrect.

select name, surname, student id
from study subjects join student using(student id)
join personal data using(personal id)
where to_char(exam date, 'MM') = to char(sysdate, 'MM');

NAME SURNAME STUDENT_ID

Carol Pearce 550545
Peter Roger 550020
Jack Robinson 501103
Tom Moore 501201
Tom Moore 501201
Peter Murphy 500427
Milan Clarke 500426
Milan Clarke 500426

Let’s see the whole exam_date attribute value with Date elements (day, month, and year).

364 Lab 13 — Date and Time value management

select name, surname, student id,
to_char (exam date, 'DD.MM.YYYY')
from study subjects join student using(student id)
join personal data using(personal id)
where to_char (exam date, 'MM') = to_char(sysdate, 'MM');

NAME SURNAME STUDENT ID TO_CHAR(EXAM_DATE,'DD.MM.YYYY")

Carol Pearce 550545 12.06.2009
Peter Roger 550020 20.06.2002
Jack Robinson 501103 23.06.2003
Tom Moore 501201 26.06.2001
Tom Moore 501201 10.06.2003
Peter Murphy 500427 06.06.2006
Milan Clarke 500426 01.06.2006
Milan Clarke 500426 05.06.2006

Thus, to get correct results, also year must be evaluated. Both following solutions are
right.

select name, surname, student id,
to_char (exam date, 'DD.MM.YYYY')
from study subjects join student using(student id)
join personal data using(personal id)
where to_char (exam date, 'MMYYYY') = to_char(sysdate, 'MMYYYY');

select name, surname, student id,
to_char (exam date, 'DD.MM.YYYY')
from study subjects join student using(student_id)
join personal data using(personal id)
where to_char (exam date, 'MM') = to_char(sysdate, 'MM')
and to_char (exam date, 'YYYY') = to char(sysdate, 'YYYY');

NAME SURNAME STUDENT ID EXAM_DATE

Mark Bailey 501402 25.06.2017
Jack Robinson 501103 25.06.2017
Jack Robinson 501103 25.06.2017
John Young 550127 25.06.2017

13.5 Get the list of students who passed the exam previous
last month

However, think of getting the list of students who passed the exam last month.
The solution described in chapter 13.4 Get the list of students who passed the exam this
month does not provide sufficient power because individual date elements (month, year) are
compared separately. Let’s have the following solution. Is it correct? What about the
provided limitations?

select name, surname, student id,
to char (exam date, 'DD.MM.YYYY')
from study subjects join student using(student id)
join personal data using(personal id)
where to_char (exam date, 'MM') - 1 = to_char(sysdate, 'MM')
and to_char (exam date, 'YYYY') = to char(sysdate, 'YYYY');

Lab 13 — Date and Time value management 365

Naturally, it cannot manage transitions over the years. So, a natural question arises,
how to get data correctly? How to solve that definition? First of all, it is necessary to observe
that it is impossible to evaluate month and year elements separately. Thus, to provide
a suitable solution giving correct results, several opportunities are available to be covered
by provided functions of the DBS.

The first two solutions are based on the month_between function, which checks the range
of the value inside the range <1; 2>. In this case, last month is delimited by subtracting one
month from a current date. The following figure shows the execution principle followed
by the Select statement definitions. We assume that the current date is 17.3.2017.

| | ‘ tf'rrne
1.2.2017 17.2.2017 1.3.2017 17.3.2017

(sysdate)

Fig. 13.2: Validity interval definition

select name, surname, student id,
to char (exam date, 'DD.MM.YYYY')
from study subjects join student using(student id)
join personal data using(personal id)
where months between (sysdate, exam date) between 0 and 1;

Another solution is based on a combination of multiple provided functions — trunc
and last_day encapsulating the function add month. In this case, last month definition
is limited by the first and last date of the month.

The following figure shows the principle followed by the Select statement definition.
Compare the principle with the previous solution. Different reflections and meanings
of the term “last month” should be noticed. We assume that the current date is 17.3.2017.

7

L a0

[| | \ time
1.2.2017 17.2.2017 1.3.2017 17.3.2017

(sysdate)

Fig. 13.3: Validity interval definition

select name, surname, student id,
to char (exam date, 'DD.MM.YYYY')
from study subjects join student using(student id)
join personal data using(personal id)
where exam date BETWEEN TRUNC (ADD_MONTHS (sysdate, -1), 'MM')
AND LAST DAY (ADD_MONTHS (sysdate, -1));

If the whole time spectrum (also time) should be evaluated, it must be extracted
from the current date and put together with used functions.

366 Lab 13 — Date and Time value management

13.6 Get the list of the persons, who will celebrate their
birthday next Sunday

Date value evaluating and shifting based on the day definition can be done using multiple
ways. We will use the explicit definition by invoking the to_char method. In the following
code of the function, we will highlight the limitation of usage based on server or session
settings. It is often impossible to alter the system or even the session itself, whereas it can be
connected to the rest part of the application assuming a specific Date or Time format.
Moreover, it would end the transaction! Therefore, we will show the problems and propose
solutions based on the following example. The aim is to get the Date value of the nearest
Sunday based on the current date (sysdate). The first solution of the function definition
can look like the following. Subsequently, a number of days is added to the current date
by checking whether the result Date value is Sunday or not.

create or replace function GetNearestSunday return date
is
v_day varchar2(10) ;
begin
for i IN 1..7 loop
select to char(sysdate + i, 'DAY') into v_day from dual;
if v_day like 'SUNDAY%' THEN
return sysdate + i;
end if;
end loop;
return null;
end;

/

As we can see, the solution is not very effective due to the cycle inside. Thus, the defined
Select statement is performed at least once (which is naturally ok) but can even be executed
7 times, which is unnecessary. Therefore, there is also a better solution. Text format
of the day is extracted and evaluated with the list of days in the case command.
As a consequence, the Select statement is executed only once. The return value
of the function is provided using the Case function.

create or replace function GetNearestSunday return date
is
v_day varchar2 (10);
begin
select to char(sysdate, 'DAY') into v _day from dual;
case trim(v_day)

when 'MONDAY' then return sysdate + 6;
when 'TUESDAY' then return sysdate + 5;
when 'WEDNESDAY' then return sysdate + 4;
when 'THURSDAY' then return sysdate + 3;
when 'FRIDAY' then return sysdate + 2;
when 'SATURDAY' then return sysdate + 1;
when 'SUNDAY' then return sysdate + 7;
else return null;
end case;
end;
/

It is far more effective. However, is it also robust? Unfortunately, not. Let’s evaluate
the following conditions. The result of the proposed method is strictly delimited by the server

Lab 13 — Date and Time value management 367

or session format definition, causing problems in scalability and deployability. It namely
provides a correct solution only if the English branch of the language is used. If the language
is changed, the defined function will return a NULL value.

I select sysdate, TO CHAR(sysdate, 'DAY') as day from dual;

SYSDATE DAY

17.03.2017 | FRIDAY

alter session set nls date language='English';

select GetNearestSunday from dual;
GETNEARESTSUNDAY
19.03.2017

alter session set nls date language='Slovak';

select GetNearestSunday from dual;

GETNEARESTSUNDAY

(null)

There is a significant problem, isn’t it? However, once again, it is not suitable to change
the format of the session's language. Thankfully, a solution exists without influencing server
or session format by shifting the evaluation to the command level. The fo_char function
generally uses two parameters — date val and format mask. However, the syntax
of the method fo_char allows you to use also the third parameter — nls_language, by which
the language settings can be influenced, but only for such method invocation. Thus, no other
systems are affected.

I select to_char(date val [, format mask] [, nls_language]) from dual;

Setting Date format to American inside the to_char function invocation, a robust solution
is provided regardless the current set language. Thanks to that, no problem with function
result can occur. A complex solution of the GetNearestSunday function definition will look
like following:

create or replace function GetNearestSunday return date

is
v_day varchar2 (10) ;

begin
select to char(sysdate, 'DAY', 'American') into v_day from dual;
case trim(v_day)

when 'MONDAY' then return sysdate + 6;
when 'TUESDAY' then return sysdate + 5;
when 'WEDNESDAY' then return sysdate + 4;
when 'THURSDAY' then return sysdate + 3;
when 'FRIDAY' then return sysdate + 2;
when 'SATURDAY' then return sysdate + 1;
when 'SUNDAY' then return sysdate + 7;

else return null;
end case;
end;

/

368 Lab 13 — Date and Time value management

And provided results:

alter session set nls date language='English';
select GetNearestSunday from dual;

GETNEARESTSUNDAY

|

19.03.2017

alter session set nls date language='Slovak';
select GetNearestSunday from dual;

GETNEARESTSUNDAY

|

19.03.2017

A similar problem with Date format and location definition can occur when the order
of days in the week should be provided. As we know, some countries consider the first day
of the week as Sunday, and the rest reflect Monday. Therefore, the fundamental question
is how to solve it. The nis_territory parameter definition namely influences such behavior.
Let’s notice the examples:

alter session set nls_territory='Slovakia';
select to_char(sysdate, 'D') from dual;

TO_CHAR(SYSDATE,'D’)
5

alter session set nls_territory='America';
select to_char(sysdate, 'D') from dual;

TO_CHAR(SYSDATE,'D’)
6

Remember that execution of the to_char method cannot be influenced by the nis_territory
parameter. The only nls _language can be used, if necessary. Robust solution irrespective
of the nils_territory parameter value is based on transforming the text value of the day into
a desired numerical value regarding the nls_language parameter of the fo_char function.
Thus, the following Select statement will always reflect Mondays as the first day of the week.

select decode (trim(to_char (sysdate, 'DAY', 'nls_date_language=American')),
"MONDAY ',
'TUESDAY',
'WEDNESDAY',
'THURSDAY',
'"FRIDAY',
'SATURDAY',
' SUNDAY',

’
’

~

SJoods WwhNh R

~ <~

from dual;

Notice that parameter “DAY” of the function to_char provides an uppercase result,
whereas using “Day” would offer a lowercase result (the first letter is uppercase).

13.7 Get the Date of the second Sunday of the month

Database maintenance operation planning should be selected precisely to be executed
during the specific period (during low workload). Therefore, it is necessary to get desired
time borders based on defined requirements. Let’s assume that update operations and

Lab 13 — Date and Time value management 369

statistics evaluation refreshing management should be done once a month, namely every
second Sunday of the month. Whereas it should be planned automatically, it is necessary
to evaluate the Date value dynamically. In principle, how to get the required Date value based
on provided input date? We will describe the solution step by step:

1. Get the Date of the first day of the month and check for the week of the day.

2. If it reflects the Sunday, add 7 days and end the processing. If not, continue

with step 3.
3. Find the first Sunday of the month.
4. Add7 days.

The complete solution can look like following:

select case
when to_char(first day, 'D') = 1 then
-- first day = Sunday
to char(first day + 7, 'DD.MM.YYYY')
else
-- first day is not Sunday
to char (next day(first day, 1) + 7, 'DD.MM.YYYY')
end as second sunday
from
(select trunc(sysdate, 'MM') as first day from dual);

Notice that the solution is nls_territory dependent — try to create a robust solution based
on it.

13.8 Get the list of the persons, who will celebrate their
birthday next week

Listing the persons who will celebrate a birthday next week requires two parts
to be handled.

Left limitation reflects the first day of the following week (Monday). The right limitation
is the Sunday of the next week. Thus, these values can be obtained like this:

The first day of the next week — result of the function next_day is used.

I select next day(sysdate, 'MONDAY') from dual;

Last day of the next week — processing must be shifted to Sunday of the actual week
or even any day (except Sunday) of the next week. Thus, the value of 6 days is added
to the current date value. Then, the next day function is used.

I select next day(sysdate + 6, 'SUNDAY') from dual;

Result:

select name, surname, to_char (PIDtoBirthDate (personal id), 'DD.MM')
from personal data
where to_char (PIDtoBirthDate (personal id), 'MMDD')
between to_char (next day(sysdate, 'Monday'), 'MMDD')
and to char (next day(sysdate + 6, 'Sunday'), 'MMDD');

The main disadvantage of the previously defined solution is language dependency.
If the English language branch is used, no problem can occur. However, other languages
will not provide data for the next day function result definition — the condition would not be

370 Lab 13 — Date and Time value management

able to be evaluated. For the robust and immune solution, a special trick can be used. It is
based on the knowledge that the 7.7.7900 was Monday. From that information, the text form
of the day value can be provided concerning actual language settings. Then, invoking
the next_day function will get desirable results, whereas format value is delimited
by obtained day text format value from the Date — 1.1.1900. Consider the following example
for getting the Date value of the next Monday.

declare

v_monday text varchar2(50) := to char(to date('19000101', 'yyyymmdd'),

'Day’);

v_result date;
begin

v_result := next day(sysdate, v_monday text);

dbms output.put line(v_result);
end;

/

The database administrator cannot change the nls_date format parameter value during
the execution, whereas such parameter is static and would require a server restart.
So, the complex and immune solution is provided. Naturally, for use in a real environment,
it would be encapsulated by the function definition.

13.9 Get the difference between Date values

The result of the two Date values subtracting is the number of days between. Let’s
consider the result of the following example. The result is 9 days, decimal part (0.08333)
reflects two hours (2/24).

select
to_date('21.3.2017 12:00:00', 'DD.MM.YYYY HH24:MI:SS')
- to date('12.3.2017 10:00:00', 'DD.MM.YYYY HH24:MI:SS')
from dual;

If you want to get the result in another form (like hours, minutes, ...), the result set value
must be processed into the required format. Chapter 13.10 Get the difference between Date
values — a sophisticated solution describes the complex approach highlighting multiple
granularity levels.

13.10 Get the difference between Date values —
a sophisticated solution

Think of another solution, which will list the difference more sophistically, reflecting
a number of years, months, days and hours, minutes and seconds between two Date values.
Such a function does not exist automatically. Therefore, we will show how to code it.
In the following part, we will use two parameters of the function — p datel, p_date2
and assume that p _datel <= p date2 (it can be tested inside the function values can be
interchanged, if necessary).

The optimal solution for getting years between two Date values provides function
months_between divided to 12 (number of months delimiting the whole year). Whereas

Lab 13 — Date and Time value management 371

the decimal part of the result is treated with lower granularity (months, days, ...),
only truncated value for the year between definitions will be used:

year count := trunc(months between (v_date2, v datel) / 12);

From the rest part, the month component is extracted. Original values are processed using
the month_between function subtracted by the number of years (multiplied by value 72).

v_months count :=
trunc (months between (v_date2, v _datel) - 12 * v_year count;

To get a number of the days, the auxiliary variable will be used (v_temp date)
for the illustration purposes. It will store the value of the lower parameter value (v_datel)
with the added year (multiplied by value 12) and month spectrum (evaluated
by the add_month function result):

v_temp date := add months(v_datel,12 * v_year count + v_months count);

The number of days between these two values can be obtained by subtracting the original
value (v_date?2) and defined auxiliary variable (v_femp _date). If the result set should also
contain a time spectrum, the number of days is truncated.

v_day count := trunc(v_date2 - v _temp date);

Complete solution and example of the received results are following:

create or replace function Get difference date
(p_datel date, p_date2 date)
-- must be p_datel <= p date2
return varchar?2
is
v_datel date;
v_date2 date;
-- for changing, if the parameter order is not suitable
-- v_temp double precision;
v_temp date date;
v_temp integer;
-— YYYY, MM, DD
v_year count integer;
v_months count integer;
v_day count number;

begin

if p datel > p date2 then
v_datel := p date2;
v_date2 := p_datel;

else
v_datel := p datel;
v_date2 := p date2;

end if;

-- get the number of months between two dates
v_temp := months between(v_date2, v datel);

-- year count is calculated as truncated value

-- division of number of months between divided by 12
v_year count := trunc(v_temp / 12);

-- the rest part expresses

-- the number of months in the year
v_temp := v_temp - 12 * v_year count;

372 Lab 13 — Date and Time value management

-- value 1is truncated,

-- the rest part expresses the number of days
v_months count := trunc(v_temp);

-- to get number of days

-- (with regards on obtained number of years and months)

-- processed elements (year, months) are substracted

-- from higher parameter value (v_date2)
v_temp date := add months(v_datel, 12 * v _year count + v_months count);
v_temp := v_date2 - v _temp date;

-- 1f time elements are not processed,
-- particular day value is rounded, otherwise truncated.

v_day count := round(v_temp, 2);
return v_year count || ' years, ' || v_months count || ' months, ' |
v_day count || ' days.';
end;
/

select GET_DI FFERENCE_DATE (
to date('21.3.2017 15:10:22', 'DD.MM.YYYY HH24:MI:SS'),
to date('6.2.2013 11:00:11', 'DD.MM.YYYY HH24:MI:SS'))
as difference
from dual;

I 4 years, 1 months, 15 days.

A similar approach can also be defined for the time spectrum itself.

13.11 YY vs. RR

In chapter 2.3.4 Conversion functions, the format of the YYYY, RRRR, and YY, RR has
been introduced for getting the year element from the Date value. Transformation of the
string value to Date using the fo_date method is significant. If four value format of the year
is used, results are the same regardless of using format YYYY, respectively RRRR. However,
for Insert and Update statement execution, there is a significant difference if the century of
the year value is omitted — only two values for the year representation are used. YY value
always represents the current century, so the value is always larger (or equal) than the
millennium 2000. RR value works differently. The provided result depends on the value of
the year (two values). In principle, if the value is covered by the range <0 ; 49>, 21% century
is used. In other cases (<50 ; 99>), reflection is made to the 20™ century.

Let’s create a simple table 7/ consisting of only one attribute (val) using Date type.
Then, insert these two Date values using YY format. Afterward, get the full Date format
(at least the whole year element). What about the provided data? Both of them reflect
the current century (21% century). For each executed Insert statement, we assume
that rollback is executed after evaluation by the Select statement.

create table TABIl (val date);
insert into TABl values(to date('l1-1-15', 'DD-MM-¥Y'));
select to char(datum, 'DD-MM-YYYY') from TABI;

01-01-2015

select to_char(datum, 'DD-MM-RRRR') from TABI;

01-01-2015

Lab 13 — Date and Time value management 373

insert into TABl values(to date('l1-1-60', 'DD-MM-YY'));
select to_char(datum, 'DD-MM-YYYY') from TABI;

01-01-2060

select to char(datum, 'DD-MM-RRRR') from TABl;

01-01-2060

Repeat the same commands. However, now, use the RR format. As you can see
from the year element part, the first one will reflect the current century (21% century),
but the second solution refers to the 20" century. Be familiar with it.

insert into TABl values(to date('l1-1-15', 'DD-MM-RR'));
select to_char(datum, 'DD-MM-YYYY') from TABI;

01l=01=2015

select to_char (datum, 'DD-MM-RRRR') from TABI;

01-01-2015

insert into TABl values(to date('l1-1-60', 'DD-MM-RR'));
select to_char (datum, 'DD-MM-YYYY') from TABI;

01-01-1960

select to_char (datum, 'DD-MM-RRRR') from TABI;

01-01-1960

Notice, Select statement is not influenced. The value stored in the database is essential.

13.12 Actual employees

An employment contract is a relation of the person (defined by the personal id value
in our case) and employer covered by the employer_id as the primary key. Moreover, it must
also be delimited by the time range (date from, date to). Therefore, the primary key
of the table employee is composite and consists of three attributes — personal id,
employer_id, and date_from.

‘ EMPLOYEE |
d= PERSONAL_ID Integer NN (PFK)
4= EMPLOYER_ID Integer NN (PFK)

PERSON
4= PERSONAL ID _ Integer NN (PK)

= - g= DATE_FROM Date NN (PK)
— — DATE_TO Date
w
EMPLOYER
4= EMPLOYER ID __Integer NN (PK)

Fig. 13.4: An employment model

The aim is to get a list of actual employees. In principle, two situations can occur
regarding time elements:

1. Fixed-term employment — attribute date to > sysdate

2. Employment for an indefinite period — date to IS NULL

374 Lab 13 — Date and Time value management

Moreover, also date from value should be evaluated and must hold the following
expression value: date from <= sysdate. The reason is that contracts, which will start
in the future, can be inserted into the database sooner than the validity point starts.
The solution can, therefore, look like the following:

select name, surname
from personal data JOIN employee using(personal id)
where date from <= sysdate
and (date_to >= sysdate OR date_ to IS NULL);

The second condition group (date_to >= sysdate OR date_to IS NULL) evaluating
expiration date (date to) can be together, forming only one condition. In that case,
an undefined value is replaced using the NVL function.

select name, surname
from personal data JOIN employee using (personal id)
where date from <= sysdate
and (NVL(date to, sysdate) >= sysdate);

13.13 Period models and Allen relationships

The validity of the contract, respectively time interval modeled by two attributes
(characterizing left and right border), can use four structural types. Definition and approach
must be determined during the table creation, respectively, before the first /nsert to that table.

In the past, there were several attempts for modeling time duration using period data type
expressing begin and end point of the validity. Unfortunately, such an approach has not been
approved as a standard resulting in the complete abolition of this concept in 2001.

Therefore, explicit modeling must be used highlighting these representations:

Closed — closed,
Closed — open,
Open — open,
Open — closed.

These representations determine whether the border Date (or Timestamp based on used
granularity) belongs to the interval or not. In principle, only the closed type of the left border
(begin point) is used in practice because of the necessity for strict limitation of the beginning
point of the validity interval. Therefore, two approaches are used to represent the end point
of the validity — either open or closed.

Undefined state management is easier to be distinguished by the Closed — open
representation. Moreover, such a solution is robust, immune to the changing granularity
(nowadays, the granularity of the processing is moving to fine precision grade
more and more). Closed — open representation is modeled in the following table consisting
of four attributes:

e ID —identifier of the object itself, part of the primary key,

e BD, ED — attributes characterizing validity, part of the primary key,

e Data — attribute values themselves are modeled by using a common naming “data”
for illustration simplicity.

Lab 13 — Date and Time value management 375

Tab. 13.3: Closed-open model

ID BD ED ' Data
1 September 2012 July 2013 123
2 January 2013 December 2014 555
1 October 2013 January 2014 456

The undefined state is characterized by situations where ED does not meet consecutive
BD in time.

July 2013 October 2013
-
C
ID=1
o | [s
data =123 undefined data =456
state

Fig. 13.5: Closed-open model

Individual period representations can be transformed by each other. The following table
shows the mapping for such solution transformation.

Representation Predicate

Lay, azl equals [by, bal a1 =by AND az = by

[ay, a2] equals [by, ba) a1 =b1 AND a, +1= b

Lay, a2] equals (by, b;) a1 =by+1AND a, +1= 51+ b;
Lay, az) equals [by. bal ai=b1 AND ap=by +1

(a1, a2) equals [by, ba) a1 =bq AND a3 = by

[ay, a) equals (by, b;) a1 =bqy+ 1AND ap = by + b;
(ay, a;) equals [ay, by] ar+1l=a,ANDa;+a;=by+1
(a1, a;) equals Laz, bq) a1 +1=ayAND a; +a;= by

(ar, a;) equals (ay, a;,) ap=azAND a, = a;

i 2

Fig. 13.6: Time definition model transformation; source: Tom Johnston, Randall Weis: Managing
Time in Relational Databases: How to Design, Update and Query Temporal Data

Allen relationships describe all possible positional relationships between two time periods
along the common timeline. There are 13 Allen relationships in total. One of them
does not have an inverse relationship.

Names of relationships are standardized, defined in 1983. They are part of the ordinary
and query language, so when we refer to the technical language, we will write their names
separated by parentheses.

In general, the two-time intervals on a common axis can be either separated ([exclude])
or may have at least one common point in time ([intersect]). Namely, it can be a relationship
[fills] or [overlaps]. If one interval is in relation [fills] with another, any of its subintervals
are correlated [fills] to the second interval. However, it is not necessarily true conversely.
In the case of overlapping intervals [overlaps], each has at least one common point in time
and at least one that the second does not contain.

Relationship [exclude] indicates that the intervals do not have any common point. We can
define two types. If there is at least one point in time between them, we use the relationship
[before]. Otherwise, we define the relationship [meets] — one interval is immediately
following the second.

376 Lab 13 — Date and Time value management

If one interval fills (relationship [fills]) the second, two situations can occur. They are
both identical — [equals]. Thus, there is no time point belonging to one, which does not belong
to the second interval. The second situation occurs when the first interval is a subset of the
second interval. In this case, we are speaking about the relationship [occupies]. Again, the
opposite relationship does not apply. The general relationship [occupies] can be divided into
the relationship [aligns] and [during]. The relation's name [aligns] defines its properties —
two intervals have the common beginning or end time of the interval (exclusively — only one
of them is true). In this case, we are talking about the relationship [starts], where intervals
have a common beginning. Otherwise, we use the relationship [finishes]. However,
if the intervals have a common beginning and end point of the interval, it represents
the relationship [equals]).

If the relationship is defined as [occupies] and the intervals do not have a common
beginning and end time of the interval, the relationship [during] is defined — beginning
of the first period occurs later than the start of the second, end of the first period occurs before
the end of the second interval. The following figure shows the positional relationships based
on the relationship [fills].

- - equals

fills

r

[

[

I
N

1

I

I

“ - - occupies
I

| .
~ - - aligns

:— - - starts

_ — - finishes |

|
|
1
I
I
I
I
1
I
1
1
l
1
L - - during

—

Fig. 13.7: Allen relationships (submodel)

A particular case is a time interval containing precisely one point in time. There are two
possibilities in comparison with other time intervals (including at least two points in time).
The first case — the time point is part of the second interval [intersects]. In this case,
the relationship is defined as [fills] and [occupies]. If the time point is also an extreme point
of the interval, it is the relationship [starts] or the relationship [finishes]. In other cases,
the point is inside the interval and is defined by the relationship [during]. The second case
compared to the time point, and the interval is when the point is not included in the second
interval. In this case, the relationship between the intervals is called [excludes]. If there
isno time between defined time intervals — it is a relationship [meets]. Otherwise,
it is a relationship [before] — we assume that the time point precedes the second interval.

The latest case is the comparison of intervals, which contain just one element-time point.
The first type is that the values are equal — relationship [equals]. If the values are not identical,

Lab 13 — Date and Time value management 377

it is important whether there is a time point (or more) between them or not. If so,
then it is a relationship [meets]. Otherwise, we talk about the relationship [before].

As we mentioned in the previous section, these relationships are essential elements
for processing and comparison. The area of temporal databases focuses mainly on these three
interval relations:

1. Relationship [intersects] is vital for the transactions that add new records
to the database. Time interval defining the validity of the record must be disjoint with
all already defined intervals of a given object. There cannot be valid two or
more versions (episodes) at the same time. Update and Delete transactions again use
this method to find the record, the validity of which contains a user-specified time.

2. Relationship [before] is used to distinguish and sort the individual episodes.

3. The basis for versions comparison and unification is the relationship [meets].

Time Periods Relationships
Along a Common Timeline

|Intericts| |Excludes|
|$ | Overlaps Before Meets
R =] b
—

Equals | Occupies I
|
=

I Aligns | During

(-
Starts Finishes — |

Fig. 13.8: Allen relationshipsl; source: Tom Johnston, Randall Weis: Managing Time
in Relational Databases: How to Design, Update and Query Temporal Data

13.14 Unlimited validity definition

Undefined values are usually modeled using the NULL values. For the Date attribute
management, MaxValueTime notation has been introduced, which is modeled by the latest
date, that can be stored in current database systems. Naturally, it can be used only for the end
date of the validity. The meaning is “later than now”. Although we do not know the exact
time of the end border, it is evident that such a moment has not come yet. Undefined values
modeled by the NULL characteristics are commonly used for unknown data, but in this case,
some time position (future) can be defined, although not strict. It is one of the main reasons
why not to use NULL values for the time definition.

Moreover, previously explained Allen relationships for time interval comparison would
not be possible to be used at all due to no NULL value comparison opportunities. Last
but not least aspect is just the performance. Database system consists of multiple
performance enhancers — index structures. The main stream forming the index approaches
of the current database systems is the B+ free index type, which cannot, however, deal

378 Lab 13 — Date and Time value management

with NULL values at all. The real representation of MaxValueTime notation used is
31.12.9999 (DD.MM.YYYY).

13.15 Data type Interval management

Consequently, since the data type period was not accepted as the norm, the need
for modeling time in some other way became significant. As we already mentioned,
one possibility is based on interval limitation by two values characterizing begin and end date
of the validity with regards to representation (CC, CO, OO, OC). In principle, another data
type category can be defined by characterizing the duration — data type Interval Year To
Month and Interval Day To Second. Be aware. They indicate only time duration,
not the position in the time sphere (there is no information about the start, nor end position,
only the duration itself). Thus, mapping the interval representation by two Date values
(or Timestamp values based on granularity) can be shifted to only one Date value
(or Timestamp value based on granularity) followed by another attribute defining duration —
data type Interval.

13.15.1 Interval Year to Month data type

This data type can hold the value in the range of months and years. It uses the following
syntax model:

integer
FEnoE 2 o,

Fig. 13.9: Interval year to month

The value in the parentheses expresses the precision (maximal number of numeric places
for year definition). The default value is 2. Then, the keyword is listed, characterizing
the meaning of the proposed value.

Tab. 13.4: Interval

Form of Interval Literal ‘ Interpretation

INTERVAL '123-2' YEAR(3) An interva.ll of 123 years, 2 .rr.lonths.. Yqu mpst specify

TO MONTH the leading field precision if it is greater
than the default of 2 digits.

INTERVAL '123' YEAR(3) An interval of 123 years 0 months.

INTERVAL '300' MONTH(3) An interval of 300 months.

INTERVAL '4' YEAR Map's to INTERVAL '4-0' YEAR TO MONTH

and indicates 4 years.

Maps to INTERVAL '4-2' YEAR TO MONTH

and indicates 50 months or 4 years 2 months.

Returns an error because the default precision is 2,

and '123" has 3 digits.

INTERVAL '50' MONTH

INTERVAL '123' YEAR

Lab 13 — Date and Time value management

379

13.15.2 Interval Day to Second data type
This data type can hold the value in the range of days up to the finest granularity —

seconds. It uses the following syntax model:

—>| INTERVAL

MINUTE

SECOND [

0 fractional_seconds_precision o

Fig. 13.10: Interval day to second

Principles are similar to the previously defined Infterval type of the data structure type.
In that case, the value in the parentheses also expresses the precision based on the specific

element.

Tab. 13.5: Interval

Form of Interval Literal
INTERVAL '4 5:12:10.222' DAY
TO SECOND(3)

Interpretation

4 days, 5 hours, 12 minutes, 10 seconds,
and 222 thousandths of a second.

INTERVAL '4 5:12' DAY TO MINUTE

4 days, 5 hours, and 12 minutes.

INTERVAL '400 5' DAY(3) TO HOUR

400 days 5 hours.

INTERVAL '400' DAY(3)

400 days.

INTERVAL '11:12:10.2222222'
HOUR TO SECOND(7)

11 hours, 12 minutes, and 10.2222222
seconds.

INTERVAL '11:20' HOUR TO MINUTE

11 hours and 20 minutes.

INTERVAL '10' HOUR

10 hours.

INTERVAL '10:22' MINUTE
TO SECOND

10 minutes 22 seconds.

INTERVAL '10' MINUTE 10 minutes.
INTERVAL '4' DAY 4 days.
INTERVAL 25' HOUR 25 hours.
INTERVAL '40' MINUTE 40 minutes.
INTERVAL '120' HOUR(3) 120 hours.

INTERVAL '30.12345' SECOND(2, 4)

30.1235 seconds. The fractional second
'12345' is rounded to '1235' because
the precision is 4.

380 Lab 13 — Date and Time value management

13.15.3 Examples — Interval data types

Let’s have the following example of the INTERVAL YEAR TO MONTH mapping.
Expression '/4' month reflects one year and 2 months.

select interval '1l4' month from dual;

If the current date was 17.3.2017, the output would be 77.5.2018 (also with time
spectrum). So notice the automatic mapping possibilities of the Interval to a Date value.

select sysdate + interval 'l-2' year(3) to month from dual;

A similar situation occurs if INTERVAL DAY TO SECOND data type value is used.
In that case, also fractions can be processed. Therefore, the mapping example
will be associated with the Timestamp value in our case (it can also be associated with Date
values based on automatic conversion methods. In that case, however, the fraction part
will be removed).

INTERVAL '4 5:12:10.222' DAY TO SECOND (3)
-- 4 days, 5 hours, 12 minutes, 10 seconds and 222 thousands of seconds.

select systimestamp + INTERVAL '4 5:12:10.222' DAY TO SECOND(3)
from dual;

SYSTIMESTAMP ‘ SYSTIMESTAMP+INTERVAL'45:12:10.222'DAYTOSECOND(3)

17.03.17 10:19:13, 945000000 +01:00 | 21.03.17 15:31:24, 167000000 +01:00

13.15.4 Update validity definition based on Interval data value

Validity modeled using two attributes defining begin and end point can be transformed
to Interval definition and vice versa. In this section, we will describe the principles and show
one example. The aim is to update date to attribute value for employees of “ZU”.
Limit the employment contract to 3 years for all actual employees. Add the condition
that if the value of the date_fo would be in the past, the reflected output value should be set
to the current date (sysdate).

To get the correct results, several steps must be done by creating conditions and set
the correct value of the date_to attribute. Thus, first of all, define the condition characterizing
the employees, whose employer name is ZU. It can be done using an inner Select statement
from the employer table:

employer id IN (select employer id
from employer
where name = 'ZU')

Then, date to value to be processed must also be limited only to the actual employees
(see chapter 13.12 Actual employees):

date to IS NULL or date to > sysdate

So now, the conditions are defined. However, how to set the correct value of the date_to
attribute? The employment contract should last 3 years. Comparison with the current date

Lab 13 — Date and Time value management 381

must be highlighted. Therefore, if the value to be set is lower than the sysdate value, it should
be replaced by the current date. Conditional processing can be done using Case:

date to = case when (date from + interval '36' month) < sysdate
then sysdate else (date from + interval '36' month) end

The complete solution can, therefore, look like following:

update employee
set date to = case when (date from + interval '36' month) < sysdate
then sysdate else (date from + interval '36' month) end
where (date to IS NULL or (date to > sysdate and
date to > date from + interval '36' month)
) and employer id IN (select employer id
from employer
where name = 'ZU');

Lab 14 — Data dictionary views 383

Lab 14 — Data dictionary views

When dealing with the database systems, it is not only about the data, but also overall
architecture, structures, and privileges must be highlighted. All such metadata describing the
objects are stored in the system tables and are available through the data dictionary views in
a user-friendly format. In this lab, the reader will learn the categorization of the system tables
focusing on object owners and accessibility. Querying data dictionary section highlights the
most significant structures — list of tables, their structure (attributes with data types), primary
key definition and foreign key reference, associated table triggers, method headers, and
sequences.

By studying this lab, the reader will get a complex overview on data dictionary views by
understanding the formats and available data. Thanks to that, any additional structural
information can be obtained easily.

14.1 Introduction

Database system resources are continuously monitored, and individual changes are stored
in the specific data structures. In Central Europe, these data structures are called “System
tables”, and the actual state is obtained by querying “System tables”, however, to be honest,
representation refers to views, not the fables. Never mind, such structures can be divided
into two groups based on their characteristics and way of saving and updating. The first group
is formed by Dynamic Performance Views (also referred to as “Vee dollar”). In general,
there are more than 300 dynamic performance views, and they characterize the status
of the instance and the database covering actual settings and approaches. They also cover
some information, which can be found in the data dictionary, as well (described later). These
views are created at the startup, updated according to settings, and dropped at the shutdown.
Some essential views for parameter settings and tuning at the instance level are
VSINSTANCE (status of the instance), VS$SGA (summary information about the shared
memory structures and size), VSSYSSTAT (instance statistics). The physical database is
covered by e.g., VSDATABASE or V8DATAFILE. The interim layer between instance and
database is just tablespace, which can be queried using the V8TABLESPACE view.

The session is also characterized by multiple dynamic performance views.
As a representative, V$SESSION can be mentioned listing current session information.
All views consist of multiple attributes, which can be listed using the already described DESC
command. Further information can be found in Oracle documentation, or feel free to ask
the teacher.

This lab focuses on the second group defined by Data Dictionary Views (DDV),
which refers to the metadata — data about data. They describe the database and its contents.
User definitions, security information, integrity constraints, and performance monitoring
information (from release 10g onward) are part of the data dictionary views.
They characterize all data objects defined in the database. As the naming notation implies,
they deal with views defined on internal data structures (Infernal Tables, Base Tables).
Such Internal Tables are generated during the database creation process, management
and loading are provided automatically.

384 Lab 14 — Data dictionary views

14.2 Data dictionary — structure

Data Dictionary (abbreviation of the Data Dictionary Views) is one of the essential
components of the database. It is read-only and provides information about the structure,
objects, type, and much other helpful information for database management. In general,
it provides the following data:

o all schema object definitions (tables, views, indexes, clusters, synonyms,
sequences, procedures, functions, packages, triggers, etc.),
allocated and free space for the particular object,
integrity constraint definition information,
users and their settings and properties,
granted privileges and roles,
audit information,
other general database information.

As mentioned, it references Internal Tables, which contain all information. However,
they are often encrypted and stored in specific data structures due to normalization, and it is
complicated to get required data from them. Thus, the data dictionary can be considered as
the middle layer between physical representation and users and provide desired data in user-
friendly form. However, also Internal Tables can be queried directly.

The user SYS user owns Internal Tables.

Be aware, never try to change any data using a data dictionary or internal table (although
it is possible, it is always a license breach). Only Oracle can do it automatically. Moreover,
such activity can compromise data integrity and completely destroy the database.

Nowadays, granted privileges Insert Any Table, Update Any Table and Delete Any Table
allows the user to manage “any” table in the system. In the past, these privileges also covered
Internal Tables, so granted user would be able to irretrievably damage the structure, which
was a significant security risk. Fortunately, current DBS versions do not allow it.
Thus, nowadays, these privileges do not cover and allow destructive operations in Internal
Tables.

When any query is provided, the data dictionary is also used for database systems
activities, such as finding information about the user, schema objects, and physical data
storage. Another example provides execution of any DDL command — all information about
the performed activity is visible and accessible via these structures. For a fast approach,
a significant data amount from the data dictionary is cached in the memory.

The data dictionary can be divided into three groups depending on what data are
accessible or to whom they are available. They can be easily distinguished thanks to the same
category of the prefix:

e User — view associated with the particular user, it contains information about
objects owned by the particular user.

o All — these views extend the user views category by objects accessible
to the particular user (which have been granted to the particular user).

e Dba — these views consist of information about all user schemas (so this view
is extended by the Owner attribute). Moreover, some DBA views have additional
columns containing valuable information to the administrator.

Let’s have the following example.

Lab 14 — Data dictionary views 385

User KVET creates new table TABI (assuming that he does not have any table
in his schema for better illustration):

-— KVET
create table TABL (id integer);

To get a list of all tables owned by user KVET, a view with the prefix USER can be used.
It contains a wide range of attributes. However, for illustration purposes, we will use only
some of them:

I SQL> desc user_tables
Name Null? Type
TABLE NAME NOT NULL VARCHARZ2 (30)
TABLESPACE NAME VARCHAR2 (30)
CLUSTER_NAME VARCHAR2 (30)
IOT_NAME VARCHAR2 (30)
STATUS VARCHAR?2 (8)

All attributes can be obtained by executing the description (DESC) command.

Tables owned by the currently logged user can be found in the user_tables data dictionary
view.

I select table name from user tables;
TABLE NAME
TABL

List of tables, which the particular user does not own, but they have been granted access
to him, is accessible via all tables data dictionary view. Let’s grant Select privilege of
the table Tabl owned by Kvet to Kmat. The owner of the table is stored in the owner attribute
of the data dictionary view.

-- KVET
grant select on TABl to KMAT;

-- KMAT
select table name from all tables
where owner like 'KVET';

TABLE NAME

Such information is not accessible using the User data dictionary view type,
whereas Kmat is not the owner of the table:

select table name from user_tables
where table name like 'TABl';
I no rows selected

When using a data dictionary, always remember that all values are UPPERCASE
because of querying system (internal, base) tables!

386 Lab 14 — Data dictionary views

See the following example executed by user Kvet highlighting the mentioned problem:

select table name
from user tables
where table name like 'TABl';

TABLE NAME

select table name
from user tables
where table name like 'tabl';

no rows selected

select table name
from user tables
where lower (table name) like 'tabl';

TABLE NAME

As mentioned, data dictionary views contain multiple views, which are formed
by various attributes. Their names can be obtained using the description (DESC) function.
The important factor is just the meaning and values, which can hold. These characteristics
can be found either in documentation (docs.oracle.com), but also data dictionary can provide
them. For these purposes, use the dict columns data dictionary view. Realize,
it is not prefixed by the user/ all / dba, because it describes the meaning and comments
of the attributes of data dictionary views. Table, which will be described, is delimited
in the Where clause defining table name (it reflects the name of the data dictionary view,
although the name refers to the table).

select column name, comments
from dict_columns

where table name = 'USER TABLES';
COLUMN_NAME COMMENTS

| TABLE NAME Name of the table

72| TABLESPACE NAME | Name of the tablespace containing the table

<3| CLUSTER NAME Name of the cluster, if any, to which the table belongs

‘3| IOT_NAME Name of the index-only table, if any, to which the overflow or mapping table entry belongs
Status of the table will be UNUSABLE if a previous DROP TABLE operation failed,

<1 STATUS
VALID otherwise

If you want to get all views (including also dynamic performance views), which are part
of the data dictionary, you can query Dictionary view, which consists of two attributes —
table_name and comments.

desc dictionary

TABLE NAME VARCHARZ2 (30)
COMMENTS VARCHAR?2 (4000)

Lab 14 — Data dictionary views 387

There are almost 2 000 data dictionary views and 600 dynamic performance views.

14.3 Querying data dictionary

This chapter will describe the essential data dictionary views and queries to obtain desired
data about data modeling.

14.3.1 List of tables owned actual user

Either user_tables or all tables delimited by the actual user (where owner = user)
can be used. In general, DBA can also use the dba_tables view.

select table name
from user_tables;

select table name
from all_tables
where owner = user;

14.3.2 List of table attributes

To get attributes of the table, the Desc command can be used. However, another approach
is to query the User_Tab_Cols data dictionary view:

select column name
from user_tab cols
where table name = 'STUDY SUBJECTS';

COLUMN_NAME

SCHOOL_YEAR
STUDENT_ID
SUBIJECT_ID
LECTURER
RESULT
EXAM_DATE
SIGN_DATE

@ 9 S N A W N - ‘

14.3.3 Get attribute data type and characteristics

To get the attribute's data type, the previous query based on User Tab Cols
can be extended by the data_type attribute. Such a result, however, does not contain the size
of the attribute, if applicable (e.g., only information about data type Varchar2 is provided
with no size element (Varchar2(30)).

select column_ name, data_type
from user_tab cols
where table name = 'STUDY SUBJECTS';

COLUMN_NAME DATA_TYPE

18| SCHOOL_YEAR NUMBER
2 STUDENT _ID NUMBER

<3| SUBJECT_ID VARCHAR2
4

LECTURER CHAR

388 Lab 14 — Data dictionary views

COLUMN_NAME DATA_TYPE
<~ RESULT VARCHAR2
(3| EXAM_DATE DATE
70| SIGN_DATE DATE
L3l ECTS NUMBER

To get information about the precision and length of the particular attribute,
use the following attributes of the User_Tab_Cols data dictionary:
e Data Length — the length of the column (in bytes).
e Data Precision — decimal precision for Number data type; binary precision
for Float data type, NULL for all other data types.
e Char_Length — displays the length of the column in characters. This value can
be relevant to Char and Varchar data types.

select column name, data type, data length, data precision,

decode (nvl (char_length, 0), 0, ' ', char_length) as ch_length,
nullable
from user tab cols
where table name = 'STUDY SUBJECTS';

COLUMN_NAME = DATA_TYPE DATA_LENGTH | DATA_PRECISION

CH _LENGTH

NULLABLE

‘| SCHOOL_YEAR NUMBER 22 4 (null) No
T STUDENT_ID NUMBER 22 6 (null) No
? SUBJECT_ID VARCHAR2 30 (null) 30 No

“3| LECTURER CHAR 5 (null) 5 No
T RESULT VARCHAR2 1 (null) 1 Yes

(3| EXAM_DATE DATE 7 (null) (null) Yes

74| SIGN_DATE DATE 7 (null) (null) Yes

| ECTS NUMBER 22 2 (null) Yes

Value of the attribute Nullable specifies whether a column can hold NULL values or not.
Value is NVif there is a NOT NULL constraint on the column. Remember that it
is also applicable for the primary key, which cannot also hold NULL values. Otherwise,
the value is Y.

To get data type information similarly as provided using Desc functionality, the query
will be a bit more complicated. One character string for the Nullable sign is replaced
by the text format. However, when dealing with the data type, two attributes must
be evaluated to get correct results (char_length, data_precision). First of all, char_length
is evaluated. Such values are, however, applicable only for string data types. Otherwise, value
“0” is obtained — in that case, the second attribute — data_precision is evaluated,
which can reflect the real value or VULL (for Date attributes). If a NULL value is provided,
it is replaced by an empty string. In all other cases, the numerical output value is transformed

Lab 14 — Data dictionary views 389

into a string (fo_char method) and surrounded by parentheses. The query to get the solution
can look like this:

select column name,

decode (nullable, 'Y', ' ', 'N', 'NOT NULL') as "NULL",
data type || decode(char length, O,
decode (to_char(data precision), null, ' ',
'(" || to_char(data precision) || ")'"),
'(" || to_char(char length) || '")') as "Type"

from user tab cols

where table name = 'STUDY SUBJECTS';

The result will look like this:

COLUMN_VALUE

| SCHOOL YEAR NOT NULL | NUMBER(4)

)| STUDENT ID NOT NULL | NUMBER(6)
0| SsuBJECT ID NOT NULL | VARCHAR2(30)
8| LECTURER NOTNULL | CHAR(S)

| RESULT VARCHAR2(1)

(3| EXAM DATE DATE

71| SIGN _DATE DATE

| ECTS NUMBER(2)

It provides the same results as the Desc function:

Name NULL TYPE
SCHOOL_YEAR NOT NULL NUMBER (4)
STUDENT_ID NOT NULL NUMBER (6)
SUBJECT_ID NOT NULL VARCHAR2 (30)
LECTURER NOT NULL CHAR (5)
RESULT VARCHAR2Z (1)
EXAM DATE DATE
SIGN_DATE DATE

ECTS NUMBER (2)

14.3.4 Get system identifier and definition of the primary key

To get the system identifier of the primary key, use the following query based
on the User_Constraints data dictionary view. Constraint Type value “P” refers
to the primary key of the table. An example is based on the Study Subjects table.

select constraint name
from user_constraints
where table name = 'STUDY SUBJECTS'
and constraint type = 'P';

Two data dictionary views must be joined if you want to get attributes consisting
ofaprimary key. User_Constraints contains constraint_name and references
to the particular zable_name. The attribute list itself is reached from User_Cons_Columns.
However, such a data dictionary view does not include table name information. In this case,
also the order (attribute position) of the attributes is significant because it influences
the associated index.

390 Lab 14 — Data dictionary views

select ucc.column name, ucc.position
from user cons_columns ucc
join user constraints uc using(constraint name)

where ucc.table name = uc.table name
and uc.constraint type = 'P'
and uc.table name = UPPER('study subjects');

COLUMN_NAME POSITION

SCHOOL YEAR | 1
STUDENT_ID 2
SUBJECT_ID 3

So, the primary key of the Study Subjects table is composite covering school year,
student _id, and subject_id (in this order).

Think about the consequences of changing the order of the attributes in the primary key
definition.

14.3.5 Get system identifier and definition of the foreign key

In the Study subjects table, we also have 3 references, three foreign keys — pointers
to tables teacher, student, and subject. To get the information about foreign keys,
use the previous query. For now, constraint type attribute should contain value “R”
(reference):

select constraint name
from user constraints
where table name = 'STUDY SUBJECTS' and constraint type = 'R';

This is the structure of the output result set. For you, it should contain 3 rows. However,
the values themselves will differ, whereas they are system generated based on actual server

conditions.
CONSTRAINT NAME

SYS_C007231
SYS_C007232
SYS_C007233

However, by using the previous query, you do not know the original table,
which is referenced. To get references, use the following query. We will now use data
dictionary views prefixed by the A/l and join with the On clause for demonstration purposes.
We will use two data dictionary views, each of them will be used twice (thus, they must
be aliased). The constraint information and table determination are stored in All_constraints,
whereas the attributes defining the relationship are in All_ Cons_Columns. Join operation
between All Cons Columns and All constraints is provided by composition — owner
and constraint_name (if prefix User would be used, Join operation would reflect only
constraint_name attribute). Where clauses conditions ensure that we deal with references
(c_fk.constraint_type = 'R') and the processed table is Study_Subjects (a_c_fk.table_name
='STUDY SUBJECTS"). The result set contains these attributes (in the left-right order):
Column name of the attribute in the table with a primary key.

Column name of the attribute in the table with a foreign key (Study_Subjects).
Name of the primary key constraint.
Name of the foreign key constraint.

AW N —

Lab 14 — Data dictionary views 391

5. Owner of the referenced table (referenced table is referenced by foreign key).
6. Name of the reference table.

select a c pk.column name column name pk,
a_c_ fk.column name column name fk,
a c fk.constraint name constraint name pk,
c_pk.constraint name constraint name_ fk,
c_fk.r owner owner pk,
c_pk.table name table name pk
from all cons_columns a_c_fk
JOIN all constraints c_fk ON a_c_fk.owner = c_fk.owner
AND a _c_fk.constraint name = c_fk.constraint name
JOIN all constraints c pk ON c_fk.r owner = c_pk.owner
AND c_fk.r constraint name = c_pk.constraint name
JOIN all cons columns a c pk ON a c pk.owner = c fk.owner

AND a_c _pk.constraint name = c_fk.r constraint name
WHERE c_fk.constraint type = 'R'
AND a_c_fk.table name = 'STUDY SUBJECTS';

NAME_PK

COLUMN_N:

CONSTRAINT NAME_PK

CONSTRAINT_NAME_FK

TEACHER_ID LECTURER SYS_C007231 SYS_C007212 STUDENT ENG | TEACHER
SUBJECT_ID SUBJECT_ID SYS_C007232 SYS_C007209 STUDENT ENG | SUBJECT
STUDENT_ID STUDENT_ID SYS_C007233 SYS_C007196 STUDENT ENG | STUDENT

Let’s separate the previously defined statement into two parts — primary key and foreign
key management.

In the following example, a list of system identifiers of the foreign key is obtained.
Constraint_name attribute expresses foreign key, r_constraint_name refers to the primary
key when joining. Example deals with Study subjects table. The highlighted name
is the system identifier of the primary key in the Student table.

select uc.r constraint name
from user constraints wuc
join user cons_columns ucc
on (uc.r_constraint name = ucc.constraint name)
where uc.constraint type = 'R'
and uc.table name = 'STUDY SUBJECTS'
order by uc.table name, uc.r_constraint name,
ucc.table name, ucc.column name;

R 0 R A

SYS_C007196

SYS C007209
SYS_C007212

To check it, list the system identifier of the primary key in Student table:

select constraint name
from user constraints
where table name = 'STUDENT' and constraint type = 'P';

CONSTRAINT_NAME

SYS_C007196

392 Lab 14 — Data dictionary views

14.3.6 Listing triggers for a particular table

Before getting the list of the triggers associated with the particular table, create a new one
for dealing with the new value of the attribute student_id of the student table. Then, create
anew one controlling the correctness of the first date attribute value — it must express
the actual date of the new row insert and cannot be changed later (review of the Lab 10 —
Triggers). Subsequently, list the names of the developed triggers? How many triggers
are created? What about their structure and characteristics?

The correct answer is 2 or 3 depending on developing methods, one is Update trigger,
and 2 triggers can be created for Insert (which can also be grouped, whereas the condition
of firing is the same).

Significant attributes of the data dictionary are the following:

e Trigger name.

o Trigger type — defines the time of firing — BEFORE | AFTER
and STATEMENT /| ROW.

o Triggering event — statement that will fire the trigger — INSERT, UPDATE and/or
DELETE.

o Table name — the name of the table that defined trigger is associated with.

e Column_name — the name of the column on which the trigger is defined.

A special attribute influencing firing is just the status. If the trigger is Disabled,
the particular trigger is not fired at all.

select trigger name, trigger type, triggering event,
table name, column_name, status
from user triggers
where table name = 'STUDENT';

14.3.7 Listing developed methods (procedures, functions)

Developed methods are grouped, forming User_objects data dictionary views. Method
type is delimited by the Object_type attribute values — Procedure, Function. Any developed
object information can be obtained, like Sequence, Table, Index, View, Package, Package
Body, etc., using such a view. However, for simplicity, we will highlight only methods.
The query for listing objects owned by the particular user is following:

select object name, object type, created
from user objects
where object type in ('FUNCTION', 'PROCEDURE') ;

OBJECT_NAME ‘ OBJECT _TYPE CREATED

DROP_JOB_PROC | PROCEDURE 10.09.2013
DYN_CUR PROCEDURE 25.03.2013
DYN_CUR_PR PROCEDURE 25.03.2013
FUNCONTAINS FUNCTION 28.03.2013
FUNC_DV FUNCTION 22.10.2015

For clarity, it is helpful to describe also the differences between three-time attributes
of the User_objects data dictionary views. Attribute Created reflects the timestamp
of the object creation, whereas attribute Last DDL time expresses timestamp for the last
DDL or DCL change. The last attribute name is Timestamp and delimits the timestamp
of the object specification.

Lab 14 — Data dictionary views 393

Each object is internally represented by the Object ID, part of the User_objects data
dictionary view.

Let’s create a simple function, which will return the gender of the person using
the personal_id attribute. The solution can look like this (try to develop it alone).

create or replace function Func_gender (p_id char)
return char
is
begin
case
when substr(p_id, 3, 1) in (5, 6) then return 'female';
when substr(p id, 3, 1) in (0, 1) then return 'male';
else return 'unknown';
end case;
end func_gender;

/

Notice that the developed method should cover all cases. Therefore, do not forget to deal
with incorrect data, which can be present in the table. If no Else clause is added, the following
exception would be raised. Moreover, do not forget that string parameters do not contain
the size definition in the method header.

Error at line 1:
ORA-06592: CASE not found while executing CASE statement
ORA-06512: at “KVET.FUNC GENDER”, at line 5

Parameters and properties of the developed method can be obtained using multiple ways.
If you want to get the structure — parameters and return data type of the function — command
Description, respectively Desc can be used resulting in the following output:

desc func gender

Argument Name Type In/Out Default
<return value> CHAR OUT unknown
P ID CHAR IN unknown
P_NAME CHAR OUT unknown
P_SURNAME CHAR OUT unknown

How does it work? Where are the parameters stored? Naturally, in the data dictionary —
User_Arguments view.
There are several attributes. The most important are:
Object_ name.
Argument_name — the name of the parameter.
Position — the order of the parameters in the definition.
Data_type — information about the data type characteristic of the parameter.

select object name, argument name,position,
data type, data length
from user arguments

where object name = 'FUNC_GENDER';
OBJECZJWMWE‘ ARGUMENT _NAME ‘I%MYTHWV DAE{]YPE‘ DATA_LENGTH
FUNC_GENDER | (null) 0 CHAR (null)

FUNC_GENDER | P_ID 1 CHAR (null)

394 Lab 14 — Data dictionary views

When dealing with functions, the first position (value of the position attribute is I) reflects
the first parameter of the function defined by its name and data type, etc. The return data type
is expressed using position = 0, which does not have the argument name (argument_name
is NULL).

For a clear explanation, create a function that is more complex by changing the previously
defined function. Extend it by the name and surname of the person as output parameters.
In this case, the Select statement must be used inside the function. Therefore, do not forget
to check whether the defined parameter value exists if the Select-Into statement is used.
The solution can look like the following (two solutions are mentioned). The gender
of the person is obtained from the personal id value using the decode and substr function.
Ifthe value cannot be obtained, the particular Select statement will return no data.
The exception handler is used to solve the situation by returning “unknown” data.

The first solution uses an exception handler. The second solution checks the number
before the processing itself.

create or replace function Func_gender (p_id char,
p_name out char,
p_surname out char)
return char
is
v_gender varchar2(7);
begin
select decode(substr(p id, 3, 1), 5, 'female', 6, 'female',
0, 'male', 1, 'male',
'unknown'),
name, surname into v_gender, p name, p surname
from personal data;
return v_gender;

exception
when no_data_ found then
p_name := 'unknown';
p_surname := 'unknown';
v_gender := 'unknown';
end;

/

Lab 14 — Data dictionary views 395

create or replace function Func_gender (p_id char,
p_name out char,
p_surname out char)
return char
is
v_gender varchar2(7);
v_count integer;
begin
select count (*) into v_count
from personal data
where personal id = p id;
if v_count = 0 then

p_name := 'unknown';

p_surname := 'unknown';

v_gender := 'unknown';
else

select decode (substr(p_id, 3, 1), 5, 'female', 6, 'female',
0, 'male', 1, 'male',
'unknown'),
name, surname into v_gender, p name, p_surname
from personal data;
end 1if;
return v_gender;
end;

/

Which of the previous solutions will be more effective and less time demanding? Explain
why?

The result of the previous User_arguments query will be the following (it has been
extended by attribute IN_QUT characterizing the mode of the parameters). So now, we get
complex information about parameters.

select object name, argument name, position,
data type, data length, IN OUT
from user_arguments

where object name = 'FUNC_GENDER';
FUNC_GENDER | (null) 0 CHAR (null) ouT
FUNC_GENDER | P_ID 1 CHAR (null) N
FUNC_GENDER | P_NAME 2 CHAR (null) OouT
FUNC_GENDER | P_SURNAME 3 CHAR (null) ouT

The second solution is the result of the Description command (parameters are ordered
based on the position attribute of User_arguments data dictionary view).

ARGUMENT _NAME TYPE IN/OUT DEFAULT
<return value> CHAR OouT unknown
P _ID CHAR IN unknown
P _NAME CHAR ouT unknown
P SURNAME CHAR OuT unknown

Procedures cannot return value using the Refurn command (only OUT parameters
are available). Therefore, there is no row with pesition = 0. Procedure Proc_sex functionality
is the same, but the gender is returned by the OUT parameter (header is listed).

396 Lab 14 — Data dictionary views

create or replace procedure proc sex(p id char, p name out char,
p_surname out char, p_sex out char)

OBJECT_NAME ‘AARGLMIEAWLAMAIE ‘IMMHTHWV IN_OUT DATA_LENGTH

PROC_SEX P_SEX 4 ouT (null)
PROC_SEX P_SURNAME 3 ouT (null)
PROC_SEX P_NAME 2 ouT (null)
PROC_SEX P_ID 1 N (null)

14.3.8 Managing sequences

Information about the sequence status can be obtained using the User_Sequences data
dictionary view. It contains the following attributes (all possibilities of the definition):

Tab. 14.1: User_sequences

Column Datatype NULL Description

SEQUENCE _OWNER | VARCHAR2(30) ESEL Name of the owner of the sequence.
SEQUENCE NAME VARCHAR2(30) ESEL Sequence name.
MIN VALUE NUMBER The minimum value of the sequence.
MAX VALUE NUMBER The maximum value of the sequence.
NOT Value by which sequence
INCREMENT_BY NUMBER NULL is incremented.
CYCLE FLAG VARCHAR2(1) Doe§ sequence wrap around on reaching
- the limit?
ORDER_FLAG VARCHAR2(1) 0Arzeer sequence numbers generated in
NOT
CACHE SIZE NUMBER NULL Number of sequence numbers to cache.
Last sequence number written to disk. If
a sequence uses caching, the number
NOT written to the disk is the last number
LAST_NUMBER NUMBER NULL placed in the sequence cache. This
number is likely to be greater than the last
sequence number that was used.
For principle demonstration, create the following sequence:
create sequence seq id
start with 1000
increment by 1
minvalue 1000
maxvalue 2000
cache 10;

For getting actual state of the sequence, User_sequences data dictionary view will be
used:

select sequence name, min value, max value,
increment by, cycle flag, cache size, last number
from user sequences
where sequence name = 'SEQ ID';

Lab 14 — Data dictionary views 397

SEQUENCE_NAME MIN_VALUE MAX_VALUE INCREMENT_BY CYCLE_FLAG CACHE_SIZE LAST_NUMBER

SEQ_ID 1000 2000 1 N 10 1000

If you get the next value of the sequence, the last number attribute value will be
incremented by 10.

SEQUENCE_NAME MIN_VALUE MAX_VALUE INCREMENT_BY CYCLE_FLAG CACHE_SIZE LAST_NUMBER

SEQ_ID 1000 2000 1 N 10 1010

14.4 Practice

STUDENT
PERSONAL_DATA a= STUDENT_ID Number(6,0) NN (PK)
4= PERSONAL_ID ~ Char(11) NN (PK) 4= PERSONAL_ID Char(11) NN (FK)
NAME Va 2(15) is g= FIELD_ID Number(3,0) NN (FK)
(FK)

4= SPECIALIZATION_ID Mumber(3,0) NN

Number(1,0)

has_contacts

CONTACT

4= CONTACT 1D Integer (PK)

9= PERSONAL_ID Char(11) (FK)
TYPE Char(1) NN
VALUE Varchar2(50) NN

Fig. 14.1: Student submodel — practice

Consider the provided figure (fig. 14.1). For the next practice, try to get all information
from the data dictionary, use the listed figure only for checking the correctness of the result.

N

0 %0

11.

12.
13.
14.

15.
16.
17.

Get the list of attributes, data types, and NULL flags for the table STUDENT.

Get the list of attributes, data types, and NULL flags for the table PERSONAL DATA.
Get the system identifier of the primary key of the table STUDENT.

Get the attributes forming the primary key in the table STUDENT.

Get the attributes forming the primary key in the table STUDY SUBJECTS.

Get the constraint name in the table STUDENT referencing PERSONAL DATA table.
Drop the primary key in the table PERSONAL DATA. Consider the prerequisites
for dropping based on referential integrity.

Create the primary key again with the non-system-generated name.

Check the provided name for the primary key.

. Interconnect table PERSONAL DATA and STUDENT once again with the non-

system generated name.

Get the constraint name for the reference between table PERSONAL DATA
and STUDENT.

List all procedures and functions owned by you.

List all procedures and functions, which are accessible to you, but not owned by you.
Create a sequence for getting the STUDENT ID attribute value. Set the actual
sequence position to the correct value.

Create a trigger for setting the STUDENT ID attribute automatically.

Add the cache (5 values) for the defined sequence.

Get the information about the sequence (like increment, cycle, actual position, ...)
and trigger from the data dictionary. What about the triggering event?

Lab 15 — Reports 399

Lab 15 — Reports

The output of the Select statement is commonly “table” formatted. In this lab, we will
expand the technology by the reports providing various output layouts and formats. By this
lab, the reader will be able to present results in the table, graph or correlated report styles.
He will understand how to configure reports, providing the outputs in PDF documents, HTML
formats or XML. He will also be able to export the reports into Excel, CSV, general delimited
format, textual or XML types.

Remember that it is not enough to have the data and know how to get the required outputs.
The design and the presentation of the results are crucial.

15.1 Overview

The report is an output of the developing tool based on data stored in the database.
In our case, we will deal with the Report extension of the SOL developer tool. Defined report
outputs can be sent to the printer directly or saved in many formats:

e HTML
e PDF

e XML
e CSV

e Microsoft Excel formats (XLS, XLSX)

In principle, the report can be considered the user-friendly formatted output of the Select
statement in the form of a table, graph, binding child tables, and export (e.g., input
for SOL Loader). Thus, the report forms the layer between data stored in the database
and presentations for the management of the company. Whereas each report is currently
evaluated Select statement, each data change is automatically reflected. Therefore, report can
be considered as dynamic performance output. Looking at the history, two report
management streams can be perceived. The first system was based on a report generated
inthe SOL console. Report presentation could be done only in the text form, either
as formatted text or XML. Although the result might be saved (e.g., using SPOOL
commands), subsequent processing, export, and publishing were too complicated due to
editing layout necessity and design problems. Fig. 15.1 shows the example of the report
generated in the console using T/TLE, COLUMN, COMPUTE and BREAK ON commands
encapsulating the Select statement itself. Notice that the following report has been developed
by only one Select statement. Whereas console solutions are not used anymore,
a more sophisticated approach has been proposed.

400

Lab 15 — Reports

Student report 21.e3.2822

Class Student ID Full name Form Avg Best Worst Count

1 501448 Andrej Janci Bc. ©2.83 ©2.00 ©4.00 e3
550127 Rudolf Kovac Ing. 63.00 ©2.08 ©4.00 e2

sdkkkckkkkk

Avg-class 82.92

2 580425 Jaroslav Cipak Ing. 93.32 @1.5e ©4.ee 38
508426 Alojz Gazo Ing. 62.83 ©1.08 ©4.00 32
500431 Zoltan Sim Ing. ©2.54 ©1.00 ©4.00 41
580432 Zdenko Olzbut Ing. ©2.68 ©1.00 ©4.00 36
500438 Miroslav Gmuca Ing. 91.98 ©1.68 ©4.66 24
501319 Branislav Balaz Bc. 92.70 ©2.00 ©4.00 es
501559 Rastislav Kontros Bc. 04.00 ©4.00 ©4.00 el
550867 Lubos Lehotsky Bc. 82.63 ©1.08 ©4.00 e4

sdkkkckkkkk

Avg-class 82.83

Page: 1

Fig. 15.1: Report in a console environment

For this lab and consecutive presentations and publishing on the web, we will use the SOL
Developer tool. Individual reports will be managed locally on the client-side but based

on server data (cloud, localhost or on-premise).

15.2 Environment settings, background

To allow using Oracle reports, it is necessary to enable its processing in the SOL
developer tool by clicking on the View tab and selecting Reports.

Fig. 15.2: Report navigation in SQL developer

Data Modeler

Eile Edit Q APEX Listener

G 08 Bookmarks
CH] Breakpoints

Connections o Cont

* - Eﬂ@ Change Management

a Connect| ﬁ' Components
- ﬂ kve! 4§ Connections
@i | Oy DgA
I+ La
-5
1
-]
&)
| File
?—B‘ @8 Find DB Object
Ia = Log
Gl @ Map View
== h @) Migration Projects
Reports OLAP
2 All Repof [© owa output
& (& Datz [B] Processes
(& Datz T Properties
2 OLA i) RESTFul Services
& Tme A o .

Data Miner

a Dbms Output
Debugger

o e I T R T

+

e ®

Extension Diagnoestics

Ctrl+Shifi-K
Ctri+Shift-R

Cri+Shift-P

Ctri+Shift-L

Ctri+Shifi-l

Lab 15 — Reports 401

Individual report characteristics with the name of created ones are visible in the separate
window.

[Oracle SQL Developer — O x

-{& Data Dictionary Reports
(#-{& Data Modeler Reports
#-{E OLAP Reports

(#-{Z TimesTen Reports

(- {Z User Defined Reports

Reports

(7 All Reports

E {& Data Dictionary Reports
(- {Z Data Modeler Reports
(2 OLAP Reports

(#{Z TimesTen Reports

[# {2 User Defined Reports

Fig. 15.3: Reports window in SQL developer

There are some pre-prepared reports available for you to highlight the opportunities
and power of the reports. There are many categories, and we will deal with only some of them
because our focus is mostly on user report definition creation. The layer Data Dictionary
Reports consists of reports based on the database system characteristics and defined objects
like constraints, indexes, triggers, tables, etc. Let's see the information about the tables
defined by the connected user in the SOL developer session. These data are accessible using
Data Dictionary Reports => Table => User_tables view.

402

Lab 15 — Reports

=+

+

s)

&-8-85

B-8-8

Reports

(Y All Reports
=l-{Z Data Dictionary Reports
&=

{& About Your Database
{Z All Objects
{& Application Express
{& ASH and AWR
{& Database Administration
{& Data Dictionary
& PLsQL
{& Security
{& Scheduler
(& Streams
(& Table
#-{& Columns
+ (& Comments
#-{& Constraints
+ (& Indexes
% (& Organization
+-{& Quality Assurance
(& Statistics
+ {& Storage
+{& Triggers

in

(i)

- iz XML

Fig. 15.4: Report tree in SQL developer

Each table is physically located in the defined tablespace (if not written explicitly, default
tablespace for user objects will be used).

The defined report also consists of the name of all tables created by the particular user,
many characteristics, and associated statistics (e.g., num_rows, blocks, empty blocks, ...).

Statistics themselves provide a really powerful apparatus used by the optimizer to make
decisions about data access. In the past, Analyze functionality has been used. However,
nowadays, it is supported only for backward compatibility. It has been replaced
by the DBMS STATS package, which can be launched either manually or automatically
during the maintenance window. DBMS STATS package is characterized by these methods:

DBMS STATS.GATHER INDEX STATS

-- Index statistics

DBMS STATS.GATHER TABLE STATS
-- Table, column, and index statistics
DBMS STATS.GATHER SCHEMA STATS
-- For all objects in a schema
DBMS STATS.GATHER DATABASE STATS
-- For all objects in a database
DBMS STATS.GATHER SYSTEM STATS
-- CPU and I/O statistics for the system

Lab 15 — Reports 403

Obtaining statistics for the whole schema can be done using the following code. Kvet eng
is the name of the schema (user). “Cascade => true” option forces the database to collect
statistics for all indexes on table/schema.

execute DBMS STATS.GATHER SCHEMA STATS ('KVET ENG', cascade => true);

Obtaining statistics only for one table is reflected by the following code. Person delimits
the table name to be evaluated (fab_name). Parameter ownname characterizes the owner
of the table.

execute DBMS STATS.GATHER TABLE STATS (ownname => 'KVET ENG',
tabname => 'PERSON',
cascade => true);

Actual statistics are stored in the data dictionary views (see Lab 14 — Data dictionary
views), like DBA TABLES, DBA TAB COLUMNS, DBA TAB STATISTICS,
DBA TAB COL STATISTICS, DBA TAB MODIFICATIONS, etc.

Generated statistics include the following information:

e Table statistics
o Number of rows
o Number of blocks
o Average row length
e Column statistics
o Number of distinct values (NDV) in column
o Number of NULL values in column
o Data distribution (histogram)
e Index statistics
o Number of leaf blocks
o Levels
o Clustering factor
e System statistics
o I/O performance and utilization
o CPU performance and utilization

Auxiliary statistics (e.g., extended histograms) specific to a SQOL statement can be
obtained using an SQL profile.

It is important to emphasize that the data are based on statistics, which are evaluated
periodically, so the change in the table will be reflected only after the new statistics
processing, not immediately. It will also be imaged using the following example.

Let’s have the table study_subjects. The cardinality of it is 485 (your results can vary
based on executed data operations).

select count(*) from study_subjects;
AV
| Script Qutput X [Query Result x
A 5) B soL | AlRowsFetched: 1in 0,001 seconds

{} COUNT(®)]
1 485

Fig. 15.5: Cardinality of the table Study subjects (real value)

404 Lab 15 — Reports

If you delete all the data from the table and end the transaction, the cardinality of such
a table will be 0.

delete from study subjects;
commit;

However, existing (original) statistics are still used, so the amount of data in the table
is still 484 (after the statistics collecting, one more row has been inserted. Afterwards, all data
have been deleted. If statistics have not been recollected, they store original values —
cardinality: 484). Consequently, the optimizer will get incorrect data for decision-making.

Therefore, if many changes are performed, it is useful and recommended to set up new
statistics to reflect significant data changes. So, without reconstructing statistics, we will still
get old data, optimizer decisions can be inappropriate.

Tab. 15.1: Table report

TABLESPACE NUM BLOCKS DATE_LAST LAST

AT RN _NAME _ROWS _ANALYZED _ANALYZED

STUDY_SUBIJECT 21.03.2022
S 14:50:55

2.21 days ago

B Oracle SQL Developer : Displays information about either all tables or those tables containing the string that you specify in the Enter Bind Variables dialog box (uncheck Nullin that box to enter a string). - a X
Eile Edit View MNavigate Run Team Tools Window Help
BoHED 90 QO ©- & ®

Connections S wekcome Page G bhesharing Ghsys [histudent eng G soc_poistowna IMPORT [obele_inimica_eng [obeln SYS [Lser Tables bd
+-BT7THD P | @reeshio - Q- @) student_eng -
[Crade Connections. TABLE_NAME TABLESPACE_NAME | LOGGING | } NUM_ROWS | BLOCKS | {} EMPTY_BLOGIS | {} AVERAGE_ROW_LENGTH | {} CACHE |} DATE_LAST_ANALYZED |{} LAST_ANALYZED ||} Pi
& (D locshost 1 PERSOMAL_DATA USERS TES 15 s
& @ tars e = i
& letko_smg 3 STUDY_SUBJECTS USERS TES 84
& 3 priiad_b2 4 ST_FIELD USERS TES s
3 soc_poistovna 5 ST_PROGRAM USERS TES 637
&3 soc_poistovna_be & SUBJECT USERS YES 218
@ soc_poistoma IMPORT 7 SUBJECT YEAR USERS YES 372

= (@ student —
4 £ Tables (Fitered) 8 TEACHER USERS TES 1z

¥ (58 Views.
4 (3 Indexes

2 14:50:55 3 minutes ago NO
2 14:50:55 3 minutes ago NO
4:50:55 3 minutes ago NO
4:50:55 3 minutes ago NO
4:50:55 3 minutes ago NO
4:50:55 3 minutes ago NO

Mmoo E N E®

Feports
& @ Table
¥ (B Counns
& (B Comments
@ Constrants
B Indexes
& Organization
@ Qualky Assurance
B Statistics
{2 Storage
& Tiiggers
(&R ser Synonyms
[User Tables.
@ @M
(@ Data Modeler Reports
#- (2 OLAP Reports

Displays information sbou ather a tables o those tables contaring the string that you specfy in the Enter Bind Varisbles diakog bor (uncheck Nulinthat bo bo enter a string).

Fig. 15.6: Table report

o685

Notice that reports are dynamic. Thus, after obtaining new statistics, particular data are
automatically replaced also in reports.

To focus, evidence rebuild statistics for the current user by executing the
gather_schema_stats procedure of the dbms_stats package. Explanation of the package
methods and parameters is out of the scope of this subject.

exec dbms_stats.gather schema stats(
ownname => '&ownername',
estimate percent => 20,
method opt => 'for all columns size auto',
options => 'Gather',
cascade => true,
degree => 4);

Lab 15 — Reports 405

When executing a previous procedure, you will be prompted to get the username
for who statistics should be recollected. It is based on parameters defined after the & symbol.
In this case, your username should be written to substitute &ownername parameter
with a real value.

Enter Substitution Variable

OWNERNAME:

‘kvet_eng|

OK Zrusit’

Fig. 15.7: Parameter substitution

Then, when looking at the generated report, data will be updated automatically
and will express correct values.
Tab. 15.2: Table report
AVERAGE

TABLE_NAME BLOCKS _ROW
_ROWS _BLOCKS —)pnGrn

STUDY_SUBIJECTS USERS 0 5 0 0

TABLESPACE | NUM EMPTY

When you double-click on the table in the report, you can get the schema of such table
(it is provided by the binding techniques, which will be described later).

COLUMN_NAME DATA_TYPE NULLABLE DATA _DEFAULT COLUMN_ID COMMENTS
I |SCHOOL YEAR |NUMBER(4,0) No (null) 1 (null)
2 |STUDENT ID NUMBER(6,0) No (null) 2 (null)
3 |SUBJECT ID VARCHAR? (30 BYTE) [No (null) 3 (null)
4 |LECTURER CHAR (5 BYTE) No (null) 4 (null)
5 |RESULT VARCHAR2 (1 BYTE) |Yes (null) 5 (null)
6 |EXAM DATE DATE Yes (null) 6 (null)
7 |SIGN_DATE DATE Yes (null) 7 (null)
8 |BCTS NUMBER(2,0) Yes (null) 8 (null)

Fig. 15.8: Report

To get the statement, which forms the report, click on the SQL button to run the report
in SQLWorksheet.

406 Lab 15 — Reports

- @ T B B - (@ kvet_eng@asterix.friunzask ~
& %“?’m‘“ﬂ" 1 5 [Tawespace_name [{} Locama | mm_rows | eLocks [eveTy_sooxs |} averace_row_ievamh | cacre [DATE LasT_anatrzeD [LasT_anaurzen
: b o] ATION_TAB UCITELIA YES 9 4 0 9 N 03.05.16 13 minutes agqd
b L-mml — vcITELIA ¥Es ssess e [45 B 03.05.16 13 minutes agd
& [Moteriskoed view Logs verTELIA ¥ES o s) 0 B 03.05.16 13 minutes agd
@0 Smonyms. UCITELIA ves u s [] 3’ B 03.05.16 13 minutes agq
& [Public Synonyms " UCITELIA YES 18 n 0 B N 03.05.16 13 minutes ag:
: E:”"""’“" - UCITELIA ¥ES 2 5 0 43 N 03.05.16 13 minutes agq
7 .08.
-] s DATA UCITELIA ¥ES “« s [) 5 N 03.05.16 13 minutes agd
& g Edtons UCITELIA ¥ES u s [0 B 03.05.16 13 minutes sad
@ () Appication Express UCITELIA ES € s) 13 N 03.05.16 13 minutes agd
& L8 Java = UCITELIA ¥ES s s 0 M E 03.05.16 13 minutes a9
% gl 1M 0B Repostory 11 5T_pRoGRAM vCITELIA ¥es &7 s) 2 F 03.05.16 13 minutes a9
: lg”““; Ol 2 smen UCITELIA ¥ES n s) 46 W 03.05.16 13 minutes agd
im0] 3 TRl UCITELIA YIS 0 s] 0 N 03.05.16 13 minutes agq
—“—7 14 sUBJECT UCITELIA ¥ES 218 s) 3 B 03.05.16 13 minutes agd
e . . 1S SUBJECT_FREF UCITELIA ¥es 1 s [12§ 03.05.16 13 minutes sgq
& @ Swestes
& @ Storage 16 SUBJECT_YEAR UCITELIA YES 372 L] o 23 N 03.05.16 13 minutes agq
a @ 17 TEACHER veITELIA ¥ES 2 s) %5 N 03.05.16 13 minutes agd
(8 User Symomms
(£7) User Tables.
@0
@ (3 Dota Modeler Reparts n
& @ OUP Repors
& (@ TmesTen Reports U
@ @ User Defined Repor ts.

Fig. 15.9: Getting query forming report

15.3 Filtering, sorting

Let’s go back to the main topic of this lab — user-defined reports. They are managed
by the User Defined Reports part at the end of the Reports segment. The new report is
defined after right-clicking on the item and choosing New Report.

Reports =]
[All Reports

{& Data Dictionary Reports

- {2 Data Modeler Reports

(& OLAP Reports

(& TimesTen Reports

& —

New Folder...

Copy
Paste

Open Report...

Fig. 15.10: New report

The window for the report definition consists of these parts, which are described:
e Name — each report must have a unique name, by which you can find and reference
it in the system.
o Style — table, chart, gauge, code, script, PL/SOQL DBMS Output. For this lab, we
will deal with the tables and chart reports. Now, select the Table option.
e Description — optional, description of the provided functionality.
e SQL statement forming the input data for the report.

Lab 15 — Reports 407

So, let’s create the first simple table report, which will consist of personal and student
data using the following Select statement.

select personal id, name, surname, student id, class, status
from personal data JOIN student using(personal id);

5 Create Report X

[EBviaster Repo 3
oroperty Master Report - student_report [Jadvanced | (2 |8 -|
Name: ‘student_repert ‘
Style: Table -
Description: | [nformation about the personal and student data. |
Tool Tip: ‘
SQL:
=iK4
Select personal_id, name, surname, student_id, class, status
from personal_data JOIN student using(personal_id);
Pomoc Aplikovat’ 2Zrusit’

Fig. 15.11: Report definition

After settings confirmation, a new report will be created, which is visible in the Report
section.
The output of such report is in table form:

PERSONAL_ID NAME SURNAME STUDENT ID CLASS STATUS
1 781015/4431 Peter Roger 550020 3 S
2 791229/5431 Jack Robinson 501333 1 S
3 791229/5431 Jack Robinson 501103 0 K
4 791229/5431 Jack Robinson 501096 0 \
5 800407/3522 Mark Bailey 501402 2 S
6 800407/3522 Mark Bailey 501555 1 S

Fig. 15.12: Report output

Data can be user-managed in the grid, so they can be sorted by choosing attribute names
for sorting criteria definition (ascending, descending). The symbol in the Surname expresses
the selected sorting criterion based on that column.

PERSONAL ID NAME I SURNAME STUDENT ID CLASS STATUS
Fig. 15.13: Data sorting in report

Disadvantage if such sorting criteria definition, only one attribute be used. Thus,
if you select another attribute (e.g., name), it will be sorted by name, not the combination
of the surname and name. That opportunity can be provided by right-clicking on the header
and by choosing the Sort option. In that case, a complex sort criterion can be defined

408 Lab 15 — Reports

(in the first example, it is sorted by two attributes — surname and name, all values are sorted

ascendant. Vice versa, the second example sorts the result set based on personal id (desc)
and student_id (asc)).

&» Sort Columns

Sort Columns
Available Columns Selected Col
SURNAME (asc) (&) Ascending
STUDENT_ID () Descending
CLASS [Nulls First
STATUS N & [InulsLast
®» @
] &
K @
[+ Sort History... Delete Delete Al Select
Pomoc OK Zrusit’

Fig. 15.14: Data sorting in report

£ Sort Columns X

Sort Columns
le Cok 1 d Col
SURNAME PERSONAL _ID (desc) () Ascending
NAME STUDENT _ID (desc) (5) Descending
[Nulls First
STATUS ® 6 [] Nulls Last
» @
] <
K @
[+ Sort History... Delete Delete All Select
Pomoc OK Zrusit'

Fig. 15.15: Data sorting in report

Lab 15 — Reports 409

SURNAME 1B srvpen... cLass starus
921225/7452 Sim Eas 501559 2 S
911001/3623 Mark Vox 501448 1 S
901130/4454 Jack Clever 501003 2 S
900913/3326 Jacob Murgas 550945 0 S
896123/5471 Suzanne Walker 550123 1 S
890608/4543 Jacob Homm 550807 2 S
890310/2145 Arnas Mitchell 501345 2 S
871203/5472 Tom Moore 501201 3 A
870913/3326 Jacob Murgas 501381 2 S
860907/1259 John Young 501414 2 S
860103/2238 John Young 550127 1 S
855122/8569 John Pearce 550698 2 S
850130/3695 Carol Pearce 550545 1 A
841106/3456 Michael Pearce 501512 3 S
840821/8027 Hugo Davis 500425 2 S
840410/6777 Milan Clarke 500426 2 K

Fig. 15.16: Data sorting in report

Moreover, you can filter the result set and search for particular data. It can be done
by clicking on a particular column header. Then, choose the Filter Column item.

NAME ~— SURNAME | CLASS STATUS
1 [921225/7452 Si 2 s
m Auto-fit All Columns >

2 |o11001/3623 Mark QL s

3 [901130/4454 Jack | Auto-fit Selected Column 2 s

4 [900913/3326 Jacob | Columns... 0 s

5 1896123/5471 Suzanne| Sort... 1 S

6 |890608/4543 Jacob Delete Persisted Settings... 2 S
7_|89031012145 Arnas Copy Selected Column Header(s) 2 S

8 [871203/5472 Tom (o]‘;1_}
9 [870913/3326 Jacob (T Cotumn. N

10 [860907/1259 John [Young 501414 2 S

Fig. 15.17: Filtering (1)

In the input box, write conditions based on equality or wildcard. Let’s the filter form

the students in the class = 2.
Filter:CLASS X |

2

Fig. 15.18: Filtering (2)

410

Lab 15 — Reports

Another filter can be based on status = ’S"”.

Fig. 15.19: Filtering (3)

='q

Filter:STATUS [X |

In that case, the result set will be based only on actual students of the second class.
The funnels express defined filters.

| B person... | Name 1| survame || 2stopen... 1 - |
1 [921225/7452 Sim Eas 501559 2 S
2 [901130/4454 Jack Clever 501003 2 S
3 [890608/4543 Jacob Hoom 550807 2 S
4 [8903102145 Amas Mitchell 501345 2 s
5 [870913/3326 Jacob Murgas 501381 2 S
6 |860907/1259 John Young 501414 2 s
7 [855122/8569 John Pearce 550698 2 S
8 |840821/8027 Hugo Davis 500425 2 S
9 [840312/7845 Jack Smith 501469 2 s
10 [830703/7486 Charlie Lewis 500429 2 2
11 [830514/5341 Wiliam Whitel 501319 2 S
12 (8004073522 Mark Bailey 501402 2 S

Fig. 15.20: Report output (1)

String values can also be filtered based on a wildcard, e.g., to get only the actual second
class student list, whose first name starts with the “J” letter, another filter can be added.

In this case — wildcard type is used. The condition would be following:

where name like 'J%'

Therefore, in the input box, the right part of the condition is written — like 'J%'

Filter:CLASS

like 'J%

Fig. 15.21: Filtering (4)

The solution looks like this:

| SURNAME l 2 stupen... | -
1 [901130/4454 Jack Clever 501003 2 S
2 [890608/4543 Jacob Hoom 550807 2 s
3 [870913/3326 Jacob Murgas 501381 2 s
4 [860907/1259 John Young 501414 2 s
5 |855122/8569 John Pearce 550698 2 s
6 |840312/7845 Jack Smith 501469 2 s

Fig. 15.22: Report output (2)

Lab 15 — Reports 411

Individual filters can be removed at once (right-click on the header and choose Remove
All Filters) or individually based on the header of the particular column (right click
of the particular column header and choose Filter column...):

Filter:CLASS n

Remove (like '1%")
Fig. 15.23: Removing filtering option

If only one filter is removed, other ones will continue to be defined so that the result set
will consist of actual (status = “S’) second-class students:

| B person... | NAME | SURNAME l" STUDEN... | - |
1 921225/7452 Sim Eas 501559 2 S
2 1901130/4454 Jack Clever 501003 2 S
3 |890608/4543 Jacob Hoom 550807 2 S
4 [890310/2145 Arnas Mitchell 501345 2 S
5 870913/3326 Jacob Murgas 501381 2 S
6 860907/1259 John Young 501414 2 S
7 855122/8569 John Pearce 550698 2 S
8 840821/8027 Hugo Davis 500425 2 S
9 840312/7845 Jack Smith 501469 2 S
10 [830703/7486 Charlie Lewis 500429 2 S
11 |830514/5341 Wiliam Whitel 501319 2 S
12 (800407/3522 Mark Bailey 501402 2 S

Fig. 15.24: Report output

Dealing with NULL values in the filter and sorting criteria is another characteristic,
which can, however, cause some problems. Therefore, we will explain it using the example.
In the previous text, a report has been based on INVER JOIN between personal_data
and student table. Thus, if the person is not referenced in the student table, such person will
not be part of the result set at all. To remove this restriction, create a new report
based on OUTER JOIN - all personal_data should be listed regardless of the row existence
in the student table.

412

Lab 15 — Reports

n

=» Create Report

Property

Pomoc

Master Report - student_report_outer Advanced
Name: [smdent,raport,mmr
Style: [rabie =

)

Desaripton: [outer jon

ToolTp: |

SQL:
¢

Select perscnal_id, name, surname, student_id, class, status
From perscnal_data LEFT JOIN student using(personal_id)

[E]

Apikovat

2rusit’

Fig. 15.25: Report definition

The result set consists of all personal data (used attributes — personal_id, name,
surname), and if possible, it will also contain student data. Thus, if the interconnection cannot
be done, it will have NULL values in the student part.

PERSONAL _ID NAME SURNAME STUDENT _ID CLASS STATUS

1 601224/6526 Michael Flower (null) (null) (null)

2 601224/6537 (null) (null) (null) (null) (null)

3 740210/6525 Carol Matiasko (null) (null) (null)

4 |740210/6536 Michael Flower (null) (null) (null) Y,
5 781015/4431 Peter Roger 550020 3 S

6 |791229/5431 Jack Robinson 501333 1 S

7 |791229/5431 Jack Robinson 501103 0 K

8 [791229/5431 Jack Robinson 501096 0 \%

Fig. 15.26: Report output — managing NULL values

However, how to sort such data with NULL values? Remember that such NULL values
cannot be compared directly, so they must be handled separately. In that case, it is possible
to choose whether NULL values are processed at the beginning or just at the end. Selection
is made using radio buttons in the sorting definition area (in the application, it is modeled
by the checkboxes, but the functionality is the same as radio button functionality, so no more
than one option can be selected). By default, NULL values data are processed at the end
of the list for ascending sorting.

Lab 15 — Reports 413

Available Columns Selected Columns
PERSONAL_ID STUDENT_ID (asc NULLS FIRST) s) Mscending
MAME
SURNAME] s Frst
oass 3
STATUS
» &
4
£
¥ Sort History.—. Delete Delete Al Selact
Pomac oK Trudat’

Fig. 15.27: Managing NULL values

15.4 Hidden columns

The report is associated with the data provided by the Select statement. We can define
table columns aliases, which will be reflected as the name of the attributes in the result set:

select personal id as pid, name, surname, student id, class, status
from personal data JOIN student using(personal id);

PID NAME SURNAME STUDENT_ID CLASS RYZV LA
1 781Q i 431 Peter Roger 550020 3 S
2 791239/§431 Jack Robinson 501333 1 S
3 |791239/§431 Jack Robinson 501103 0 K
4 79122973431 Jack Robinson 501096 0 \%

Fig. 15.28: Report output

We recommend you use aliases for used functions. However, for reports,
it is not necessary.

Hidden columns are part of the Select statement associated with the report but are
not displayed in the result set. They can be used for output formatting or binding to another
report. Columns to be hidden can be removed from the result set by clicking on the data grid
header and choosing the Columns... option.

414 Lab 15 — Reports

name surName | B Zstupen.. crass status
1 [921225/7452 Sim Eas Autoufit All Columns > |
2 [o11001/3623 Mark Vox >
3 |901130/4454 Jack Clever |gautciit Selected Column
4 [900913/3326 Jacob Murgas | _Columns... m::
5 896123/5471 Suzanne Walker Sort...
6 |890608/4543 Jacob Homm Delete Persisted Settings... :
7 [s903102145 Amnas Mitchell Copy Selected Column Header(s) |
8 871203/5472 Tom Moore .
9 [870913/3326 Jacob Murgas Filter Column... T
10 [860907/1259 John Young [s01414 2 s

Fig. 15.29: Hidden column definition

By this choice, you can manage the order of columns in the result set (left part)
and determine attributes to be hidden (right part). Notice that using this option does not
influence the original Select statement at all. So, in the following example, the personal_id
attribute will be hidden.

£ Manage Columns x

Reorder, Hide or Show Columns
Shown Columns Hidden Columns
- | |SURNAME Q
< lsTupenT 1D
b jaass ®
STATUS
& ®
] »
Pomoc oK Zrudit’

Fig. 15.30: Hidden column definition

15.5 Binding multiple reports — Master — Child

As partially mentioned, hidden columns are used for binding results to another report
or its part (child). Let’s have the following task. One report should contain personal data.
The second one should collect information about the student if the person has already been
part of the student data. In this case, the second report is called the child, whereas the results
are dependent on the actual choice (actual selection) in the first report, which is called master.
How does it work? You should create a master report and its child report, which will
be interconnected by the bindings:

Master report — let’s create a person_binding report consisting of name, surname,
and personal_id attributes.

Lab 15 — Reports

415

 Create Report

Property Master Report - person_binding [[] Advanced

Name: person_binding

Style: Table

Tool Tip:

SQL:
e ¢

from personal_data;

Pomoc

select name, surname, personal_id

=]

Aplikovat’

Fig. 15.31: Master report

Now, you can Edit it and add a child report to that defined — right-click on the defined
report and choose the Edit... option.

Open
Open in New Tab
HTML...

Cut

Copy
Delete

Save As...

Fig. 15.32: Master report — edit option

416

Lab 15 — Reports

£+ Edit Report

SQL Query Master Report - person_binding @ 8 -
Child Reports
Binds Name: ‘persnn_blndlng I
Drill Down —
Property E Table =
&H-POF Description: J
Tool Tip: ‘ |
Pomoc Aplikovat’ Zrusit’

Fig. 15.33: Master report — edit option

In this window, you can edit the individual setting of the report. The defined Select
statement can be found in the SQL Query option of the Master report branch. However, now,

we will mainly highlight the Child Reports option.

SQL Query

(Child Reports
Binds
Drill Down

Property
[-PDF

X)

Fig. 15.34: Child report

Child report must also have a unique name (student_binding) and will consist of student
data in our case. Whereas it is associated with the master one, performance should be
dynamic. Thus, if the selection in the master report is changed, it must be automatically

reflected and synchronized with the child report.

&+ Add Child Report

Child Name: |student_binding|

Zrusit’

Fig. 15.35: Naming child report

Lab 15 — Reports 417

Thus, the child report Select statement definition will look like this:

select student id, class, status, first date
from student
where personal id = :PERSONAL_ID;

In this case, the referential integrity provides binding, so the binding is ensured
by the :PERSONAL_ID, defined in the master report. Notice that the binding variable
is prefixed by the colon.

Select statement definition for the child report can be set in this branch direction: Master
report => Child reports => name_of the_child_report => SQL Query.

[=-Master Report
SQL Query
[=}--Child Reports
[=-student_binding
Property
-PDF
Binds
Drill Down
Property
(#--PDF

Fig. 15.36: Child report query
The child report definition window will then look like this:

£ Edit Report

[=-Master Report 2 -
S0 uary SQL Query - student_binding < B -l

&= Child Reports —

= student_binding [[] Show 5QL Variants

Property

where personal id = :PERSONAL ID)

Master Report: person_binding

select name, surname, personal_id
from personal_data

Pomoc Aplikovat’ Zrusit’

Fig. 15.37: Child report query

When the definition is applied, and you choose some cell in the master report, particular
data based on bindings will be shown in the child report.

418

Lab 15 — Reports

1 Michael Pearce 841106/3456
2 |Jack Smith 840312/7845
3 |John Young 860907/1259
4 Carol Pearce 850130/3695
5 Carol Pearce 841201/1248
6 |Wiliam Whittel 830514/5341
7 |Peter Roger 781015/4431
AV
student_binding
@ Refresh: 0 W
STUDENT ID CLASS STATUS FIRST DATE
1 501567 0 E 31.08.06
2 |501319 2 S (null)

Fig. 15.38: Report binding

In the previous example, person William Whittel has been studied twice (with student_id
= 501567 and 501319). On the other hand, when we choose e.g., person Milan Clarke,

he has studied only once.

Jacob Murgas 870913/3326

18 |Jacob Hoom 890608/4543

19 |John Young 860103/2238

20 |Suzanne Walker 896123/5471

21 |John Pearce 855122/8569

22 |Peter Murphy 830914/7748

23 |Milan Clarke 840410/6777

AV

student_binding

@ Refresh: 0 W
STUDENT ID CLASS STATUS FIRST DATE
500426 2 K 12.06.08

Fig. 15.39: Report binding

The evaluation is done automatically.

Just in the binding, we see the significant importance of the hidden column definition.
Indeed, attribute personal_id must be provided by the master Select statement but does not
need to be visible in the result set.

The Hidden column can provide sufficient power. It will be part of the Select statement
but not displayed in the master report result set. Master SOL query will, therefore, contain
personal_id attribute values. However, such an attribute will be invisible to the user report.

Lab 15 — Reports

419

£ Edit Report X

[=-Master Report N —
+--SQL Query SQL Query - student_binding @ [8 ']
[=}-Child Reports X
[=--student_binding [Show SQL variants
+-~Property e e
[-PDF
Binds select student_id, class, status, first_date
. from student
bril Dovn h 1_id = :PERSONAL_ID
Property where personal_id = : .
[#-PDF
Master Report: person_binding
select name, surname, personal_id
from personal_data
Pomoc Apikovat’ Zrusit

Fig. 15.40: Report binding

=+ Manage Columns

Reorder, Hide or Show Columns

Shown Columns Hidden Columns
NAME PERSONAL_ID

@ g

@ &K

& ®

% »

Bomoc

Zrudit'

Fig. 15.41: Managing report

So, the result set (master report) will not contain the primary key of the personal_data
table. However, the binding will be correct.

420 Lab 15 — Reports

1|Michael Pearce

2|Jack Smith

3|John Young A

4|Carol Pearce \ | !
5|Carol Pearce

6| Wiliam Whittel

7 |Peter Roger

A=

student_binding

) Refresh: 0 w7
| srubENT ID | crass | STATUS | FIRST DATE

Fig. 15.42: Managing binding

Be aware, no warning nor exception will be raised to inform the user that binding cannot
be done. However, child report will always be empty as a consequence of impossible binding.

1|Michael Pearce
2|Jack Smith
3|John Young
4|Carol Pearce
5|Carol Pearce
6| Wiliam Whittel
7|Peter Roger

AV

student_binding

@) Refresh: 0 ¥

| stubENT ID | cLASS | starus | FIRST DATE

Fig. 15.43: Managing binding

It is possible to define multiple child reports. However, they must be associated
with the same master report — it is impossible to chain multiple child reports (associate child
report to another child report cannot be done).

Let’s have the master report consisting of teacher information. One child report can
contain information about lectured subjects of a particular teacher. The second one can deal
with guaranteed subjects.

The master report will be based on the following Select statement:

select teacher id, name, surname, department from teacher;

The first report (lecturer_report) will be created using this Select statement:

select distinct school year, subject id, name
from study subjects join subject using(subject id)
where lecturer = :TEACHER ID;

Lab 15 — Reports

421

The second report (guarantee_report) will be created using this Select statement:

select distinct school year, subject id, name
from subject year join subject using(subject id)

where guarantee = :TEACHER ID;

(=} -Master Report
SQL Query
(= Child Reports

(& ectrerrepot K————)

Property
& POF

SQL Query

Property
+--PDF
Binds
Drill Down
Property
+ - PDF

=} -guarantee_report
Il LU

Fig. 15.44: Multiple child reports

The selection on the master report will be synchronized in the child reports.

Lecturer:
| TEACHER ID | NAME | SURNAME | DEPARTMENT
10 KI003 Rachel Vargas DI
11 KI005 Mathias Fortin DI
12 KTKO2 Jacob Demers DTK
13 KDS04 Bill Rosario KTN
14 KTKO3 Suzanne Perreault DTK
15 KTKO4 Owen Boudreau DTK
16 KMTO1 Edie St-Pierre DMT
17 KDS03 Michael Rosario KTN
18 KMME1 John St-Pierre DMME
19 EXO001 Peter Frank EX
20 KIS01 Mathias Ouellet DIN
AV
lecturer_report guarantee report
@ Refresh: 0 w
| ScHOOL_YEAR | SUBJECT_ID | NAME
1 2002 BI10 Java
2 2002 BS01 Operation systems
3 2006 1103 Database systems - administration
4 2002 BAI12 Graphs theory
5 2001 BI30 Language C++
6 2006 BI06 Database systems - the best subject :)

Fig. 15.45: Lecturer report

422 Lab 15 — Reports

Guarantee:
I TEACHER ID I NAME I SURNAME I DEPARTMENT

10 KI003 Rachel Vargas DI
11 KI005 Mathias Fortin DI
12 KTKO2 Jacob Demers DTK
13 KDS04 Bill Rosario KTN
14 KTKO3 Suzanne Perreault DTK
15 KTKO4 Owen Boudreau DTK
16 KMTO1 Edie St-Pierre DMT
17 KDSO03 Michael Rosario KTN
18 KMME1 John St-Pierre DMME
19 EX001 Peter Frank EX
20 KISO01 Mathias Ouellet DIN
AV

lecturer_report guarantee_report

@) Refresh: 0 ¥

| scroor_yE4r | SUBJECT ID | NAME
1 2009 BS11 Unix
2 2005 1103 Database systems - administration
3 2009 IPA2 Internet of things 3
4 2009 IT12 Database and knowledge discovery
5 2005 BS15 Intranet aplications
6 2009 IPAl Internet of things 2
7 2002 BI10 Java
8 2001 BI30 Language C++

Fig. 15.46: Guarantee report

15.6 Graph reports

In the previous section, we have been dealing with reports in the table form. However,
SQOL developer can also provide services to form graphical output using various chart types,
like a bar, pie, line, area, bubble, stock, ...

The following sections contain several examples as the most effective way for modeling
and describing principles. It also expresses the possibilities offered by the SQL Developer
Reports tool. Therefore, create a new report, including records defining the number of times
a person has been a student. For simplicity, we will now work only with Inner Join.
When creating a new report, select the Chart option from the combo box Style.

Master Report - student_graph

Name: student _graph

= K———

Fig. 15.47: Graph report definition

We will use, Bar chart type. Therefore, the Select statement should define three attributes,
which will be reflected in the graph. The first attribute defines the expression in the x-axis

Lab 15 — Reports 423

(if multiple attribute values should be written in the x-axis, they must be formed to the one
string using concatenations), the second attribute denotes the graph legend (it should
be a constant character string). The last attribute of the defined Select statement delimits
the value in the y-axis. Thus, the Select statement will look like this:

select personal id || '-' || name || '-'" || surname,
'number of times, person has been student yet',
count (student id)
from personal data left join student using(personal id)
group by personal id, name, surname;

First of all, let’s see the results in the table form:

I PERSONAL_ID||"-"||N: NAM NUMBEROFTIMES,PERSONHASBEENSTUDENTYET
1 830703/7486-Charlie-Lewis number of times, person has been student yet 1
2 840307/7485-Mathias-Thiss number of times, person has been student yet 1
3 841106/3456-Michael-Pearce number of times, person has been student yet 1
4 |860907/1259-John-Young number of times, person has been student yet 1
5 820101/8452-Thomas-Simson number of times, person has been student yet 1
6 871124/3578-Lucas-Austin number of times, person has been student yet 1
7 871203/5472-Tom-Moore number of times, person has been student yet 1

Fig. 15.48: Table report output

If you choose the Chart option of the Style in the definition, the graph will be created.
In the left part (tree structure), the Property option can be listed with several attributes
and parameters influencing the design of the graph. It consists of these five parts: Data,
Titles, Plot Area, X-Axis, and Y-Axis.

Master Report - student_graph

Fig. 15.49: Report properties

424

Lab 15 — Reports

In the Titles sub-branch, it is possible to format the information to be shown together

with the graph properties themselves — title, subtitle, graph,

also define the font style:

In this part, we can

4
Beds Eo M Graph raport student
B = [oraph report
= Preperty &,
Sata Mgrment Lok =] Font..
Pt drea
- Grh Sbste
s @ [Fcient
e
Mgment et v ot
Gragh Footmote
[[arested o me
Aigrment Font...
send
@ P —
Cobrs B, Badorun
Mgnment (et) Font.
Skupina A Shupina B
Wséria 1 WSéna2 M Sénad MSéna 4 WSk s
cmsted by mk
Bommo. apbovat

Fig. 15.50: Titles property sub-branch

Plot Area delimits the graphic style of the graph — e.g., colors and borders.

5 aste Reert
SQL Query Plat Area - student._graph 2 @ |
b Reserts
ands oo Badm. Badgmond ¥ Graph rsportstucert
orloon
Preperty — @
o
Tites [ok, Lre With [Thimer |
e
b ———
oo B ok Unewdth [Tomer ¥
Data Labels
(]
SaaTos
ETe [Fvae
Seres Options
Cobr sine
S (fire
—————— '
-
——— tcre
I — More
Suginad Sugnat
W Séria 1 I Séria 2 M Séria 3 W Séria 4 W Séria 5
-
oo sbvavat

Fig. 15.51: Plot area property sub-branch

X-Axis, Y-Axis allow the user to set the scale of axes and design of the line characteristics.

Lab 15 — Reports 425

5 Edit Report

= Master Report 2 = I —
<ot Oery Y-Axis - student_graph & | 8 -
Chid Reports 4
Binds Line Width |Thinnest v| Color... N Graph report student
ord Base Line Value 0}s
- Property - 60
Data Axis Title
Titles
Plot Area a
X-Axis 50
g
& PDF
Tick Labels
B vrenreram— 40
Rotation |Horizontal ¥ Font...
Number Formats. ..
30
Scale
[w] Set Automatically
[¥] Set Automatically 0
[#] Set Automatically
[] Logarithmic Scale 10
Pomoc Aplikovat’ =

Fig. 15.52: Y-axis property sub-branch
The following figure shows the output of the defined report.

Graph report student

4

number of times,
Ml person has been
studert yet

1

o0

PR R O E E E E A EE E E EE EE EE E E EE T E
8 2 2 88 38273 383 22 3 38238828 3238383838388
g4 22 28 YB3 8 88 8388 3828822 2 & F 2 3 82§82 38R
S 828 2 p 8 2328 3 88 23 83 8 @ 23 @ =0 &2 =22 8§ 8g 258N
4 82 838 8§ap 28§83 2888582328523 2 284308328
g8 = S 28 8 28 a2 & b o 8 2 2 E p 822 8228 2282818232 &
R R R EEEEEEEEEEEEEREEEEEREEEEEEEREEEEE
2 2 28 5 83832 342888468 388 32F 293843328 Fa
& & &5 B &5 5 8 98 - 8B 88 8B BB 2B d 8 3 4L EE JB RS L LB G
L I I I O I o~ S o S
6 £ £ & 3 4 £ 53 & B O B XL EE EEGSC EELE P EOEE 5 F b £ &£ O
§ § § 5787559 E;s9Fg g E 5% 8 FFETESE LR ¢
82§ 7 871 #5833 8 3 8% 2 g g F ggzxxr 2 3 ¥ I 82 8§ § = g §
B 8 X 8 £ 9 B » ¢ + T 5 5 £ F% 8 T B b H 5 b b I 92 3 ¥ G
P A -] g 2?2 & = 0 O § &4 T I o »» © ¢ 3 & &8 F § o s g @ 3 & = @
b 3§ 23 § r % R 9 438 FE X Qg g5 8 IE T L EE

s 2 8 & 3 ° < 2 g % 3 5 & g g § 3 8§ £ 2 2 5 538 B % : 8 e

oUor 8 L o @ g g & = &2 =523

2 3 8
created by mk

Fig. 15.53: Graph report

As mentioned, such defined reports are dynamic, which can be reflected by the following

schema.

Delete the data about the student with student_id = 501469 from the database. In standard
conditions, it must also be deleted from the study subjects table. However, that person has
not registered any subjects yet. Consequently, such a person will also be naturally deleted

from the report.

426

Lab 15 — Reports

It should be emphasized that Outer Joins are not reflected in this report, and thus, there
will be no data about the people without student information, although such people exist:

select personal id
from personal data

where personal id NOT IN (select personal id from student);

| PERsSONAL_ID

1 601224/6537
2 [880329/1233
3 871124/3578
4 |601224/6526
5 841201/1248
6 |740210/6536
7 |740210/6525

Fig. 15.54: Select statement result set

15.7 Pie graph type reports

Another chart type often used is Pie. In this case, output values projected by the Select
statements are normalized to the 100% range.

Let’s create the report, which will contain proportion characteristics of the students
in the particular study fields (field_id) and specializations (specialization_id). Accordingly,
the defined Select statement should have three attributes. However, compared to the bar
graph type, the order is a bit different. The first attribute specifies the name of the graph
(header description), the second attribute defines the legend, and the last attribute delimits
the number to be modeled inside the graph — count, which will be normalized and expressed

in percentages.

select 'Pie proportion graph of the number of students in
particular fields and specializations',
field name ||', '|| spec name,

count (*)

from student JOIN st field using(field id, specialization_id)
group by field name, spec name, field id, specialization_id;

In the Property option of the Master Report tree branch, the proposed property allows
you to define and change graph structure. In this case, choose Pie in the Chart Type combo

box.

Lab 15 — Reports 427

558682% 2941%

32,35%
B Computer engineering,
M information systems, Information and communication systems
M information systems, Applied informatics
W Management,
Information systems, Decision support systems
M informatics.,
M information management,

B B24%

Pie proportion graph of number of students in particular fields and specializations

Fig. 15.55: Graph report

In the previous example, the 3D effect has been applied, which can be checked
in Property definition:

£ Edit Report

20,00%

Default Colors

Defauit Font.
Default Number Formats...
W Séria 1 Ml Séria 2 Ml Séria 3 M Séria 4 W Séria S
Bomoc Aplikovat Zruit’

Fig. 15.56: Setting 3D effect

Be strictly aware when defining Select statement forming report. During the definition,
there is no automatic syntax and semantics check. Consequently, the report will be invalid,
and data output will be shown (e.g., the chart will be empty).

Let's have the simple example based on the previous example, but the From keyword
is missing in the definition.

select 'Pie proportion graph of number of students in
particular fields and specializations',
field name || ', ' || spec_name,
count (*)
£rem student JOIN st field using(field id, specialization id)
group by field name, spec name, field id, specialization id;

428 Lab 15 — Reports

The result will be an empty graph because no data have been found for evaluation.

No input data

Fig. 15.57: Result of incorrectly defined Graph report

15.8 Line type reports

Line graph type is mainly used for changes and progress monitoring over time. Therefore,
for the needs of observations, we will define a new table with random values.

The sensor_table table will consist of two attributes — value and fime (time
of occurrence). For the simplicity, value attribute will be an integer:

create table sensor table(value integer, time date);
desc sensor_table

Name Null? Type
VALUE NUMBER (38)
TIME DATE

Data values will be generated, provided by the anonymous block. We will generate 100
rows. Inside the block, the dbms_random package is referenced, which has several methods
to be used:

Tab. 15.3: dbms_random methods

Method Description

Returns a random integer greater or equal to -power(2,31) and less

Random than power(2,31).
Generates random string based on the parameters:
e opt— specifies what the returning string looks like:
o v, 'U'- returning string in uppercase alpha characters.
o 'l','L' - returning string in lowercase alpha characters.
o 'a,'A'- returning string in mixed case alpha characters.
String o X', 'X' - returning string in uppercase alpha-numeric

characters.
o 'p','P'- returning string in any printable characters.
Otherwise, the returning string is in uppercase alpha
characters.

e len — length of the string.

Lab 15 — Reports 429

Method Description

Generates random string based on the optional parameters:

o low
e high
Value The function gets a random number, greater than or equal to 0 and less

than 1, with 38 digits precision.
Alternatively, you can get a random Oracle number x, where x
is greater than or equal to Jow and less than high.

Other initialization methods of the dbms_random package:

Tab. 15.4: dbms_random methods

Method ‘ Description

INITIALIZE Procedure | Initializes the package with a seed value.
SEED Procedures Resets the seed.
TERMINATE Procedure | Terminates package.

We will generate random values of the uniform distribution from the interval <1;20),
therefore Value method will be used. Time granularity will be the day. The appropriate code
looks like this:

begin
for i in 1..100 loop
insert into sensor_table
values (trunc (dbms_random.value(l, 20)), sysdate - i);
end loop;
end;

/

Notice, whereas the Value function of the dbms_random package produces real values,
they must be truncated. Otherwise, they will be rounded to the whole part so that the table
would also include values of 20.

To produce the line graph for such data, the following Select statement is defined
for the report. Like always, it is determined by the three attributes in the result set.
The first attribute stores values in the x-axis (attribute #ime), the second attribute is constant
and refers to the legend ('Time values evolution'), the third attribute expresses values
to be shown in the y-axis (attribute value). In this case, values should be ordered to have
an informative value.

select time, 'Time values evolution', value
from sensor table
order by time;

430 Lab 15 — Reports

The results will look like this:

Time values
evolution

0z
9102
9102
0z
0z
wz
0z
0z
0z
oz
0z
0z
oz
0z
oz
0z
0z
0z

0

0
0

0

0

-9 10
9102
910

910
910
-9 L0
9 L0

FaL02

Paoammo oo Poa > @ o3 @ AR EEE R R poamo e
&5 a8 b8 8 & Ehbabbs &6 & bbbbbbbbb bbbbbbb
7 peBB Pe BREBES S 2 5 g RS R R Rk ERE R RN
& 6658 Z L DR hsss B 65585555 % Bhh bbb
2 23RS Pl BHEBBEE38aN2aaB8RE 828R3IB30 w 2URNB828
= 5588 58 Soobboboobooooobo c5obbobooBbo cooBbob00
2 aago aa cocoooogogocgogaoga cgcagoaggoag cocoogag
3 8888 88 288388388838 88888 538888888 8888888
- 2 n e s AR R R AR R ARERE AR 2R zEaseEn PO g
& 66 &S & & EHEGEEEEEEEEEEEE GHEGEEEEE & EHEGESS

Fig. 15.58: Line report

We can remove the time element of the processing by converting the time attribute
to the string.

Then, the report will look like this:

select to_char(time, 'DD.MM.YYYY'), 'Time values evolution', value
from sensor table
order by time;

Also, design parameters like colors, line strength, and so on can be set in the Property
branch.

Let’s extend the previously defined table by another sensor data results.

alter table sensor table add value2 integer;

In this case, generate values for the attribute value2 using interval <1,5).

update sensor table set value2 = trunc(dbms random.value(l, 5));
commit;

Now, we can define multiple graphs inside one line chart (other chart types can also be
used).

Follow the instructions:
1. create a new report, name it (multiple line_chart) with the chart type.

Master Report - multiple_fine_chart ["] Advanced (&

Name: ‘mul tiple_line_chart ‘

St [chart +]

Description: | myjitiple graphs in one line chart

Fig. 15.59: Report definition

Lab 15 — Reports 431

2. Select statement for the definition must contain all data, which will be required
for the reports (sensorial data (attribute value, value2) delimited by the time
attribute). It should also contain constants for legends). The order of attributes is
not fundamental. We will show how to map them to the result set (graph).

select to_char(time, 'DD.MM.YYYY'), value, value2, 'report - valuel’,
'report - value2'
from sensor table;

3. Inthe Property section, choose the Line of the Chart Type combo box.

Property - multiple_line_chart

Chart Type ||_|ne - |

Fig. 15.60: Setting property Chart Type

4. Now, it’s time to map attributes for the graph. This functionality can be set Data
subsection of the Property branch in Master Report:

=-Master Report

[=-Property
|
ities

Plot Area
X-Axis
Y-Axis

Fig. 15.61: Data subsection

5. For this purpose, an active connection to the database must be provided to execute
mapping, so choose the appropriate connection in the right part of the window:

£ Create Report

= R
"‘ﬂs:'op::“ Data - multiple_line_chart Advanced) [[g] kvet_eng@asterix. fri.uniza.sk +]
P
Titles Preview
Plot Area Use Live Data
X-Audis
¥-Aods
Mapping
Fetch Column Names Clear Column Names
Group Senes Value
+ X
@
13
k|
-
»
Pomoc Aplkcovat’ 2ZruSit’

Fig. 15.62: Mapping

432 Lab 15 — Reports
6. Now, the mapping is enabled. However, you must fetch column names available
from the associated Select statement (click on the Fetch Column Names button):
B Create Report
- “_‘”:;:‘:t Data - multiple_line_chart advanced (@ | (@] kvet_eng@astern. fr.unza.sk v
:‘::” Use Live Data _; M
| Fetch Comn Hames chamm] w
Group Senes Value .., m
+ X M
:v‘
H
Pomoc Aplikcovat Zrudt’
|
Fig. 15.63: Mapping
7. Fill the Mapping section of the data grid. The first column defines the attribute
to be processed in the x-axis. The second column represents the legend,
so use constants. The last (third) column of the data grid delimits the attribute
association for the y-axis.
8. We will create two graphs inside one chart. In our case — attribute #ime with removed

Fig.

time spectrum (only day, month, and year are processed) is used for the x-axis,
another axis (y-axis) will be defined by sensorial data — attributes value, value?2.
Thus, the data grid for mapping will look like this:

Mapping
Fetch Column Names Clear Column Names
Group Series Value

"TO_CHAR(TIME,... "REPORT-VALUE1"™ "VALLUE"

"TO_CHAR(TIME,... |"REPORT-VALUE2'" |"VALUE2"

15.64: Mapping

Apply changes and create a report. By default, the valuel of the report will have a red
color, value? will be shown in blue color; however, the settings can be changed
in the Plot area of the Property branch.

433

Lab 15 — Reports

Skupina E
Zrudt
w-ieport - value!
wreport - value

Séria 5

27.01 2016
20.01 2016
31.01.2018
02022016
04.022016
06.022016
08.022016
10022016
12022016
14022016
16.022016
18022016
20022016
22022016
24022016
26022016
28022016
01.032016
03.032016
05032016
07.03.2016
09.032016
11.032016
13032016
15032016
17.03.2016
19.03.2016
21032016
23032016
25032016
27.03.2018
20032016
31.032016
0204 2016
04.04 2016
06.04 2016
08.04.2016
10.042016
12042016
14.04 2016
16.04.2016
18.04.2016
20042016
22042016
24042016
26.04 2016
28042016
30042016
02052016
04052016

Shupina D

Apikovat’

M‘“ MN

11. Optionally, you can associate a separate y-axis scale with the changing Chart Type

Skupina C

=mSéria 1 meSéria 2 smSéria 3 e Séria 4

Skupina A Shupina B

1

Line Width

Line Type

L

Line
Line

ine
Line
Line

Line Width |Thinner +
Line Width |Thinner +

ﬂ

Color
Plot area property

Multiple graphs

| Value
Fitline
MNone
None
None:
None
None

tical Grid

Forzonts Gng
v

Verti

v

Data Tips
| Text

¥ senes Optons

Master Report
SQL Query
Chid Reports
Binds
Dril Down

2]

Property
Data
Plot Area
¥-Axs
POF
Pomoc
Fig. 15.65:
10. Finish

by
v

z © w o @ ©) =)

to Line Dual Y. These settings can be found in the Property branch.

Fig. 15.66

434 Lab 15 — Reports

F% Edit Report y
=-Master Report 2
- -
SQL Query Property - multiple_line_chart v 8
Child Reports
Binds [Chart Type [Line - Dual Y Er M an | 64
Drill Down INg
& T Style |
& PDF 70 56
|Default - [] Gradient [] 30 Effect
Revert to Defauits for Style . 48
|| so 40
Default Grid
[] Defautline Width [Timner ~ £ =
30 24
Default Colors
Foreground. Background. = =
10 8
Default Font...
0 - 1]
Default Number Formats... Skupina A SkupinaB SkupinaC SkupinaD Skupina E
Il Séria 1 @ Séria 2 # Séria 3 b Séria 4 ¥ Séria 5
Bomoc Aplkovat’ Zrusit
4

Fig. 15.67: Chart type

12. The result (y-axis scale for the value will be 0-21 (by default, it is set automatically
based on provided data), and the y-axis scale for the value2 will be 0-5).

M"M il

w

Fig. 15.68: Multiple graphs

15.9 Three-dimensional (3D) graph types

We can define three-dimensional (3D) graph reports. Let’s have a simple example.
We want to get the number of students for each class and study field. So, the Select statement
will be like this:

select field id, class, count(*), field name
from student join st field using(field id, specialization_id)
group by field id, class, field name;

We want to get the text form (field_name), so join the student table with the st_field table.

Lab 15 — Reports

435

» Create Report

=
- Property Master Report - 3D_chart [Advanced [@ .]
Name: |33_Ehart J
Description:
Tool Tip: |
sqL:
B¢
Select field_id, class, count(*)
From student join st_field using(field_id, specialization_id)
Group by field id, class:
Pomoc Aplikovat’ Zrusit’
Fig. 15.69: Report definition
The definition consists of these steps:
1. Choose the 3D-bar for the Chart Type.
Property - 3D_chart || Advanced (&

Chart Type (30 -Bar

Style

Revert to Defaults for Style

Default Grid

Default Colors

Default Font...

[] Default Line Width

[¥] Grad

Fig. 15.70: 3D-bar graph definition

436 Lab 15 — Reports

2. Map the attributes to the graph visualization definition:

Mapping
Fetch Column Names Clear Column Names
Group Series Value
"CLASS™ "FIELD_NAME™ "COUNT(®)"

Fig. 15.71: Mapping
3. Result:

Informatics
Information systems

Computer engineering

Information management

Fig. 15.72: 3D-bar Graph report

15.10 Binding multiple reports of various types

In the previous part of this section, we have experienced the principles of multiple reports
binding. It was based on two or more table reports (one is master, the rest of them
are children). In principle, it is possible to build child reports not only by using table form.
We can use any style type. Now, we will show the chart reflecting the actual selection
in the master table.

The master report of the example will be based on personal data and student information
— name, surname, and student_id. Child report will be based on student id and will reflect
the number of registered subjects for each school year.

Master report Select statement:

select name, surname, student id
from personal data join student using(personal id);

Lab 15 — Reports 437

Master report Style should be set to Table:

Master Report - student_binding ¢ |8 -

Name: 'smdent_bn'h'\g

[Stie:__[rabe T K———

Fig. 15.73: Setting style

Child report Select statement (it must be bonded):

select school year, 'subjects registration for student: ' || student id,
count (*)
from study subjects
where student id = :STUDENT ID

group by school year, student id;

Child report Style should be set to Chart. Such settings can be found using this tree path:
Master Report => Child Reports => name_of child:

£ Edit Report
= Master Report h' — = - : 5 =
SQL Query Repert - reg_swbjects v |
(= Child Reports .
SR eg_subjects Name: [reg_subjects
SQL Query =
el | K/
&-PDF Description: [
Binds
Drill Down
Property
&-POF
Tool Tip:
Pomoc Aplikovat’ Zrusit’

Fig. 15.74: Setting style

438 Lab 15 — Reports

Chart type can be then changed in the Property section of the Child Reports node:

£ Edit Report

E Master Report \ a
SQL Query R AL < 8
= Chid Reports
- reg_subjects [crort Tvpe [par - verscal custer -]Q
SQL Query
R ropert Style
&-PDF —_
Binds Default - [v| Gradient [3D Effect

Default Grid

(] DefaultLine Width |Thinner ~

Default Colors
Foreground... Background... ,
Defauit Font...
ol _ Ll
Default Number Formats... Skupina A Skupina B
W Séria 1 Il Séria 2 Il Séria 3 Wl Séria 4 | Séria 5
Pomoc Aplkovat’ Zrudit’

Fig. 15.75: Setting properties of the child report

The result of the binding is performed by clicking on the master report cell or row.
The particular graph will be redrawn automatically.

7 nave [} surnane [} sTupenT o |

1 Peter §50020
2 Jack Robinson 501333
3 Jack Robinson $01103
4 Jack Robinson 501096
5 Mark Bailey 501402
6 Mark Bailey 501555
7 Thomas Hall 500432
8 Thomas Simson 500433

kv

rea_subjects

[Refresh: 0 =

3

g Subiects registration
for student: 550020

1]

1999

Fig. 15.76: Report output (binding)

15.11 Exports

Defined reports can be exported to multiple formats, which provide great techniques
for presentations, evaluations, and post-processing. Moreover, the Reports module allows
you to create various export formats for subsequent use in other database systems
and applications.

Lab 15 — Reports 439

For simplicity, exactness, and clearness, we will deal with reports based on table data
(personal_data and student) joined using Left Outer Join:

select personal id, name, surname, student id, class, status
from personal data LEFT JOIN student using(personal id);

We can store the results of the report physically in the file. So, create such a report,
execute it and on the generated table report, right-click and select the Export... option.

connections - (D startPage (2 kvet_eng@asterix.fiuniza.sk | (5] student_report_outer
- @7 H B> | {2 Refresh: 0 - 1 Q-

L) Queues {s ersonaL_ [{} nave [} surname [sTupen..]{ cass [{ satus

#-{F8 Queves Tables

s = 5 1 830301/7789 Michael Simson 500422 0K

-1l Triggers 2 831002/8463 ¥23 0E

(8 Crossedition Triggers s - Save Grid as Report...

& 4 840307/7485 : ; 24 2K

E ‘E Types Single Record View...

] mSewences 4 840821/8027 25 25

Y Count Rows...

@ [Materialized Views 5 840410/6777 Find/Highlight. 26 2K

. ok Fi ighlight...

& (A Materialized View Logs 683091477748 i 27 0K

r] [Q Synonyms S Py Publish to APEX...

i Publc Symonyms ' : —

&-(@ Database Links 8 830703/7486

£ {E Public Database Links 9 831204/7766 Mathias Taylor 500430 ov

{7 Directories 10 840409/7900 Milan Clarke 500431 2K

Fig. 15.77: Exporting the report

A new window will be created, allowing you to define the format in which the report
should be exported. There are multiple types, which can be selected (combo box named
Format). Therefore, we will describe only the most significant of them:

=» Export Wizard - krok 1z 2

Source/Destination

T Source/Destination
« Export Summary

@

S —
Line Terminator: |environment default |+

Table Name: [EXPORT_TABLE |

[] Include Commit Every IIDO—% fone
s s s

File: [C: \Users\Marek\export.sql Browse...

["] Proceed to summary.

Fig. 15.78: Export wizard

440 Lab 15 — Reports

15.11.1 CSV format

CSV (Comma Separated Values) file format has been proposed for data exchanges
between various applications and systems. Such a file consists of a non-limited number
of records (rows) delimited by the new line symbol. Each attribute (column) of the record
is usually bounded by the comma (,), semicolon (;), or tab. Usually, each record has the same
number of columns. Column values can be optionally enclosed by the quotation marks (" ").
The main advantage of this format is based on allowing multiple system data transformations
preparing data as input to another system. Notice that the CSV format is not strictly defined.
There is no strict specification for it.

Source/Destination

Source [Destination

-
T
|

7

Export Summary

[v] Header

Line Terminator: [environment default [:J

Left Endosuyre: C[El' Right Endosure: | -|
.
s s o st o

[-
File: |C:\Users\Michal Kvet\export.csv

["] Proceed to summary.

Fig. 15.79: CSV export

Optionally, you can select whether the header will be included or not (Header checkbox).

Lab 15 — Reports 441

After selecting CSV in the Format combo box, also define the file path for the export
and click on the Next button, which provides an export summary:

Export Summary

[= Export Summary
E} (== Connections
a Source: asterixkKVETeng
B Target Options
: B Single File: C:\UsersMichal Kvet\export.csv
-E@ Encoding: Cp1250
ER
e Format: CSV
o Header
-5 Delimiter: ,
- Left Enclosure: ™
-E@ Right Endlosure: ™
-3 Line Terminator: environment default
3 Data Objects

-
¥ Source Destination

I
i Export Summary

Dokonéit’

Fig. 15.80: Export wizard

Click the Finish button, and the file is automatically created in the destination folder.

"PERSONAL_ID", "NAME", "SURNAME", "STUDENT ID","CLASS","STATUS"
"601224/6526", "Michael", "Flower",,,""
"601224/6537","","",,,""
"740210/6525", "Carol", "Matiasko",,,""

"740210/6536", "Michael", "Flower",,,""
"781015/4431", "Peter", "Roger", 550020,3,"S"
"791229/5431","Jack", "Robinson",501333,1,"s"

In this case, NULL values are represented by empty strings.

15.11.2 Delimited format

Generalization of the CSV format provides a Delimited file format type. Possible types
for the value of the property Delimiter are comma (,) pipe (1), semicolon (;), tab,
whitespace, space, ctc. Values themselves can be enclosed using the following symbols:
quotation marks (" "), apostrophes (' ') parentheses (()), <, >, square parentheses ([]),
or no special symbol can be used (none option). A line terminator can be defined based on
the environment to be used, like <LF> for Unix or by <CR> <LF> for Windows. For this
example, select Pipe (|) for property Delimited and none for Left and Right Enclosure.

442 Lab 15 — Reports

Source/Destination

Source/Destination

-
I
w

Export Summary

C

(

Format: delimited Header

Delimiter: [:B Line Terminator: |environment default :
Left Endosure: [:B Right Endlosure: =
G

soe S

File: [C:\Users\Mid'nal Kvet\export.dsv

Proceed to summary.

Fig. 15.81: Data export

Again, click the Next button and Finish button.
This is the input file for SOL Loader.

601224/6526|Michael |Flower| | |
601224/6537 |||

740210/6525|Carol |[Matiasko] | |
740210/6536|Michael |Flower| | |
781015/4431 | Peter |Roger|550020|3|S
791229/5431|Jack|Robinson|501333[1|S
791229/5431|Jack|Robinson|501103|0|K
791229/5431 | Jack|Robinson|501096|0|V

The defined format is well known for you, isn’t it? Where has that format been used?

15.11.3 Text format

A special case of the Delimited format is Text. If the Text option of the Format combo
box is selected, the used Delimited option is automatically selected to Tab. The user
can define Left and Right Enclosures and Line Terminator. Values are aligned using tabs,

Lab 15 — Reports 443

so each starting position of the value for the particular attribute is the same. The file format
is *.tsv and can be opened in any text editor (e.g., Notepad or WordPad):

Source/Destination

. Source/Destination

Export Summary

G|

Format: |hext Header

Line Terminator: |environment default El
Left Enclosure: | E| Right Enclosure: [none E|

Save As |Single File v| [] Compressed Encoding: |C|:|1250 v|

File: |C: \Wsers\Michal Kvetiexport. tsv Browse...

[Proceed to summary.

Dalej >

Fig. 15.82: Export wizard
Example of the data file output:

PERSONAL 1D NAME SURNAME STUDENT_ID CLASS STATUS
791229/5431 Jack Robinson 501333 1 S
791229/5431 Jack Robinson 501103 0 K
791229/5431 Jack Robinson 501096 0 A\
800407/3522 Mark Bailey 501402 2 S
800407/3522 Mark Bailey 501402 1 S

Fig. 15.83: Output

15.11.4 Excel format

Reports connected to the Export module can also provide output format in FExcel.
Each column value is in a separate FExcel cell. These values can be changed
using a compatible application. Moreover, they can be automatically mapped to the database
using external table functionality.

The following example will map the result to the *.xlsx output format, which
is characterized by Excel version 2003 and newer releases. *.x/s file format is used for older
versions than Excel 2003.

Export to Excel is also provided by the Wizard, Excel 2003+ or Excel 95-2003 should be
used (Format combo box).

Two generated sheets will delimit the provided output file. The first will contain data
themselves, and the second will include a statement, which generated such a report. The user

444 Lab 15 — Reports

can name these sheets (Data Worksheet Name and Query Worksheet Name input box),
or default names can be used (name Export Worksheet for Data Worksheet Name and name
SOL for Query Worksheet Name).

When you deselect the option True in the Query Worksheet Name check box,
only one sheet will be provided (with the report data).

Source/Destination

Source/Destination

Export Summary

f

Format: excel 95-2003 (xis) * Header

O I —
@ Query Worksheet Name:

Save As |Single File w| [] Compressed Encoding:)'Cp1250'

File: |C:\Users\Michal Kvet\export.xis

[T Proceed to summary.

Fig. 15.84: Export wizard

If NULL values are defined for any attribute, an empty string will be included in the Excel
file.

A B C D E F
1 |PERSONAL_ID NAME SURMNAME STUDENT_ CLASS STATUS
2 |601224/6526 Michael Flower
3 |601224/6537
4 |740210/6525 Carol Matiasko
5 |740210/6536 Michael Flower
6 (781015/4431 Peter Roger 550020 3s
7 |791229/5431 Jack Robinson 501333 18
& [791229/5431 Jack Robinson 501103 0K
9 |791229/5431 Jack Robinson 501096 0v
10 |800407/3522 Mark Bailey 501402 25

Fig. 15.85: Excel export

The second sheet with SQL statement forming export is following:

;u

Export Worksheet | SQL)

Fig. 15.86: SOL worksheet

Lab 15 — Reports 445

A B C D E F G H I J K L

1
2 |select personal_id, name, surname, student_id, class, status from personal_data LEFT JOIN student using(personal_id)

3

Fig. 15.87: SOL worksheet

15.11.5 XML format

XML (eXtensible Markup Language) is the vital format used in many information
systems for data transferring, sharing, or platform changing. It simplifies data availability
and portability. It has been proposed by the consortium W3C and is based on previous markup
approaches.

An XML document contains specific instructions called tags, elements, and entities.
The resulting document is self-describing. Therefore, it is possible to use it to define data as
well as their meaning (semantics).

Tags are not predefined. You must create your own ones, which will describe the relevant

data.

Source/Destination

Source/Destination

!
T
I

o

Export Summary.

—

Line Terminator: |environment Hefault |-
.

Save As [single File | [] Compressed Encoding: [cp1250 +

File: C :\Users\Michal Kvet\export.xml

[] Proceed to summary.

Fig. 15.88: XML wizard

<?xml version='1l.0' encoding='Cpl250' 2>
<RESULTS>
<ROW>
<COLUMN NAME="PERSONAL_ID"><![CDATA[601224/6526]]></COLUMN>
<COLUMN NAME="NAME"><! [CDATA [Michael]]></COLUMN>
<COLUMN NAME="SURNAME"><! [CDATA[Flower]]></COLUMN>
<COLUMN NAME="STUDENT_ID"><![CDATA[]]></COLUMN>
<COLUMN NAME="CLASS"><! [CDATA[]]></COLUMN>
<COLUMN NAME="STATUS"><! [CDATA[]]></COLUMN>
</ROW>

446 Lab 15 — Reports

<ROW>
<COLUMN NAME="PERSONAL_TID"><! [CDATA[601224/6537]]></COLUMN>
<COLUMN NAME="NAME"><! [CDATA[]]></COLUMN>
<COLUMN NAME="SURNAME"><! [CDATA[]]></COLUMN>
<COLUMN NAME="STUDENT ID"><![CDATA[]]></COLUMN>
<COLUMN NAME="CLASS"><! [CDATA[]]></COLUMN>
<COLUMN NAME="STATUS"><! [CDATA[]]></COLUMN>

</ROW>

</RESULTS>

15.11.6 HTML format

Reports can be exported and stored in the HTML format. Thanks to that, websites can
reference such page and provide report values in any form (table, charts, ...). HMTL reports
can be generated by two methods, which also influence the characteristics. The first type
is similar than the other exporting techniques described earlier. It can be provided in multiple
formats like tables and charts, so right click on the report and choose Export... option.
Export Format should be HTML. By this approach, it is possible to search in the result set
using the search input box. However, be aware, generated HTML code is static, so it does
not reflect any change in the database, which generated such HTML. Thus, there is
no connection to the database, the HTML site itself embeds all the data:

<tr>

<th>PERSONAL ID</th>

<th>NAME</th>

<th>SURNAME</th>
<th>STUDENT_ID</th>

<th>CLASS</th>

<th>STATUS</th>

</tr>
<tbody id="data">
<tr>

<td>601224/6526</td>

<td>Michael</td>
<td>Flower</td>

<td align="right"> </td>
<td align="right"> </td>

<td> </td>
</tr>

Lab 15 — Reports 447

file:///C:/Users/Michal Kvet/export.htm

Search

PERSONAL_ID NAME SURNAME STUDENT_ID CLASS STATUS
601224/6526 Michael Flower

6012246537

740210/6525 Carol Matiasko

740210/6536 Michael Flower

781015/4431 Peter Roger 550020 3 5
791229/5431 Jack Robinson 501333 1 5
791229/5431 Jack Robinson 501103 0 K
791229/5431 Jack Robinson 501096 o v
800407/3522 Mark Bailey 501402 2 5
800407/3522 Mark Bailey 501555 1 5

Fig. 15.89: HTML report

Searching using wildcards is available, and the Search box is added automatically. Thus,
if you write ‘Mich’ in the search box, it will be automatically replaced by the “%6Mich%’ —
first example. A similar principle also works for numerical values, e.g. (‘1224 is replaced
by the ‘%61224% — second example).

'fi\a:/ffC:JUser‘..KvEtfapDrt‘htm X

file://fCi/Users/Michal Kvet/export.htm

PERSONAL_ID NAME SURNAME STUDENT_ID CLASS STATUS
601224/6526 Michael Flawer

740210/6536 Michael Flower

830301/7789 Michael Simson 500422 0 K
841106/3456 Michael Pearce 501512 3 s

880329/1233 Michael Smith

Fig. 15.90: HTML report

448

Lab 15 — Reports

W fie/iiCirser. kvevoporthim

il file/f{C:/Users/Michal Kvet/export.htm

1224

PERSONAL_ID NAME SURNAME STUDENT_ID CLASS STATUS

601224/6526 Michael Flower

601224/6537

Fig. 15.91: HTML report

The second way, how to generate HTML export of the report can be processed by right-
clicking on the report name in the Reports window by selecting the HTML... option.

Reports
[All Reports

#)-(Z Data Dictionary Reports

[#-{= Data Modeler Reports
#-{Z OLAP Reports
#-{& TimesTen Reports
[=-{Z User Defined Reports
; n t_studen .
() report_student Edit...
Open
I — '
Cut
Copy
Delete
a Dbms Output Save As...

Fig. 15.92: HTML report

You can select the destination folder and the name of the file (Destination HTML File).
Like all exports, defined file outputs are STATIC, so any change in the database IS NOT
automatically reflected in the output. For the PDF files, it is clear. However, the same
principle is also used for HTML generated files. Therefore, you can select whether the time

stamp of the generation should (or should not) be part of the report header (checkbox Include
Time Stamp in Report Header).

Lab 15 — Reports 449

Connection ’ a asterixkVETeng -

Destination HTML File |C:‘|,Users‘|,l'~‘lid13| Kvetlreport_student_outer-160409-120108. html Browse. ..

[] Indude Time Stamp in Report Header

[] Open When Complete

Aplikovat’

Fig. 15.93: HTML report

The output of this module is an HTML site, which can be published on the web. It will
look like this:

files///C:/ User...409-115058.html = WS

file:///C:/Users/Michal Kvet/report_student_outer-160409-115038.html

report_student_outer

PERSONAL ID NAME SURNAME STUDENT ID CLASS STATUS
601224/6526 Michael Flower null null null
601224/6537 null null null null null
7402106525 Carol Matiasko null null null
7402106536 Michael Flower null null null
781015/4431 Peter Roger 550020 3 5
791229/5431 Jack Robinson 501333 i 5
7912295431 Jack Robinson 501103 a K

Fig. 15.94: HTML report

Using this solution, you can select (set focus on) individual rows. Thanks to that, you can
generate exports based on correlations (bindings). Thus, not only one report will be managed
(master table), but records can also be associated with the child exports. So, add child report,
which will contain all registered subjects of the particular (selected) student
using the following Select statement:

select subject id, name, school year
from study subjects join subject using(subject id)
where student id = :STUDENT_ID;

When you generate export using the second way, after selecting some row, also subject
information of such student will be listed in the second report (child):

select school year, 'subject registration count', count (%)
from study subjects
where student_id = :STUDENT_ID
group by school year;

450

Lab 15 — Reports

8961235471 Suzanne
900913/3326 Jacob
9011304454 Jack
911001/3623 Mark
921225/7452 Sim

Walker
Murgas
Clever
Vox

Eas

550123
550945
501003
501448
501559

MR N D e
m oy o ow @

report_registered_subjects

report_registered subjects_chart

g subiect registration
Gount

Fig. 15.95: HTML report

15.11.7 Exporting to PDF

The last category we will deal with is an export tool for generating PDF files.
This functionality is based on the Export... option:

| PERSONAL ID | NAME | SURNAME | STUDENT ID | crass | srarus
1 601224/6526 Michael Flower (null) (null) (null)
2 [601224/6537 (null) (null) (null) (null) (null)
3 740210/6525 Carol Matiasko (null) (null) (null)
4 |740210/6536 Michael Flower o B o
5 |781015/4431 Peter Roger Save Grid as Report...]
6 [791229/5431 Jack Robinson Single Record View...]
7 |791229/5431 Jack Robinson Count Rows...]
8 791229/5431 Jack Robinson
9 [800407/3522 Mark Bailey Find/Highlight... T
10 |800407/3522 Mark Bailey i APEX Y
11 [810101/8079 Thomas Hall Export...

Fig. 15.96: Exporting to PDF

In the Export window, choose the pdf in the Format

Subtitle, and Keywords can be optionally defined.

combo box. If selected, Title,

Lab 15 — Reports 451

Source/Destination

Source [Destination

-

Export Summary

|

Title: ‘Student report
Subject: ‘Oum' join

Keywords: }smdent; report; outer join

Save As [Single File w| []Compressed Encoding: [cp1250 |
File: [C:V.Jsefs'Mchd Kvet\export.pdf
[Proceed to summary.

Fig. 15.97: Export to PDF wizard

You can optionally define also fonts, headers, footers, etc., to create PDF exact
to your wishes. These settings can be changed after right-clicking on the report name
and selecting the Edit... option.

Reports

23 All Reports repc
@ (2 Data Dictionary Reports

(& Data Modeler Reports E
(B OLAP Reports

#-{2 TimesTen Reparts

Open jn New Tab
HTML...

Cut
Copy
Delete

[cbms Output | Savehs.
Fig. 15.98: Export to PDF wizard

Just the PDF branch part deals with such attributes influencing the design.

452

Lab 15 — Reports

& -Master Report
SQL Query
(@ Child Reports
Binds
Drill Down
Property -

Binary Large Objdtt

Cell Layout
Column Layout
Table Layout
Header and Footer
Security

Page Layout

Fig. 15.99: Export to PDF wizard

Possible design changes can be defined and changed on the following nodes:
e Cell Layout,

e Column Layout,

e Table Layout,

e Header,
e Footer,
e Security,

e Page Layout.

Solution:
Report Date: 5/9/2016 4:54:21 PM

Student Report
PID R),
601224/6526 Michael Flower (null) (null) (null)
601224/6537 (null) (null) (null) (null) (null)
740210/6525 Carol Matiasko (null) (null) (null)
740210/6536 Michael Flower (null) (null) (null)
781015/4431 Peter Roger 550020 3 S
791229/5431 Jack Robinson 501333 1 S
791229/5431 Jack Robinson 501103 0 K
791229/5431 Jack Robinson 501096 0 \%
800407/3522 Mark Bailey 501402 2 S
800407/3522 Mark Bailey 501555 1 S
810101/8079 Thomas Hall 500438 2 K
820101/8452 Thomas Simson 500433 0 E
830301/7789 Michael Simson 500422 0 K
830324/7887 Daniel Gomez 500428 0 K
830420/8088 Daniel Green 500432 2 K
830514/5341 Viliam Whittel 501567 0 E
830514/5341 Viliam Whittel 501319 2 S
830703/7486 Charlie Lewis 500429 2 S
830914/7748 Peter Murphy 500427 0 K
831002/8463 Lucas Powel 500423 0 E
831204/7766 Mathias Taylor 500430 0 \%
generated by: mk page no: 1

Fig. 15.100: Export to PDF wizard

Lab 15 — Reports 453

15.12 Script format (Insert)

SOL developer Report tool allows you to create (generate) the script for inserting data
into the database — particular /nsert statements are generated. There should be a defined name
of the table (Table Name input box) and Terminator. Transaction commit
can also be optionally generated after a specified number of data to be inserted.

Source/Destination

Source/Destination

Export Summary

@

onnrlat: |'nsert -

Line Terminator: |environment default |+

Table Name: [EXPORT_TABLE

kl: Include Commit Every |100 EJ‘ Rows
Saye As [single File -‘ [] Compressed Encoding: {cpusn'

File: |C:\Users\Michal Kvet\export.sql

[] Proceed to summary.

Fig. 15.101: Creating a script

The result (in our case, preview for 3 records) of the processing will provide the following
data (example for inserting into personal data table):

Insert into EXPORT TABLE
(PERSONAL_ID, NAME, SURNAME, STREET, TOWN, ZIP, NATIONALITY)
values ('841106/3456', 'Michael', 'Pearce', 'Kamenna 27',
'Banska Bystrica', '97401', 'SK'");

Insert into EXPORT_ TABLE
(PERSONAL_ID, NAME, SURNAME, STREET, TOWN, ZIP, NATIONALITY)
values ('840312/7845', 'Jack', 'Smith', 'Zelena 9',
'Nove Mesto nad Vahom', '91501', 'SK');

Insert into EXPORT TABLE
(PERSONALilD, NAME, SURNAME, STREET, TOWN, ZIP, NATIONALITY)
values ('860907/1259', 'John', 'Young', 'Slnecne namestie',
'Komarno', '94501', 'SK'):;

As described in this lab, the Report tool provides sufficient power for user-friendly
formatted output, responsible for data changes. This lab does not contain practice, however,
be familiar with such technology and offered options.

Summary 455

Summary

You have reached the end of the textbook. Its goal is to teach you the principles of
relational database systems in the Oracle Cloud environment.

In chapter 1, we have been dealing with the Oracle Cloud Infrastructure - the registration
and database provisioning process. Oracle provides you with an A/ways Free option suitable
for studying and testing. By implementing real solutions, you can migrate the account to the
paid option extending the opportunities and individual resources. Available database types
are autonomous, so most administration activities are managed automatically without your
intervention. Connection details have been discussed, covering the SOL Developer tool.

The basics and principles of the data retrieval process are divided into multiple chapters.
Chapter 2 emphasizes the Select, From, Where, and Order By clauses. In addition, it covers
the Inner Join and set operations. You have been navigated to the problem of a Cartesian
product, caused mostly by improper joining in the case of using composite primary keys.

In chapter 3, data changing operations (/nsert, Update, Delete statements) are discussed,
summarizing all data manipulation language (DML) operations. All executed statements are
part of the fransactions. To make the change durable, it is necessary to approve
the transaction by reaching Commit. The transaction itself ensures the consistency of the data.
Thus, all integrity constraints must be passed during the approval process. Otherwise,
the transaction is refused (Rollback).

Chapter 4 covers the data modeling principles in a theoretical and practical manner. Data
models are created in the Toad Data Modeler environment. The selection was made based
on its versatility across multiple database systems. It can generate models and scripts not only
for DBS Oracle. Moreover, individual models and types are interchangeable. This chapter
has driven you through the table definitions and relationship types, focusing on the primary
and foreign keys. Note that SOL Developer has embedded data modeler for Oracle databases.

In chapter 5, you have been proposed data definition language (DDL), covering Create,
Alter, and Drop commands, which implicitly reach transaction approval (implicit Commit).
You have been focused on user management, table and relationship definitions, and indexes
as key elements ensuring the system's performance.

Robustness of the data loading process in terms of SOL Loader, client, and server import
and export operations was covered in chapter 6. You learned the principles of data object
sharing and privilege management in chapter 7.

The second part of the data retrieval process was discussed in chapter 8, focusing
on the Outer Join operators and aggregate functions by creating the groups in Group By
clause. You have been focused on the relational algebra operations manipulating multiple
sets.

Chapter 9 gave you an overview of the procedural extension of SQL (PL/SQL). Code
blocks can be anonymous, executed only once, or the named notation can be used, allowing
you to reference the methods later. The focus was done on the syntax, code primitives
up to the procedure, and function definitions, optionally covered by the packages. The data
retrieval process inside the block must produce values stored in the variables. As stated,
Select Into type should reference one row precisely, while the cursor provides a general
solution using the assignment loop. Code blocks were also discussed in chapter 10, dealing
with the triggers associated with the individual operations or events.

456 Summary

Chapter 11 provides you with the reference knowledge of relational integrity, supervised
by the transactions.

Stored Select statements using View references were offered in chapter 12.

Date and Time management (chapter 13) is a complex topic related to the individual
elements, time-zone synchronization, regions, NLS parameters, etc. You also obtained the
information about the existing functionality summary, focusing on the principles and
limitations.

A complex data object overview can be got by the system tables. Their principles,
structures, and type division were discussed in chapter 14. After learning it, you are
responsible for obtaining any structural information from the database.

In the last chapter, we returned to the topic of data retrieval, shaped in the report format.
We discussed various styles of reporting and output formats to provide you with robust
power. We have been dealing with the exports, as well.

In conclusion, we would like to draw your attention to further study in database
technology. Oracle APEX (Application Express) is a low-code development platform
enabling you to create robust, secure, and scalable applications deployed in the cloud. APEX
applications are data-driven and can be developed fast using pre-prepared components.
All necessary features and tools are part of the cloud, so you need to log on there and enjoy
the modules. More about the APEX technology can be found in:

e https://beeapex.eu/
bl |
[m] s [m]

"

r

e https://apex.oracle.com/en/

[=]

That’s the end. Thank you very much for your interest in database technology. If would
like to contact the authors, please use the email addresses in the following format:
<name> . <surname> @ uniza . sk

o

https://beeapex.eu/
https://apex.oracle.com/en/

References 457

References

(1]
(2]
(3]
(4]

(6]
(7]

(8]
(9]

[10]

[11]
[12]
[13]

[14]

(21]

ALAPATI, S. — KIM, CH.: Oracle Database 11g: New Features for DBAs and
Developers (Expert's Voice in Oracle), Apress, 2014.

ATZENI, P.- CERI, S.- PARABOSCHI, S.- TORLONE, R.: Database Systems —
concepts, languages & architectures, McGraw-Hill, England, 1999.

BEAULIEU, A.: Learning SQL: Generate, Manipulate, and Retrieve Data, O'Reilly
Media, 2020.

BLOKDYK, G.: Oracle Cloud Infrastructure A Complete Guide, SSTARCooks,
2019.

BRYLA, B.: Oracle Database 12c The Complete Reference, Oracle Press, 2013,
ISBN - 978-0071801751.

CANNAN, S. J.: SOL — The Standard Handbook, McGraw-Hill, 1992.

CUMMING, A. — RUSSELL, G.: SOL Hacks, O’Reilly, 2007, ISBN-13: 978-0-
596-52799-0.

DATE, C.J.: Database in Depth, O’Reilly, 2005, ISBN 0-596-10012-4.

DATE, C.J. - DARWEN H. - LORENTZOS N.: Temporal Data & the Relational
Model, Morgan Kaufmann, 2002, ISBN — 9780080518718.

DATE, C.J. - DARWEN H. — LORENTZOS N.: Time and Relational Theory —
Temporal Databases in the Relational Model and SQOL, Morgan Kaufmann, 2014,
ISBN —-9780128006313.

DUTKA A., HANSON H.: Fundamentals of Data Normalization, Addison Wesley,
London, 1994.

FAROULT, S.-ROBSON, P.: The Art of SOL, O’Reilly, 2006, ISBN 0-596-00894-
4.

FERNANDEZ, 1.: Beginning Oracle Database 12c¢ Administration: From Novice to
Professional, APress, 2015.

FEUERSTEIN, S.: Oracle PL/SQOL Best Practices: Write the Best PL/SQL Code of
Your Life, O'Reilly Media, 2007, ISBN - 978-0596514105.

FEUERSTEIN, S. — PRIBYL, B.: Oracle PL/SQL programming, O'Reilly Media
5th, 2009, ISBN - 978-1449324452.

FINKELSTEIN S., SCHKOLNICK M., TIBERIO P.: Physical Database Design
for Relational Databases, ACM Transactions on Database Systems Vol. 13, No. 1,
1988.

GAN, L.: T-SQL Fundamentals, Microsoft Press, 2016, ISBN - 978-1509302000.
GELLER, A. — SPENDOLINI, B.: Oracle Application Express: Build Powerful
Data-Centric Web Apps with APEX (Oracle Press), McGraw-Hill Education, 2017.
GENNICK J. — MISHRA S.: Oracle SQL*Loader: The Definitive Guide, O'Reilly
Media, 2001, ISBN - 978-1565929487.

GORMAN, T. — JORGENSEN I. — CAFFREY M. — HAAN L.: Beginning Oracle
SQL: For Oracle Database 12c, Apress, 2014, ISBN - 978-1430265566.
GREENWALD, R. - STACKOWIAK R. — STERN J.: Oracle Essentials: Oracle
Database 12¢, O'Reilly Media, 2013, ISBN - 978-1449343033.

458

References

[22]
(23]
[24]
[25]
[26]

[27]

(28]
[29]
[30]
[31]

[32]

[33]

[34]

[40]

[41]

GURRY M.: Oracle SOL Tuning Pocket References, O’Reilly, 2002, ISBN 0-596-
0068-8.

HALPIN, T.: Information Modeling and Relational Databases — From Conceptual
Analysis to Logical Design, Morgan Kaufmann, 2001, ISBN — 9781558606722.
HANSEN, K.: Practical Oracle SQL: Mastering the Full Power of Oracle
Database, Apress, 2020.

HARRINGTON, J.: Relational Database Design and Implementation, Morgan
Kaufmann, 2016, ISBN — 9780128043998.

HELLER, J.: Pro Oracle SOQL Development: Best Practices for Writing Advanced
Queries, Apress, 2019.

HERMANDEZ, M.: Database Design for Mere Mortals: A Hands-On Guide to
Relational Database Design, Addison-Wesley Professional, 2013, ISBN - 978-
0321884497.

CHEN, L.: Query Processing and Optimization in Information-integration Systems,
Stanford University, 2001.

CHEN, P. P.: The Entity-Relationship Model: Toward a Unified View of Data, ACM
Transactions on Database Systems, vol. 1, no. 1, pp. 9-36, 1976.

CHURCHER, C.: Beginning SQL Queries: From Novice to Professional, Apress,
2016, ISBN - 978-1484219546.

JAIN, A. - MAHAJAN, N.: The Cloud DBA-Oracle: Managing Oracle Database
in the Cloud, Apress, 2017.

JAKOBCZYK, M.: Practical Oracle Cloud Infrastructure: Infrastructure as a
Service, Autonomous Database, Managed Kubernetes, and Serverless, Apress,
2020.

JOHNSTON, T.: Bitemporal data, Morgan Kaufmann, 2014, ISBN-
9780124080676.

JOHNSTON, T. — WEIS, R.: Managing Time in Relational Databases — How to
Design, Update and Query Temporal Data, Morgan Kaufmann, 2010, ISBN —
9780123750419.

JURIC, K.: Oracle CX Cloud Suite: Deliver a seamless and personalized customer
experience with the Oracle CX Suite, Packt Publishing, 2019.

KUMAR,Y. - BASHA, N. et al.: Oracle High Availability, Disaster Recovery, and
Cloud Services: Explore RAC, Data Guard, and Cloud Technology, Apress, 2019.
KUHN, D. — KYTE, T.: Oracle Database Transactions and Locking Revealed:
Building High Performance Through Concurrency, Apress, 2020.

KUHN, D. — KYTE, T.: Expert Oracle Database Architecture: Techniques and
Solutions for High Performance and Productivity, Apress, 2021.

KVET, M. - MATIASKO, K. - VESTENICKY, V. - SALGOVA, V.: Rychly vyvoj
datovych modelov a aplikacii v prostredi Oracle APEX, EDIS UNIZA, 2020. ISBN:
978-80-554-1678-6.

KVET, M. —- MATIASKO, K.: Tempordlne databdzy, EDIS UNIZA, 2020. ISBN:
978-80-554-1662-5.

KVET, M.: Database index balancing strategy, 29th conference of open
innovations association FRUCT: Tampere, Finland 12-14 May 2021. ISBN: 978-
952-69244-5-8.

References 459

[45]
[46]
[47]
(48]
[49]
[50]
[51]

[52]

[53]

KVET, M. - KRSAK, E. - MATIASKO, K.: Locating and accessing large datasets
using Flower Index Approach, Concurrency and computation-practice and
experience (Vol. 32, Issue 13). ISSN: 2305-7254.

KVET, M. - MATIASKO, K.: Managing, locating and evaluating undefined values
in relational databases, Information technology and systems, Springer Nature 2021.
ISBN: 978-3-030-68284-2.

KVET, M. — MATIASKO, K.: Trigger performance characteristics in temporal
environment, SIMS 2016: second international conference on systems informatics,
modelling and simulation: Riga, Latvia 1-3 June 2016. — Piscataway: IEEE, 2016.
— ISBN-978-1-5090-2693-7.

KVET, M. — MATIASKO, K.: Temporal transaction integrity constraints
management, Cluster Computing, Springer, 2017, ISSN-13867857.

LACKO, L.: Oracle. Sprava, programovani a pouziti databdzového systému.,
Computer Press, a.s.,Brno, ISBN 978-80-251-1490-2, 2007.

LEWIS, J.: Cost-Based Oracle Fundamentals, Apress, US, 2005, ISBN: 1-59059-
636-6.

LONEY, K. — THERIAULT, M.: Oracle. Kompletni pruvodce tvorbou, spravou a
udrzbou databazi, Computer Press, Praha 2002, ISBN 80-7226-635-7.

MALCHER, M. — KUHN, D.: Pro Oracle Database 18c Administration: Manage
and Safeguard Your Organization’s Data, Apress, 2019.

MATIASKO, K. — KVET, M. — KVET, M.: Databdzové systémy — 1. diel, EDIS
UNIZA, 2018, ISBN: 978-80-554-14881.

MATIASKO, K. — KVET, M. — KVET, M.: Databdzové systémy — 2. diel, EDIS
UNIZA, 2018, ISBN: 978-80-554-1489-8.

MATIASKO, K. — VAISOVA, M. — KVET, M.: Pokrocilé databdzové systémy — 1.
Diel — Umenie programovania a administracie, EDIS UNIZA, 2017, ISBN: 978-
80-554-1311-2.

MATIASKO, K. — VAISOVA, M. — KVET, M.: Pokrocilé databdzové systémy — 1.
Diel — Architektura, programovanie s objektmi a XML, EDIS UNIZA, 2017, ISBN:
978-80-554-1312-9.

MATIASKO, K. — KVET, M. — KVET, M.: Practices for database systems, EDIS
UNIZA, 2017, ISBN: 978-80-554-1396-9.

MCLAUGHLIN, M.: Oracle Database 12c¢ PL/SQL Advanced Programming
Techniques, McGraw-Hill Education, 2014, ISBN - 978-0071835145.

MCLAUGHLIN, M.: Oracle Database 11g PL/SQL Programming, Oracle Press,
2008, ISBN: 978-0071494458.

MELTON, J. — SIMON A.: Understanding Relational Language Components,
Morgan Kaufmann, 2001, ISBN — 9781558604568.

MISHRA, S. — BEAULLIEU, A.: Mastering Oracle SOL, 2nd Edition, O'Reilly
Media, 2004, ISBN - 978-0596006327.

MOLINA, H. — ULLMAN, J. — WIDOM, J.: Database Systems: The Complete
Book, Pearson, 2008, ISBN - 978-0131873254.

MOLINARO, A.: SOL Cookbook: Query Solutions and Techniques for Database
Developers, O'Reilly Media, 2005, ISBN - 978-0596009762.

MOLKEN, R.: Implementing Oracle Integration Cloud Service: Understand
everything you need to know about Oracle's Integration Cloud Service and how to
utilize it optimally for your business, Packt Publishing, 2017.

460

References

[77]
(78]

[79]

[80]

MORTON, K. — OSBORNE K. — SANDS R. - SHAMSUDEEN R. — STILL J.: Pro
Oracle SQL (Expert's Voice in Oracle), Apress, 2013, ISBN - 978-1430262206.
MUSTAFA, O. — LOCKARD, R.: Oracle Database Application Security: With
Oracle Internet Directory, Oracle Access Manager, and Oracle Identity Manager,
Apress, 2019.

NIEMEC R.: Oracle Database 12c¢ Release 2 Performance Tuning Tips &
Techniques, Oracle Press, 2017, ISBN - 978-1259589683.

O’HEARN, S.: OCE Oracle Database SQL Certified Expert Exam Guide, Oracle
Press, McGraw-Hill Education, 2009, ISBN - 978-0071614214.

OZSU, M. T. — VALDURIEZ, P.: Principles of Distributed Database Systems,
Prentice Hall, Englewood Cliffs, N. J., 1999.

PNG, A. - DEMANCHE, L.: Getting Started with Oracle Cloud Free Tier: Create
Modern Web Applications Using Always Free Resources, Apress, 2020.
POKORNY, I.: Databdzové systémy, CVUT, 2013.

PRICE, J.: Oracle Database 11g SQL, Oracle Press, 2007.

RAMAKRISHNAN, R. — GEHRKE, J.: Database Management Systems, Mc Grow
Hill, New York, 2000.

RAMKLASS, R.: Oracle Cloud Infrastructure Architect Associate All-in-One
Exam Guide (Exam 1Z20-1072), McGraw-Hill Education, 2020.

ROSENBLUM, M. —- DELMOLINO, D. - CUNNINGHAM, L. — SHAMSUDEEN,
R.—MCDONALD, C. - CAFFREY, M. - HARPER, S. - HOLM, T. - SANDS, R.
— BERESNIEWICZ, J. — CRISCO, R. — BCHI, M. — BILLINGTON, A. — PETIT,
S. — NANDA, A.: Expert PL/SQOL Practices: for Oracle Developers and DBAs,
Apress, 2011.

ROSENBLUM, M.: Oracle PL/SQL Performance Tuning Tips & Techniques,
McGraw-Hill Education, 2014, ISBN - 978-0071824828.

SCIORE, E.: Understanding Oracle APEX 20 Application Development: Think Like
an Application Express Developer, Apress, 2020.

SIMSION, G. — WITT G.: Data Modeling Essentials, Morgan Kaufmann, 2004,
ISBN —9780126445510.

TEOREY T. — LIGHTSTONE, S. - NADEAU, T. — JAGADISH, H.V.: Database
Modeling and Design — Logical Design, Morgan Kaufmann, 2014, ISBN —
9780123820211.

VALDURIEZ, P. — GARDARIAN, G.: Analysis and Comparison of Relational
Database Systems, Addison Wesley, 1989.

VESTERLL, S.: Oracle Visual Builder Cloud Service Revealed: Rapid Application
Development for Web and Mobile, Apress, 2019.

VIESCAS, J. — STEELE, D. — CLOTHIER B.: Effective SQL: 61 Specific Ways to
Write Better SQL (Effective Software Development Series), Addison-Wesley
Professional, 2016, ISBN - 978-0134578897.

Oracle documentation (docs.oracle.com)

Oracle database ‘ Autonomous database = APEX

Abbreviations 461

Abbreviations
INF The first normal form
2NF The second normal form
2PC Two-Phase Commit
2PL Two-Phase Locking
2VL Two-Valued Logic
3NF The third normal form
3VL Three-Valued Logic
4NF The fourth normal form
SNF The fifth normal form
ABORT Abnormal Termination
ACID Atomicity. Consistency, Isolation, Durability
ACM Association of Computer Machinery
ADT Abstract Data Type
AK Alternate Key
ANSI American National Standards Institute
ANSI /SPARC ANSI/Systems Planning and Requirements Committee
ASM Automatic Storage Management
BCNF Boyce Codd Normal Form
BCS British Computer Society
BLOB Binary Large Object
BNF Backus/Nur form
CACM Communications of the Association of Computer Machinery
CAD/CAM Computer-Aided Design/Computer-Aided Manufacturing
CAD/CAM Computer-Aided Design
CAM Computer Aided Manufacturing
CASE Computer Aided Software Engineering
CBO Cost Base Optimization
CDO Class Definition Object
CIM Computer Integrated Manufacturing
CLOB Character Large Object
CODASYL Conference on Data Systems Languages
CPU Central Processor Unit
CS Cursor Stability
DB2 Database system of the IBM company
DBA DataBase Administrator
DBCA Database Configuration Assistant
DBMS Database Management System
DBS Database System
DBTG Database Task Group
DC Data Communication
DDB Distributed Database
DDBS Distributed Database System
DDL Data Definition Language
DES Data Encryption Standard

462

Abbreviations

Abbreviation Meaning

DKNF Domain-Key Normal Form
DM Data Model

DML Data Manipulation Language
DOC Document Object Model

DSL Data Sublanguage

DTD Document Type Definition
EJB Enterprise JavaBeans

EM Enterprise Manager

ER Entity Relation

ERA Entity Relation Attribute

FD Functional Dependency

FIFO First In First Out approach

FK Foreign Key

HTML HyperText Markup Language
1/0 Input /Output

IC Integrity constraints

ID Identification

IDMS Integrated Database Management System
IMS Information Management System
Informix Database system type

Ingres Database system type

1/0 Input/Output

10 Integrity constraint

IS Information system

IS Intent Share

ISAM Index Sequence Method

ISO International Organization for Standardization
IT Information technologies

IX Intent exclusive

JD Join Dependence

JDBC Java Database Connectivity
JSP Java Server Pages

LAN Local Area Network

LOB Large Object

MVD MultiValued Dependency
MySQL Database system type

NULL Undefined value

02 Database system type
ObjectStore Database system type

ODL Object Definition Language
ODMG Object Database Management Group
OID Object ID

OLAP Online Analytical Processing
OLTP Online Transaction Processing
OMF Oracle Managed Files

OML Object Manipulation Language
00 Object Oriented

Abbreviations

463

Abbreviation Meaning

OODB Object-Oriented DataBase

OOPL OO Programming Language

OUI Oracle Universal Installer

OQL Object Query Language
ORACLE Database system type

ORDBS Object Relation Database System
OSI Open System Interconnection
OSQL Object SQL

PGA Process Global Area

PJ/NF Project/Join normal form

PK Primary Key

PL/SQL Procedural Language/Structured Query Language
Postgres Database system type

Progress Database system type

QBE Query By Example

QMF Query Management Facility
QUEL Query Language

RA Relational algebra

RAC Real Application Cluster

RAID Redundant Array of Inexpensive Disk
RBO Rule-Based Optimization

RDB Relational Database

RDBS Relational Database System

RF Reduction Factor

RI Relational integrity

RID Record ID

RMAN Recovery Manager

ROWID Pointer to the physical row

RPC Remote Procedure Call

RR Repeatable Read

SGML Standard Markup Language
SIGMOD Special Interest Group on Management of Data
SGA System Global Area

SID Oracle System Identifier

SIX Shared Intent Exclusive

SQL Structured Query Language
SRBD DBMS

TCP/IP Transmission Control protocol/Internet Protocol
UNK UNKNOWN

VLDB Very Large Data Base

VSAM Virtual Storage Access Method
WAL Write Ahead Log

WAN Wide Area Network

WEFF Well-Formed Formula

WWW World Wide Web

WYSIWYG What You See Is What You Get
XML Extended Markup Language

464

Abbreviations

Abbreviation Meaning

XPATH Language for defining parts of an XML document
XQUERY XML language for querying XML data

XSLT EXtensible Stylesheet Language

XSD XML Schema Definition

Index 465
Index
Abs 65 Compilation error 52
Access Method 172 Concat 62
Full Table Scan 172 Conceptual modeling 117
Index Scan 172 Condition management 81
Access Rights 292 Constraint naming 160
Add_months 69 Count 225
Afiedt.buf 48 Cp 147
Aggregate Function 225 Create 156
Allen Relationship 374 Create Table 156
Alias Cursor 286
Column 58 Open 287
Table 95 Fetch 287
Alter 162 Close 287
Alternative Key 333 o
Anonymous Block 265 Data Dictionary View 384
Ascii 62 All 384
Assignment 254 Dba 384
Associative Entity 128 User 384
Attribute 122 Dict_Columns 386
Group 122 User_Arguments 393
Multi-value 122 User_Constraints 389
Non-atomic 122 User_Objects 392
Authid current_user 293 User_Sequences 396
Avg 225 User_Tab Cols 387
User Tables 47
Cartesian Product 88 User_Triggers 392
Cascade 334 Data import 193
Case 27569 Data Model 141 84
cd 146 Data Type 152
Ceil 65 Date 34583
Coalesce 77
ColumnName macro 139 Double 48
Column Alias 58 Float 48
Comment 51 Char 48
Integer 48

466 Index
Intrval 353
Interval Day To Second 379 Editor Joe 148
Interval Year To Month 378 Entity 133
Lob 48 Entity-Relational (E-R) 118
Conceptual Model
Long 48 53
Number 48 Exception 275
Timest 48 342
imestamp
353 Execute >3
Varchar2 48 269
Dbms_Output Package 270 Exists 920
Disable 270 Exit 25643
Enable 270 Exp 184
Get_Line 271 Expdp 207
Get_Lines 271 Extract 69
Put 271 File management 147
Put_Line 272 Flashback 166
Dbms_Random Package 428 Floor 66
Dbms_Stats Package 402 For 264
DCL 217] 105
— 156 Foreign Key 158
Decode 77 Functi Z?
unction
160
Default 314 C 266
Delete 104 _
Desc 53 Grant. - 217
Determinant 126 Object Prl?fl?ege 219
Difference 244 System Privilege 217
43 Group By 227
Directory Oracle
Y 185 Having 233
202 Help 50
Directory OS 146
Host 50
Disconnect 54
Distinct 94
Check Constraint 159
DML 99
Chmod 147
- - I
Dual Table 61
- Identifying Key 119
Dynamic Performance View 383
If 255
Imp 184

Index 467
193 Mod 67
Impdp 195
Months Between 70
In %0 My 147
e ol
Bf Tree 168 Next Day 71
Bltma.p 171 Nis_Parameters 358
Functlon-Ba?ed 170 Nls_Date_Format 361
Index Organized Table 172 NIs_Date_Language 360
Reverse 169 359
Initcap 63 Nls_Language 367
Initialization Block 302 Nls_Territory 360
Insert 99 Null 285(2
Insert — Select 101
Null Management 258
Insert — Values 100
Nullif 78
Intersection 245
S e~
O Nvl 78
Joe 148 P
" 235 Nvi2
Anti 239 Order By 83
Full 238 Overloading 301
Inner 35
Package 296
Left 237 Body 208
N'atural 240 Specification 297
ngh.t 238 Password 154
Semi 239 Period 374
61
Last Day 70 Personal id structure 361
Length 64 106
ike rimary Key 372
Linear notation 119 332
Loop 263 Privilege Database 217
Lower 63 Privilege OS 147
Ls 146 Privilege Directory 147
Max 225 —
MaxValueTime 377 Projection >3
Min 225 Pwd 146
Mkdir 147

468 Index

Recycle Bin 166 Rowid 167
Relational Integrity 331 Select 57
Column 338 Select Into 285
Domain 339 Selection 58
Entity 332 Sequence ggz
Referential 333 c | 4
User 338 Nurrval 4
tv
Relationship 141 exva
31 Set Operator 90
Recursive
246 Set Serveroutput On 25546
Cardinality — 1:1 124
. Show User 52
Cardinality — 1:N 125
. Spool 49
Cardinality — M:N 125
— SQL Developer 38
Identifying 123
. SQL Loader 175
Non-Identifying 123
Sqlldr 177
Report 399 Sulol al
Binding 414 Sq pus 5
L script ti
Csv Format 440 QL seript generating
. Start 51
Delimited Format 441
Substr 64
Excel Format 443 S s
Export 438 Sum - o
Graph 422 Super el S5
t
Hidden Column 413 b aCX P
text
HTML format 446 :yS; omex 63
t
Child 414 Sys = 1 aE
tem A i
Mapping 31 Sys em Dna. ysis =
t
Master 414 Sys ém coen 63
t t
PDF Export 450
.
Script Format 453
133
Table 404 Table Management 155
Text Format 442 Table Renaming 164
XML Format 445 Technical Design 114
Restricted 334 To_Date 75
Revoke 220 67
Rmdir 147 To_Char LE
Role 223 To_Number 75
Rollback 54 To_Timestamp 75

Index 469
Toad Modeler } § } Epdate 102
: pper 63
Transaction 107 User 79
Trigger 307 151
DDL 327 User Account 154
Event 329 User Defined Domain 137
New 308 User Management 152
Row 308 Variable 254
Statement 309 View 341
Trim 64 Check Option 347
Trunc 66 Read Only 349
Union 241 While 264

APPENDICES

Appendix A — Model Student

473

APPENDIX A - MODEL STUDENT

Data model Student consists of nine tables (Personal data, Student, Study subjects,
St field, Subject, Teacher, St_program, Subject year, and Contact). It deals with students
(personal, contact, and student data) and their registrations to particular subjects supervised

by teachers.

Table PERSONAL DATA

This table contains information about the details of the person. Such table is connected

to the table Student and Contact.

PERSONAL_DATA
4= PERSONAL_ID Char(11) NN (PK)
is
- - — —
| has_contacts
CONTACT

g= CONTACT_ID Integer (PK)
4= PERSONAL_ID Char(11) (FK)

TYPE Char(1) NN

VALUE Varchar2(50) NN

Fig. A.1: Personal data submodel

Attributes

STUDENT
9= STUDENT_ID Number(6,0) NN (PK)
4= PERSONAL_ID Char(11) NN (FK)
4= FIELD_ID Number(3,0) NN (FK)

Number(3,0) NN (FK)

o g= SPECIALIZATION_ID

¢ personal_id — unique identification of the person.

» attribute personal_id is the primary key of the table.
» the data type is the string with exactly 11 characters. It follows this structure:
* YYMMDD/XXXX where:

e YY is two digits for the year of birth of the person,
e MM is two digits for the month of birth of the person,
e DD is two digits for the day of birth of the person (for women, 50 is added
to the appropriate value),

e “/” _geparator,

e XXXX are four digits for defining the order number of the person.

» Notice that in a standard environment, the personal id value can be divided by 11

without the remainder.
» Example:

= 890811/0134 is the identification for the person born on 11th August 1989 with
order number 0134. It reflects the man.
= 895811/0137 is the identification for the person born on 11th August 1989 with
order number 0137. It reflects the woman.

474 Appendix A — Model Student

« name — first name of the person.
» value is the string with variable length limited to 15 characters.
» Example:

= Karol

s surname — family name of the person.
» value is the string with variable length limited to 15 characters.
» Example:

= Matiasko

% street — street and house number of the person address.
» value is the string with variable length limited to 20 characters.
» Example:

= Moyzesova 20

R/

% town — the town of the address of the person.
» value is the string with a variable limited to 50 characters.
» Example:

* Prievidza

s zip — ZIP code of the address of the person.
» value is the string with a fixed length of 5 numerical characters. Although it
expresses numerical value, it is stored as a string due to possible initial zeros.

» Example:
= 97251
= 01001

R/

« nationality — nationality abbreviation of the person.
» value is the string with a fixed length of 2 characters.
» Example:

= SK.. it expresses “Slovakia”

Primary key
The primary key is attribute personal_id.

Foreign key
The table has no foreign keys.

SQL script for table creation

Create table personal data

(

personal id Char (11) NOT NULL,
name Varchar2 (15),

surname Varchar?2 (15),

street Varchar2 (20),

town Varchar2 (50),

zip Char (5),

nationality Char (2),
primary key (personal id)

)

Appendix A — Model Student 475

Script for the relationship definition

None.

Table data example

Tab. A.1: Personal _data

personal_id name surname street town

841106/3456 Michael Pearce Kamenna 27 Banska Bystrica 97401 SK
840312/7845 Jack Smith Zelena 9 Nove Mesto nad Vahom 91501 SK
871124/3578 Lucas Austin Dolna 12 Cadca 02201 SK
871203/5472 Tom Moore Prievoznicka Ruzomberok 03401 SK
890310/2145 Arnas Mitchell Kosicka cesta Michalovce 07101 SK
911001/3623 Mark Vox Tatranska 22 Poprad 05801 SK
901130/4454 Jack Clever Janka Borodaca 12 Prievidza 97101 SK
921225/7452 Sim Eas Kolarovce 12 Kolarovce 01401 SK
900913/3326 Jacob Murgas Namestie SNP 15 Banska Bystrica 97401 SK
870913/3326 Jacob Murgas Fatranska 13 Zilina 01008 SK
890608/4543 Jacob Hoom Orlove 16 Orlove 01701 SK
860103/2238 John Young Bratislavska cesta 2 Zilina 01001 SK
896123/5471 Suzanne Walker Pivovarska 14/536 Plzen 30100 SK
855122/8569 John Pearce Priecna ulica 35 Bytca 01401 SK
830914/7748 Peter Murphy 147 Vysne Ruzbachy 06501 SK
840410/6777 Milan Clarke Mostna 19/1 Handlova 97251 SK

476 Appendix A — Model Student

Table STUDENT

This table contains details of the student. This table is connected to the tables
Personal_data, Study subjects, and St_field.

PERSONAL_DATA 3 T S B Q
@= PERSONAL_ID __ Char(11) NN (PK g P 0 BT
@= PERSONAL_ID Char(11) NN (FK)
i @= FIELD_ID Number(3,0) NN (FK)
[H- — — — — —©dg= SPECIALIZATION_ID Number(3,0) NN (FK)
| has_contacts = 3 11 s
¥ ! studies_subjects
CONTACT I
@= CONTACT_ID Integer (PK) ! (STUDY_SUBJECTS
@= PERSONAL_ID Char(11) (FK) ! @= SCHOOL_YEAR Number(4.0) NN (PK)
TYPE Char(1) NN ! @= STUDENT_ID Number(6,0) NN (PFK)
VALUE Varchar2(50) NN ! @= SUBJECT_ID Char(4) NN (PFK)
! @= LECTURER Char(5) NN (FK)
STFIELD field_studies :
lg= FIELD_ID Number(3,0) NN (PK) e ‘
[@= SPECIALIZATION_ID Number(3,0) NN (PK)

Fig. A.2: Student submodel

Attributes

% student_id — identification number of the student.
» attribute student _id is the primary key of the table.
» value is the integer with the maximal number composed of 6 digits.
» Example:
= 11111

®,

« personal_id — identification key of the person.
» this attribute is the foreign key to the Personal data table.
» the data type is the string with exactly 11 characters. It follows this structure:
= YYMMDD/XXXX where:
e YY is two digits for the year of born of the person,
e MM is two digits for the month of born of the person,
e DD is two digits for the day of born of the person (for women, 50 is added
to the appropriate value),
e /" —geparator,
o XXXX are four digits for defining order number of the person.
» Notice, that in a standard environment, the personal_id value can be divided by 11
without the remainder.
» Example:
= 890811/0134 is the identification for the person born on 11th August 1989 with
order number 0134. It reflects the man.
= 895811/0137 is the identification for the person born on 11th August 1989 with
order number 0137. It reflects the woman.

« field_id — identification number of the study field.
> the attribute is the part of the foreign key of the table, references St _field table.
» value is the integer with the maximal number composed of 3 digits.
> Example:
= 111

Appendix A — Model Student 477

< specialization_id — identification number of the study specialization of the study field.
» the attribute is the part of the foreign key of the table, references s¢_field table.
» value is the integer with the maximal number composed of 3 digits.
» Example:
= 111

% class — particular class of the student.
» value is the integer with the maximal number composed of 1 digit.
» Example:

= 1

% st_group — value is the identifier for the study group.
» value is the string with fixed length - 6 characters and following structure:
= ABCDEF where:
A is one alphabet character for the faculty,
B is one alphabet character for the location - place of the campus,
C is one alphabet character for the field of the study,
D is one numerical character for the specialization of the study,
E is one numerical character for the class of the study,
e Fis one alphanumerical character for the order number of the group.
» Example:
= 5ZI02A ... is the identifier for the study group of the faculty with number 5
(Faculty of Management Science and Informatics) with a location in town
Z (Zilina) in study field I (Informatics) in the 2nd class and with the order
preference number A (tenth group).

R/

« final_date — value is the last day of the study of the student.
» value has the Date data type.

» Example:
= 25.6.2015
= NULL

°,

+» status — value representing the status of the study of the student.
» value has the Date data type.
» Example:

= S = student (actual),

v E = ended successfully,

= A4 =aborted,

» | =interrupted,

» X = fired due to disciplinary commission decision.

°,

< first_date — value the date of the beginning of the study.
» value is the Date data type.

» Example:
= 1.9.2017
Primary key

The primary key is attribute student id.

Foreign key
Attribute personal_id is the foreign key to the Personal_data table.

478 Appendix A — Model Student

Composite attributes (field id, specialization id) form the foreign key to the St field
table.

SQL script for table creation

Create table student
(

student id Number (6, 0) NOT NULL,
personal id Char (11) NOT NULL,
field id Number (3, 0) NOT NULL,
specialization id Number (3, 0) NOT NULL,
class Number (1, 0),

st_group Char (6),

final date Date,

status Char (1),

first date Date,

primary key (student id)
)7

Script for relationship definition

Alter table student
add foreign key (personal_ id)
references personal data (personal id);

Alter table student
add foreign key (field id, specialization_id)
references st _field (field id, specialization_id);

Table data example

Tab. A.2: Student

. . S ciali
student _id | personal_id field id fﬁ :;(0':: Iitl class | st_group final date status first_date

550020 781015/4431 | 102 0 3 5ZM031 | 5.8.1999 S (null)
501096 791229/5431 | 100 0 0 571000 13.6.2000 \ 20.12.2001
501103 791229/5431 | 100 0 0 571000 13.7.2002 K 23.6.2006
501333 791229/5431 | 200 1 1 5ZSDI11 | 5.9.2006 S (null)
501555 800407/3522 | 101 0 1 5ZP012 10.10.2000 | S (null)
501402 800407/3522 | 102 0 2 5ZM023 | 15.7.2000 S (null)
500428 830324/7887 | 200 3 0 5ZSN00 | 6.9.2005 K 15.6.2007
501567 830514/5341 | 100 0 0 571000 19.7.2005 E 31.8.2006
501319 830514/5341 | 100 0 2 57ZIA21 5.9.2006 S (null)
500429 830703/7486 | 200 3 2 5ZSN23 | 6.9.2005 S 31.8.2007
500427 830914/7748 | 200 3 0 5ZSNOO | 6.9.2005 K 15.6.2007

Appendix A — Model Student 479

Table STUDY_SUBJECTS

This table contains details of courses studied by the student. This table is connected
to the tables Student, Teacher, and Subject.

STUDENT STUDY_SUBJECTS
9= STUDENT_ID Pimben(n.0)} dHiL (K] 9= SCHOOL_YEAR Number(40) NN (PK)
i EERSONALID L N () 9= STUDENT_ID Number(8,0) NN (PFK)
&= FIELD_ID Number(3,0) NN (FK) studies_subjects 3= SUBJECT ID Char(4) NN (PFK)
&= SPECIALIZATION D Number(3.0) NN (FK) [048" "o e Char(s) FO XD

1X_Relationship2 (IX1)

¥
is_studied | achios
SUBJECT i é,
9= SUBJECT_ID Char(4) NN (PK) | ' i
TEACHER
= TEACHER_ID Char(5) NN (PK)

Fig. A.3: Study subjects submodel

Attributes

R/

« school_year — number of the actual school year.
» attribute school year is the part of the primary key of the table.
» value is the integer with the maximal number composed of 4 digits.
» Example:
= 2016 — this number represents the school year 2016/2017

°,

+ student_id — identification number of the student.

attribute student_id is the part of the primary key of the table.

this attribute is the foreign key to the table Student.

value is the integer number with the maximal number composed of 6 digits.
Example:

= 11111

YV VY

+ subject_id — identification number of the subject.
» attribute subject_id is the part of the primary key of the table.
» this attribute is the foreign key to the table Subject.
» value is the string (see table Subject).
» Example:
= 5BI006

« lecturer - identification number of the teacher.
» this attribute is the foreign key to the table Teacher.
» value is the number (see table Teacher).
» Example:
= 33088

480

Appendix A — Model Student

= A — excellent results,

= B —results above average,

= C-results on average,
= D —acceptable result,

= E— results fulfilling the minimum requirements,
» F— failed — further work required.

» Example:
= 15.6.2017
» Example:
= 30.4.2017
» Example:
= 6
Primary key

The primary key
and school year.

Foreign key

Attribute student id is the foreign key to the Student table.
Attribute subject_id is the foreign key to the Subject table.
Attribute lecturer is the foreign key to the Teacher table.

is composite,

SQL script for table creation

< result — value expressing the result of the exam.
» value is the string with a fixed length — 1 character.
» It can hold the following values:

« exam_date — value expresses the date of the exam.

< ects — value is the number of credits for the course.

« sign_date — value represents the date of the evaluation test.

formed by attributes student id, subject id,

Create table study subjects

(

school year
student id
subject id
lecturer
result

exam date
sign_date

ects

primary key

)

Number (4, 0)
Number (6, 0)
Varchar2 (30)
Char (5)
Varchar2 (1),
Date,

Date,

Number (2, 0),
(student id, subject id, school year)

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

Appendix A — Model Student 481

Script for relationship definition

Alter table study subjects
add foreign key (student id)
references student (student id);

Alter table study subjects
add foreign key (subject id)
references subject (subject id);

Alter table study subjects
add foreign key (lecturer)
references teacher (teacher id);

Table data example

Tab. A.3: Study subjects

school_year student_id subject_id lecturer result exam_date sign_date ects
2005 500424 1108 K1001 (null) (null) (null) 5
2005 500424 INO9 KI1001 E 20.12.2005 8.2.2006 5
2005 500424 1P02 KI001 (null) 3.2.2006 (null) 6
2005 500424 IP03 K1001 (null) 22.6.2006 (null) 6
2006 500424 115 KI001 F (null) (null) 5
2006 500424 1108 K1001 F (null) (null) 5
2006 500424 P07 K1001 E 20.12.2006 17.1.2007 5
2007 500424 1108 KI1001 D 5.5.2008 27.5.2008 5
2007 500424 P05 K1001 (null) 23.5.2008 (null) 0
2007 500424 IPN3 KI001 (null) 22.5.2008 (null) 6

482 Appendix A — Model Student

Table ST_FIELD

This table contains details of the study fields and study specializations offered
by the faculty. This table is connected to the tables Student and St program.

STUDENT

EIESCIEE! 9= STUDENT_ID Number(6,0) NN _(PK)

4= FIELD_ID Number(3.0) NN (PR | | fleld_stucies _ ig. PERSONAL_ID Char(11) NN (FK)
9= SPECIALIZATION_ID Number(3,0) NN (PK) a= FIELD_ID Number(3,0) NN (FK)
4= SPECIALIZATION_ID Number(3,0) NN (FK)

related_fo
(ST_PROGRAM |
a- FIELD_ID Number(3,0) NN (PFK)
9= SPECIALIZATION_ID Number(3,0) NN (PFK)
d= SCHOOL_YEAR Char(4) NN (PFK)
9= SUBJECT_ID Char(4) NN (PFK)
CLASS Number(1,0) NN
MANDATORY_TYPE Char(1) NN

Fig. A.4: St field submodel

Attributes

R/

¢ subject_id — identification number of the subject.
» The attribute is the primary key of the table.
» value is the string composed of 4 characters.
» Example:

= BI06

R/

+ name — the name of the subject.
» string value contained a maximally of 180 characters.
» Example:

= Database systems

Primary key
The primary key is the attribute subject _id.

Foreign key
This table has no foreign keys.

SQL script for table creation

Create table subject
(
subject id Varchar2 (6) NOT NULL,
name Varchar2 (180),
primary key (subject id)
)

Script for the relationship definition

None.

Appendix A — Model Student

483

Table data example

Tab. A.4: St _field
field_id | specialization_id field_name spec_name
100 0 Informatics (null)
101 0 Computer engineering (null)
102 0 Management (null)
200 0 Information systems (null)
200 1 Information systems Decision support systems
200 2 Information systems Applied informatics
200 3 Information systems Information and communication systems
201 0 Information management (null)
202 0 Computer engineering (null)

484 Appendix A — Model Student

Table SUBJECT

This table contains details of the subjects offered by the faculty. This table is connected
to the tables Study subjects and Subject year.

SUBJECT
@= SUBJECT ID Char(4) NN (PK)
characterizes is_studied

[SUBJECT_YEAR) [STUDY_SUBJECTS)
d= SCHOOL_YEAR Char(4) NN (PK) d= SCHOOL_YEAR Number(4,0) NN (PK)
4= SUBJECT_ID Char(4) NN (PFK) 4= STUDENT_ID Number(6,0) NN (PFK)
4= GUARANTEE Char(5) NN (FK) 4= SUBJECT_ID Char(4) NN (PFK)

ECTS Number(3,0) NN @= LECTURER Char(5) (FK)

SEMESTER Char(1) NN

ENDING_TYPE Char(1) NN

Fig. A.5: Subject submodel

Attributes

R/

s field_id — this attribute is used as an identifier of the study field.
» integer value composed maximally to 3 digits.
> this attribute is part of the primary key of the table.
» Example:
= 1

R/

« specialization_id — this attribute is used for the identification of the study specialization.
» integer value composed maximally to 3 digits.
» this attribute is part of the primary key of the table.
» Example:
= 2

*,

+ field_name — this attribute expresses the name of the study field.
» string value composed maximally of 40 characters.
» Example:

» Information systems

% spec_name — this attribute represents the name of the study specialization.
» string value contained a maximally of 40 characters.
» Example:

= Data processing

Primary key
The primary key is composite, formed by attributes field id and specialization id.

Foreign key
This table has no foreign keys.

Appendix A — Model Student 485

SQL script for table creation

Create table st field
(

field id Number (3, 0) NOT NULL,
specialization id Number (3, 0) NOT NULL,
field name Varchar?2 (40),
spec_name Varchar?2 (40),

primary key(field id, specialization id)
)7

Script for the relationship definition

None.

Table data example

subject id ‘ name

Tab. A.5: Subject

BA20 Modern approximate methods

BI26 Object programming in Windows
BE16 Business management

BI22 Open source techniques

1E04 Taxes and budget

1HO7 Signal processing 2

BHO08 Automatic control theory 1

1112 Databases and knowledge discovery
BI06 Database systems - the best subject :)

486 Appendix A — Model Student

Table TEACHER

This table contains details of the teachers. This table is connected to the tables
Study _subjects and Subject year.

TEACHER
9= TEACHER_ID Char(5) NN (PK)

| teaches

guarantees

[SUBJECT_YEAR |

[@= SCHOOL_YEAR Char(4) NN (PK) [STUDY_SUBJECTS |

4= SUBJECT_ID Char(4) NN (PFK) = SCHOOL_YEAR Number(4,0) NN (PK)

4= GUARANTEE Char(5) (FK) . — — |@= STUDENT_ID Number(6,0) NN (PFK)
ECTS Number(3,0) NN 4= SUBJECT_ID Char(4) NN (PFK)
SEMESTER Char(1) NN 9= LECTURER Char(5) (FK)
ENDING_TYPE Char(1) NN

Fig. A.6: Teacher submodel

Attributes

R/

% teacher_id — identification number of the teacher.
» the attribute is the primary key of the table.
» value is the string composed exactly of 5 characters.
» Example:
= GAROI

°,

+ name — first name of the teacher.
» value is the string composed maximally of 15 characters.
» Example:

= Michal

+ surname — the family name of the teacher.
» value is the string composed maximally of 15 characters.
» Example:

= Kvet

°,

+ department — identification of the department of the teacher.
» value is the string composed of exactly 4 characters.

» Example:
= KINF
Primary key

The primary key is the attribute teacher id.

Foreign key
This table has no foreign keys.

Appendix A — Model Student

487

SQL script for table creation

Create table teacher
(
teacher_ id
name
surname
department
primary key(teacher id)
)7

Char (5)
Varchar? (15),
Varchar2 (15),
Char (4),

NOT NULL,

Script for the relationship definition

None.

Table data example

teacher_id ‘ name surname department
GARO1 Mark Madrigal | Gar

KI001 Wiliam | Santos DI
KMMO02 Michael | Cloutier | DMM
KMMO3 Carol Poulin DMM
KI1002 Charlie | Polanco | DI

KI1003 Rachel | Vargas DI

KI005 Mathias | Fortin DI

KTKO02 Jacob Demers DTK
KDS04 Bill Rosario | KTN

Tab. A.6: Teacher

488 Appendix A — Model Student

Table SUBJECT_YEAR

This table contains details of the courses offered by the faculty in the defined school year.
This table is connected to the tables Subject, Teacher, and St_program.

TEACHER
SUBJECT
3- SUBJECT_ID _ Char(4) NN (PK) 9u 1ECHER D, S hai) (B
characterizes #
guarantees |
e i s i e RO e o e o e i e
|
. [ST_PROGRAM
[SUBJECT_YEAR g= FIELD_ID Number(3,0) NN (PFK)
= SCHOOL_YEAR Char(4) NN (PK) 3= SPECIALIZATION_ID Number(3,0) NN (PFK)
4= SUBJECT_ID Char(4) NN (PFK) | qbioct related |9 SCHOOL_YEAR Char(4) NN (PFK)
= GUARANTEE Char(5) (FK) — g+ SUBJECT_ID Char(4) NN (PFK)
ECTS Number(3,0) NN CLASS MNumber(1,0) NN
SEMESTER Char(1) NN MANDATORY_TYPE Char(1) NN
ENDING_TYPE Char(1) NN

Fig. A.7: Subject year submodel

Attributes

R/

¢ school_year — number of the actual school year.
» attribute school year is part of the primary key of the table.
» value is the integer with the maximal number composed of 4 digits.
» Example:
= 2017 — this number represents the school year 2017/2018

R/

+ subject_id — identification number of the subject.

attribute subject id is part of the primary key of the table.
this attribute is the foreign key to the table Subject.

value is the string (see table Subject).

Example:

= BI06

VYV VY

°,

+ guarantee — identification number of the teacher, expresses teacher responsible
for the subject.
> this attribute is the foreign key to the table Teacher.
» value is the number (see table Teacher).
» Example:
= 33088

s ects — attribute defining the number of credits for the course.
» value is the number of credits for the course.
» Example:

=6

< semester — attribute representing the semester of the education of the particular subject.
> value is one character, where value “S” is for the summer semester and “W”
for the winter semester.
» Example:
= S

Appendix A — Model Student

489

« ending_type - attribute is the symbol for the form of the exam.

» value is one character:
= B =exam + accreditation to exam,
= E=exam,
= §=semester only (no exam).

» Example:
= E
Primary key

The primary key is composite, formed by attributes subject id and school year.

Foreign key

Attribute subject _id is the foreign key to the table Subject,
Attribute guarantee is the foreign key to the table Teacher.

SQL script for table creation

Create table subject year

(

school year Char (4) NOT NULL,
subject_id Varchar?2 (30) NOT NULL,
guarantee Char (5) NOT NULL,
ects Number (3, 0) NOT NULL,
semester Char (1) NOT NULL,
ending_ type Char (1) NOT NULL,

primary key(school year, subject id)

)i

Script for relationship definition

Alter table subject year
add foreign key (subject id)
references subject (subject id);

Alter table subject year
add foreign key (guarantee)
references teacher (teacher id);

Table data example

Tab. A.7: Subject year

school_year | subject id guarantee | ects semester

ending type

2009 1A06 KDSO01 5 S B
2009 IM09 KMTO1 6 Y B
2009 1201 GARO1 30 S E
2009 IM15 KMTO02 4 Y B
2009 IPD1 KDS03 6 W S
2008 BI23 EX001 5 W B
2005 BIO1 KI001 6 W B
2007 BI06 KI001 6 S B
2006 BIl11 EX002 1 W S

490 Appendix A — Model Student

Table ST _PROGRAM

This table contains details of the content of study programs offered by the faculty
for the study in the defined school year. This table is connected to the tables St field
and Subject year.

[ST_PROGRAM |
4= FIELD_ID Number(3,0) NN (PFK)
= SPECIALIZATION_ID Number(3,0) NN (PFK)
4= SCHOOL_YEAR Char(4) NN (PFK)
4= SUBJECT_ID Char(4) NN (PFK)
CLASS Number(1,0) NN
MANDATORY_TYPE Char(1) NN B
F
related_to e
‘ SUBJECT_YEAR |
ST_FIELD @= SCHOOL_YEAR Char(4) NN (PK)
g= FIELD_ID Number(3,0) NN (PK) g SUBJECT_ID Char(4) NN (PFK)
= SPECIALIZATION_ID Number(3,0) NN (PK) a= GUARANTEE Char(5) (FK)
ECTS Number(3,0) NN
SEMESTER Char(1) NN
ENDING_TYPE Char(1) NN

Fig. A.8: St _program submodel

Attributes

+ field_id — this attribute is used for the identification of the study field.
» the number is composed maximally of 3 digits.
» this attribute is part of the primary key of the table.
» this attribute is also part of the foreign key referencing table St _field.
» Example:
=]

°,

+ specialization_id — this attribute is used for the identification of the study specialization.
» the number is composed maximally of 3 digits.
» this attribute is part of the primary key of the table.
» this attribute is also part of the foreign key referencing table St_field.
» Example:
= 2

°,

+ school _year — number of the actual school year.
» attribute school_year is the part of the primary key of the table.
» value is the integer composed of 4 digits.
» Example:
= 2017 ... this number represents the school year 2017/2018

% subject_id — identification number of the subject.
» attribute subject id is the part of the primary key of the table.
> this attribute is also the foreign key referencing table Subject.
» value is the string composed maximally of 30 characters (see table Subject).
» Example:
= BI06

KD

4

class — attribute represents the year of the study during education.
> value is expressed by one digit.
> Example:

= 1 ... the subject is respective to the first year of the study.

Appendix A — Model Student 491

< mandatory_type — attribute value characterizes the kind of the course.
» value is one character:
= M =mandatory,
= O =optional,
= X =mandatory / optional,
» Example:
= M
« class_preference — attribute represents recommended year of the study
during education.
» value is one digit.

» Example:
= 1 ... the subject is recommended to be studied in the first year of the study.

Primary key
The primary key is composite, formed by attributes field id, specialization_id, subject id,
and school_year.

Foreign key

Composite attribute group (school year, subject id) is the foreign key to the table
Subject_year.

The composite attribute group (field _id, specialization_id) is the foreign key to the table
St field.

SQL script for table creation

Create table st _program

(

field id Number (3, 0) NOT NULL,
specialization id Number (3, 0) NOT NULL,
school year Char (4) NOT NULL,
subject id Varchar2 (30) NOT NULL,
class Number (1, 0) NOT NULL,
mandatory type Char (1) NOT NULL,
class_preference Number (1, 0),

primary key(field id, specialization id, school year, subject id)
)

Script for relationship definition

Alter table st program
add foreign key (school year, subject id)
references subject year (school year, subject id);

Alter table st program
add foreign key (field id, specialization_id)
references st field (field id, specialization id);

492 Appendix A — Model Student

Table data example

Tab. A.8: St_program

field id m school_year subject id :mfm‘latm‘y jj;:i}eren ce
200 2 2009 IPA3 2 M 2
200 3 2009 IPN3 2 M 2
202 0 2009 IPM3 2 M 2
101 0 2009 1114 3 (o) 3
102 0 2009 114 3 0 3
100 0 2009 1S05 3 (¢ 3
101 0 2009 1S05 3 0 3
102 0 2009 1S05 3 0 3
200 0 2009 IM20 0 0 3
200 0 2009 IM12 0 0 3

Appendix A — Model Student 493

Table CONTACT

This table contains details about the contacts of the persons. This table is connected

only to the Personal data table. Notice that in this table, a foreign key can hold a NULL

value.
PERSONAL_DATA
9= PERSONAL_ID Char(11) NN (PK)
CONTACT

4= CONTACT_ID Integer (PK)
9= PERSONAL ID Char(11) (FK) Bo— has_contacts _ |

TYPE Char(1) NN

VALUE Varchar2(50) NN

Fig. A.9: Contact submodel

Attributes

R/
£ %4

contact_id — identification key of the contact.
» attribute contact_id is the primary key of the table.
» value is the integer.
» Example:
= 111

personal_id — unique identifier of the person.
» attribute personal_id is the foreign key of the table Personal data.
» the data type is the string with exactly 11 characters. It follows this structure:
* YYMMDD/XXXX where:
e YY is two digits for the year of birth of the person,
e MM is two digits for the month of birth of the person,
o DD is two digits for the day of birth of the person (for women, 50 is added
to the appropriate value),
e /" —separator,
o XXXX are four digits for defining the order number of the person.
» Notice that in a standard environment, the personal_id value can be divided by 11
without the remainder.
» Example:
= 890811/0134 is the identification for the person born on 11th August 1989 with
order number 0134. It reflects the man.
= 895811/0137 is the identification for the person born on 11th August 1989 with
order number 0137. It reflects the woman.

type — this attribute defines kind of the contact.
» value is the only one character:

= M =mobile

= E=email
» Example:

= E

value — this attribute includes real contact value.
» value is the string with a variable length of the characters limited to 50 characters.
» Example:

* npame.surname@email.com;

= 0912345678;

494

Appendix A — Model Student

Primary key

The primary key is attribute contact id.

Foreign key

Attribute personal_id is the foreign key to the table Personal data. Notice that a foreign

key can hold a NULL value.

SQL script for table creation

Create table contact
(

contact id Integer
personal id Char (11),
type Char (1)
value Varchar2 (50)

primary key (contact id)

)i

NOT NULL,

NOT NULL,
NOT NULL,

Script for relationship definition

Alter table contact

add foreign key (personal id)

references personal data (personal id);

Table data example

Tab. A.9: Contact

contact _id personal_id type value

1 841106/3456 E Michael.Pearce@dbs.web
2 840312/7845 E Jack.Smith@dbs.web

3 860907/1259 E John.Young@dbs.web

4 850130/3695 E Carol.Pearce@dbs.web

5 841201/1248 E Carol.Pearce@dbs.web

6 830514/5341 E Wiliam. Whittel@dbs.web
7 781015/4431 E Peter.Roger@dbs.web

8 896123/5471 M 22368479

9 840409/7900 M 8404097900

10 810101/8079 M 0908123456

Appendix B — Model Flight

APPENDIX B - MODEL FLIGHT

Data model Flight consists of eleven tables (L_person, L flight ticket, L class, L flight,
L plane, L _employee, L _airport, L _plane type, L country, L town and L_air_company).
It deals with flights and relevant information to them (plane, plane types, air company,
employee) and people booking them (persons). For management simplicity, each table

is prefixed by the “L_”. Therefore, it is easy to distinguish the model, which it belongs to.

Table L_PERSON

This table contains information about the details of the person. Such table is connected

to the table L _country, L _employee, and L_flight ticket.

L_FLIGHT_TICKET

&= [D_FLIGHT_TICKET Integer NN (PK)
L_PERSON - - /
— = — @ [D_FLIGHT Integer NN (PFK)
o o] (R Ty e e)
it o i ' — — — —ode= ID_CARD Varchar2(20) NN (FK)
o a0t @ CARD_TYPE Char(1) NN (FK)
SURNAME Varchar2(30) NN e il My
: a o _EN eger (FK)
LIRS T (R LT RESERVATION_DATE Date NN
J |
' i PRICE Mumber(12.2) NN
1 is_employed 5
| traveller_lives_in I T
| | has_sald
I P T -
|
! & ¢
! L_EMPLOYEE
I 4= ID_EMPLOYEE Integer NN (PK}
I @= [D_COMPANY Integer NN (FK)
I @ ZIP Char(5) NN (FK)
I 4= ID_CARD Varchar2(20) NN (FK)
I 4= CARD_TYPE Char(1) NN (FK)
| BEGIN_DATE Date NI
|
: POSITION Varchar2(30) NN
|
: 4= ID_COUNTRY Char(3) NN (FK)
I
I
L_COUNTRY
@ [D_COUNTRY Char(3) NN (PK)
NAME \Varchar2(30) NN

Fig. B.1: L _person submodel

Attributes

o,

« id_card is the identification key of the card associated with the person.

» attribute id_card is part of the primary key of the table.
» value is the string with variable length limited to 20 characters.

» Example:
» AA 93286116

496 Appendix B — Model Flight

< card_type — value expresses the type of the card for the person.
» attribute card type is part of the primary key of the table.
» value is one character belonging to the domain dom_card_type:

= JI=IDcard

= P=passport
» Example:

= P

« name — first name of the person.
» value is the string with variable length limited to 30 characters.
» Example:

= Karol

% surname — family name of the person.
» value is the string with variable length limited to 30 characters.
» Example:

= Matiasko

+ id_country — attribute expresses country person comes from.
» attribute id_card is the part of the foreign key referencing table L _country.
» value is the string with a length of (maximally) 3 characters.

» Example:
= SK
Primary key

The primary key is composite, formed by attributes id card and card_type.

Foreign key
Attribute id_country is the foreign key to the L _country table.

SQL script for table creation

Create table L person

(

id card Varchar?2 (20) NOT NULL,
card_type Char (1) NOT NULL

Check (card type IN ('I', 'P')),
name Varchar2 (30) NOT NULL,
surname Varchar?2 (30) NOT NULL,
id_country Char (3) NOT NULL,

primary key (id card, card type)
)

Script for relationship definition

Alter table L person
add foreign key (id country)
references L country (id country);

Appendix B — Model Flight 497

Table L_FLIGHT TICKET

This table contains information about the details of a bought ticket for the flight
of the particular person. Such table is connected to the table L person, L class,
and L_employee.

L_FLIGHT_TICKET
@ |D_FLIGHT_TICKET Integer MM (PK)
L_PERSON = = y
— - - @ ID_FLIGHT Integer MN (PFK)
[CAl \ } NI) ;
O PE o 20) N i | bouant ticket Je= D cLASS Integer NN (PFK)
& CARD_TYPE Char{1) MM {PK) SR MR = o i M
s - 4@ |D_CARD Varchar2(20) NN (FK)
AME Varchar2(30) MM = , e T
SURNAME Vi @& CARD_TYPE Char(1) NN (FK)
{ archar2(30) NN S
@ ID_COUNTRY _ Char(3) NN (FK) e 'FE)E—SEEE‘“';&T[EPE e ::l)ﬂ;.;ger b (FK)
= : —) | ate
|
| FRICE Mumber(12,2) NN
| is_employed
| has_sold }'/ K
| [belongs_to_class
¢
L_EMPLOYEE
4= |D_EMPLOYEE Integer NN (PK)
4» ID_COMPANY Integer NN (FK)
4= ZIP Char(g) NN (FK)
4= |D_CARD Varchar2(20) NN (FK) [L_CLASS |
4= CARD_TYPE Char(1) NN (FK) 4= ID_FLIGHT Integer NN (PFK)
BEGIN_DATE Date NN 4= ID_CLASS Integer NN (PK)
CAPACITY Integer NN
POSITION Varchar2(30) NN
(4= |ID_COUNTRY Char(3) MM (FK)

Fig. B.2: L flight ticket submodel

Attributes

+ id_flight_ticket is the identification key of the ticket associated with the flight.
» attribute id_flight ticket is part of the primary key of the table.
» value is an integer.
» Example:
= 1245

« id_class is the identification key of the class associated with the ticket.
attribute id_class is part of the primary key of the table.

attribute id_class is part of the foreign key referencing table L class.
value belongs to the domain dom_class, which contains positive integers.
Example:

=]

YV VY

+« id_flight is the identification of the flight associated with the ticket.

» attribute id flight is part of the primary key of the table.

» attribute id flight is part of the foreign key referencing table L class,
respectively L _flight.

» value is an integer.

» Example:

= 806068

498 Appendix B — Model Flight

R/
£ %4

id_card is the identification key of the card associated with the passenger.
» attribute id card is part of the foreign key referencing table L person.
» value is the string with variable length limited to 20 characters.
» Example:

= AH 79800501

card_type — value expresses the type of the card for the person.
> attribute card_type is part of the foreign key referencing table L_person.
» value is one character belonging to the domain dom_card_type:

= J=1ID card,

= P =passport.
» Example:

= P

id_employee determines the employee who sold such a ticket.
> attribute id_employee is the foreign key referencing table L _employee.
» value is the integer.
» Example:
= 85

reservation_date determines the reservation time of the ticket.
» value is the Date data type.
» Example:

= 12.6.2017

payment_date determines the payment time of the ticket.
» value is the Date data type.
» Example:

= 18.6.2017

cancel_date determines the cancel time of the ticket.
» value is the Date data type.
» Example:

= 22.1.2017

price determines the price of the ticket.
» value is the decimal number.
» Example:

= 110.50

seat determines a specific number of the seat particular to the flight ticket.
» value is the string formed by precisely 3 characters.

» Example:
= I2A
Primary key

The primary key is composite, formed by attributes id flight ticket, id flight,

and id class.

Foreign key

Composite attributes (id_card, card_type) form the foreign key to the L person table.
Composite attributes (id_flight, id_class) form the foreign key to the L class table.

Appendix B — Model Flight

499

SQL script for table creation

Create table L flight ticket

(
id flight ticket
id flight
id class

id_card
card type

id employee
reservation date
payment date
cancel date
price

seat

Integer NOT NULL,

Integer NOT NULL,

Smallint NOT NULL
Check (id _class in (1, 2, 3)),

Varchar2 (20) NOT NULL,

Char (1) NOT NULL
Check (card type IN ('I', 'P')),

Integer,

Date NOT NULL,

Date,

Date,

Number (12, 2) NOT NULL,

Char (3),

primary key (id_flight ticket, id_flight, id class)

)i

Script for relationship definition

Alter table L flight ticket
add foreign key (id employee)

references L _employee

(id _employee);

Alter table L flight ticket
add foreign key (id flight, id class)

references L class

(id _flight, id class);

500

Appendix B — Model Flight

Table L_CLASS

This table contains information about the details of the flight categories (economic,
business, etc.). Such table is connected to the table L_flight ticket and L_flight.

L_FLIGHT_TICKET

4= |D_FLIGHT_TICKET Integer MM (PK)
L_PERSON = = 2
— — — = ID_FLIGHT Integer NN (PFK)
s EL'_I;ISRTE‘)rPE éirg';[jr?[zt' ! HH Eﬁi: bouaht ticket |a= ID_CLASS Integer NN (PFK)
Nli\.HE_ VaI'ChaI'éGU} NN G o i Y ID_CARD Varchar2(20) NN (FK)
iy @= CARD_TYPE Char(1) MM (FK)
SURMNAME Varchar2(30) NN & ID EMPLOYEE Integer (FK)
@= |ID_COUNTRY Char(3) NN (FK) S o s
= 2 —— RESERWVATION_DATE Date MM
|
| PRICE Number(12,2) NN
| is_employed
| has_sold }/ T
| roo-T T T Tt belongs_to_class
$
L_EMPLOYEE
@ ID_EMPLOYEE Integer NN (PK)
@= |D_COMPANY Integer NN (FK)
4= ZIP Char(5) NN (FK)
@= |D_CARD Varchar2(20) NN (FK) | L_CLASS |
4= CARD_TYPE Char(1) NN (FK}) 9= ID_FLIGHT Integer NN (PFK)
BEGIN_DATE Date NN 4= ID_CLASS Integer NN (PK)
CAPACITY Integer NN
POSITION Warchar2(30) NN
&= |ID_COUNTRY Char(3) NN (FK)

Fig. B.3: L class submodel

Attributes

®,

VVYVYY

Example:
= 1

°,

value is an integer number
Example:
= 19691

YV VY

+ id_flight is the identification key associated with the flight.
attribute id_flight is part of the primary key of the table.
attribute id_flight is part of the foreign key referencing table L _flight ticket.

« id_class is the identification key of the class associated with the flight.
attribute id_class is part of the primary key of the table.
attribute id_class is part of the foreign key referencing table L flight ticket.
value belongs to the domain dom_class, which contains positive integers.

% capacity determines the total number of seats of the particular class in the flight.

» value is the positive integer and belongs to the domain dom_capacity.

» Example:
= 160
Primary key

The primary key is composite, formed by attributes id flight and id class.

Foreign key

Attribute id flight is the foreign key to the L flight table.

Appendix B — Model Flight 501

SQL script for table creation

Create table L class

(

id flight Integer NOT NULL,
id class Smallint NOT NULL

Check (id_class in (1, 2, 3)),
capacity Smallint NOT NULL

Check (capacity > 0),
primary key (id flight, id class)
)

Script for relationship definition

Alter table L class
add foreign key (id flight)
references L flight (id flight);

502 Appendix B — Model Flight

Table L_FLIGHT

This table contains information about the details flight. Such table is connected
to the table L_class, L_airport, L_air_company, and L_plane.

L_FLIGHT
4= |D_FLIGHT Integer MM (PK)
4= DEPARTURE_AIRPORT Char(3) NN (FK)
Char(3) NN (FK)
Integer NN (FK) o
Date NN !
FLIGHT_LENGTH Integer NN I
|
|
PRICE Number(12,2) NN I
|
|
@ ID_PLANE Integer FK | 1
I ¥ ¥ 7 |
| landin
| | d%parﬂng !
has_classes I !
-|- -|- I L operated by plane
1
: L ARFORT _] ! FANE
4= [D_AIRFORT Char(3) NN PR | | GO PANE Integer NN (PR
AIRPORT_MAME Varchar2(50) NN @ ID_COMPANY Integer NN (FK)
[= loiih ' ' |e= ID_TYPE Integer NN (FK)
= ID_FLIGHT Integer NN (PFK) | = =k :
@= |ID_CLASS Integer NN (PK) a= Z|P Char(5) NN (FK) | T
CAPACITY Integer NN 4= ID_COUNTRY Char(3) NN (FK) | |
|
(operated by company !
|
1 " owns
L_AIR_COMPANY H- - — - — 4
@= |D_COMPANY Integer NN (PK)
COMPAMNY_NAME VarcharZ2(60) NN
@& ZIP Char(5) NM (FK)
& ID_COUNTRY Char(3) NN (FK)

Fig. B.4: L flight submodel

Attributes

+« id_flight is the identification key of the flight.
» attribute id_flight is the primary key of the table.
» value is the integer number
» Example:
= 12345

°,

+ departure_airport defines the identifier of the departure airport.
> attribute departure_airport is the foreign key referencing table L_airport.
» value is the string composed of 3 characters.
» Example:
= BTS

« arrival_airport defines the identifier of the destination airport.
» attribute arrival_airport is the foreign key referencing table L_airport.
» value is the string composed of 3 characters.
» Example:
= PRG

KD

S

id_company defines the identification value for the air company.
» attribute id _company is the foreign key referencing table L air company.
» value is the integer.
> Example:
= 8

Appendix B — Model Flight 503

+« flight_date defines the date of the flight.
» value is the Date data type.
» Example:
= 17.8.2017

s flight_length defines the duration of the flight in minutes.
» value is the integer

» Example:
= 120
+ planned_departure defines the date and time of the flight departure (planned,
expected).
» value is the timestamp with the local time zone.
» Example:

= 17.8.2017 19:30

+ planned_arrival defines the date and time of the flight arrival (planned, expected).
» value is the timestamp with the local time zone.
» Example:

= 17.8.2017 21:30

¢ price is the value of the ticket.
» value is a decimal number with two digits after the decimal point.
» Example:

= 100.50

¢ real_departure defines the actual date and time of the flight departure.
» value is the timestamp with the local time zone.
» Example:

= 17.8.2017 19:30

*,

+ real_arrival specifies the actual date and time of the flight arrival.
» value is the timestamp with the local time zone.
» Example:

= 17.8.2017 21:30

°,

+ id_plane determines the used plane for the flight.
» attribute id_plane is the foreign key referencing table L_plane.
» value is an integer

» Example:
= 17
Primary key

The primary key is attribute id_flight.

Foreign key

Attribute id plane is the foreign key to the L plane table.

Attribute departure_airport is the foreign key to the L airport table.
Attribute arrival _airport is the foreign key to the L _airport table.
Attribute id _company is the foreign key to the L air company table.

504 Appendix B — Model Flight

SQL script for table creation

Create table L flight
(

id flight Integer NOT NULL,
departure airport Char (3) NOT NULL,
arrival airport Char (3) NOT NULL,

id company Integer NOT NULL,
flight date Date NOT NULL,
flight length Integer NOT NULL,
planned departure Timestamp (6) with local time zone,
planned arrival Timestamp (6) with local time zone,
price Number (12, 2) NOT NULL,
real departure Timestamp (6) with local time zone,
real arrival Timestamp (6) with local time zone,
id plane Integer,

primary key (id_flight)
)7

Script for relationship definition

Alter table L flight
add foreign key (departure airport)
references L airport (id airport);

Alter table L flight
add foreign key (arrival airport)
references L airport (id airport);

Alter table L flight
add foreign key (id plane)
references L plane (id plane);

Alter table L flight
add foreign key (id company)
references L air company (id company);

Appendix B — Model Flight

505

Table L_PLANE

This table contains information about the details of the airplane owned by a particular air
company. Such table is connected to the table L_air company, L_flight, and L_plane_type.

L_FLIGHT
@= [D_FLIGHT Integer NN (PK)
&= DEPARTURE_AIRPORT Char(3) MM (FK)
@= ARRIVAL_AIRPORT Char(3) MM (FK) operated by plane
@= |D_COMPANY Integer MM (FK) Bo— — — — — — — — —
FLIGHT_DATE Date MM I
FLIGHT_LEMGTH Integer MM ér
L_PLANE
4= |D_PLANE Integer MW (PK)
FRICE Number(12,2) NN @ |[D_COMPANY Integer NN (FK)
4= |ID_TYPE Integer MM (FK)
@= |D_PLAME Integer (FK) T %
¥ [
loperated by company b
: | belonas to plane type
L_AIR_COMPANY ;!
4= |D_COMPANY Integer NN (PK) | !
COMPANY_MNAME Varchar2(60) NN oWns Ny |
&= ZIP Char(5) NN (FK)
. o R L_PLANE_TYPE
4= ID_COUNTRY Char(3) NN (FK) = iTherer TFER
DESIGMATION Varchar2(30) NN
CAPACITY Integer MM

Fig. B.5: L plane submodel

Attributes

+ id_plane is the identification key of the airplane.

» attribute id_plane is the primary key of the table.
» value is the integer.

» Example:
= 25

°,

+ id_company is the identification of the owner air company of the plane.

> attribute id_company is the foreign key referencing table L_air_company.
» value is the integer.
>

Example:
= 5

« id_type determines the kind of airplane.

» attribute id_type is the foreign key referencing table L _plane type.
» value is the integer.

» Example:
= 5

¢ capacity determines the number of seats inside the airplane.

» value is the positive integer number and belongs to the domain dom_capacity.

» Example:
= 160

Primary key

The primary key is attribute id plane.

506 Appendix B — Model Flight

Foreign key

Attribute id_company is the foreign key to the L _air company table.
Attribute id_type is the foreign key to the L plane_type table.

SQL script for table creation

Create table L _plane (

id plane Integer NOT NULL,
id company Integer NOT NULL,
id type Integer NOT NULL,
capacity Smallint

Check (capacity > 0),
primary key (id plane)
)

Script for relationship definition

Alter table L plane
add foreign key (id company)
references L air company (id company);

Alter table L plane
add foreign key (id type)
references L plane type (id type);

Appendix B — Model Flight 507

Table L_ EMPLOYEE

This table contains information about the details of the employee of the air company.
Such table is connected to the table L person, L _air _company, L _town, and L_flight ticket.

[_FLIGHT_TICKET
|@= ID_FLIGHT_TICKET Integer NN {PK)
[_PERSON 1 =
= = — la= ID_FLIGHT Integer NN (PFK)
o DaRD o renare20) e (K9 | bought ticket fo 1D_CLASS Integer NN (FFK)
iR Sk, (PRY L — — — —odes ID_CARD Varchar2(20) NN (FK)
NAME Varchar2(30) NN le= CARD TYPE Char(1 } NN (FK)
SURNAME Varchar2(30) NN o CRD e = 2
e= ID_COUNTRY _ Char(3) NN _(FK) _EW £d8 (
- : : RESERVATION_DATE Date NI
|
| PRICE Number(12,2) NN
is employed
it
| has_sold \ET"/
| r-——=——-=--
4
[_EWPLOVEE
(= ID_EMPLOYEE _ Integer NN (PK)
o ; (FK) _AIR_COMPANY,
prleiet LT NN (FK) | & D_COMPANY Integer I (FK)
e Chas NN Rk | is employed by COMPANY_NAME Varchar2(60) NN
4= ID_CARD Varchar2(20) NN (FK) po -
le= CARD_TYPE Char(1) M (FK) - P Cnares I
BEGIN_DATE Date NN bo = ID_COUNTRY Char(3) NN (FK)
POSITION Varchar2(30) NN I |
I
le= ID_COUNTRY _ Char(3) NN CFK) | | headquarter located
1 ~ -
| employee_lives_in |
| |
[L_TOWN \
= ZIP Char(5) NN (PK)
= ID_COUNTRY Char(3) NN (PFK)
MAME Warchar2(60) NN
Fig. B.6: L _employee submodel
Attributes
+ id_employee is the identification key of the person who the particular air company
employs.

» attribute id_employee is the foreign key referencing table L_flight ticket.
» value is the integer.
» Example:

= 9618

°,

+ id_company is the identification key of the air company.
> attribute id_company is the foreign key referencing table L_air_company.
» value is the integer.
» Example:
= 5

« id_card is the identification key of the card associated with the person.
» attribute id _card is part of the foreign key referencing table L_person.
» value is the string with variable length limited to 20 characters.
» Example:
= AH 79800501

508 Appendix B — Model Flight

< card_type — value expresses the type of the card for the person.
» attribute card type is part of the foreign key referencing table L _person.
» value is one character belonging to the domain dom_card_type:

= JI=IDcard

= P=passport
> Example:

= P

« begin_date expresses the first date of the employer contract validity.
» value is the Date data type.
» Example:

= 1.1.2000

« end_date expresses the last date of the employer contract validity.
» value is the Date data type.
» Example:

= 31.1.2017

¢ position expresses the function of the person in the air company.
» value is the string with variable length limited to 30 characters.
» Example:

»= Steward

« personal_id is the identification of the person expressing his birth number.
» the data type is the string with exactly 11 characters. It follows this structure:
* YYMMDD/XXXX where:
= YY is two digits for the year of birth of the person,
= MM is two digits for the month of birth of the person,
= DD is two digits for the day of birth of the person (for women, 50 is added to
the appropriate value),
= “/” _separator,
= XXXX are four digits for defining the order number of the person.
» Notice that in a standard environment, the personal_id value can be divided by 11
without the remainder.
» Example:
= 890811/0134 is the identification for the person born on 11th August 1989 with
order number 0134. It reflects the man.
= 895811/0137 is the identification for the person born on 11th August 1989 with
order number 0137. It reflects the woman.

s zip is the identification key of the town (associated with the country)
where such a person is employed.
» attribute zip is part of the foreign key referencing table L_town.
» value is the string with a fixed length of 5 numerical characters. Although
it expresses numerical value, it is stored as a string due to possible initial zeros.
» Example:
= 97251
= 01001

Appendix B — Model Flight

509

« id_country is the identification key associated with the country of the town.
> attribute id_country is part of the foreign key references table L fown.

» value is the string with a length of (maximally) 3 characters.

» Example:
= SK
Primary key

The primary key is attribute id _employee.

Foreign key

Attribute id_company is the foreign key to the L_air company table.
Composite attributes (id_card,card type) form the foreign key to the L person table.

Composite attributes (zip, id_country) form the foreign key to the L town table.

SQL script for table creation

Create table L employee (

id_employee Integer

id_company Integer

zip Char (5)

id card Varchar?2 (20)

card_type Char (1)
Check (card type IN

begin date Date

end date Date,

position Varchar2 (30)

personal id Char (11),

id country Char (3)

primary key (id employee)

)i

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL
('z', 'P")),
NOT NULL,

NOT NULL,

NOT NULL,

Script for relationship definition

Alter table L employee
add foreign key (id card, card type)
references L person (id _card, card type);

Alter table L employee
add foreign key (zip, id country)
references L_town (zip, id country);

Alter table L employee
add foreign key (id company)
references L _air company (id company) ;

510 Appendix B — Model Flight

Table L_AIRPORT

This table contains information about the details of the airport. Such table is connected
to the table L_flight and L_town.

L_FLIGHT
@ ID_FLIGHT Integer NN (PK)
@ DEPARTURE_AIRPORT Char(3) NN (FK)
@ ARRIVAL_AIRPORT Char(3) NN (FK)
@ ID_COMPANY Integer NN (FK)
FLIGHT_DATE Date NN
FLIGHT_LENGTH Integer NN
PRICE Number(12,2) NN
= ID_PLANE Integer (FK)
¥ ¥
| 1anding | departing
| |
[_AIRFORT
¢= ID_AIRFORT Char(3) NN (PK)
| L_TOWN | _))
e e T o AIRPORT_NAME Varchar2(50) NN
@ ID_COUNTRY Char(3) NN (PFK) [is_located
NAME Varchar2(60) NN S Char(s) NN (FK)
4= ID_COUNTRY Char(3) NN (FK)

Fig. B.7: L_airport submodel

Attributes

R/

% id_airport is the identification value for the airport.
» attribute id_airport is the primary key for the airport.
» value is the string with 3 characters in length.
» Example:
= LHR

« airport_name is the name of the airport.
» value is the string with variable length limited to 50 characters.
» Example:

* Heathrow

°,

% runway_length is the distance of the runway of the airport.
» value is the numerical, and expressed value is in meters.
» Example:

= 2000

< zip is the identification key of the town associated with the country.

» attribute zip is part of the foreign key referencing table L _town.

» value is the string with a fixed length of 5 numerical characters. Although
it expresses numerical value, it is stored as a string due to possible initial zeros.

» Example:
= 97251
= 01001

Appendix B — Model Flight

511

«» id_country is the identification key associated with the country of the town.
» attribute id_country is part of the foreign key referencing table L_town.
» value is the string with a length of (maximally) 3 characters.

» Example:
= SK

¢+ street is the name of the street where the airport is located in the town.
» value is the string with variable length limited to 60 characters.

» Example:
= Nelson Road

Primary key

The primary key is attribute id_airport.

Foreign key

Composite attributes (zip, id_country) form the foreign key to the L_town table.

SQL script for table creation

Create table L employee
(

id_employee Integer NOT NULL,
id_company Integer NOT NULL,
zip Char (5) NOT NULL,
id card Varchar?2 (20) NOT NULL,
card_type Char (1) NOT NULL
Check (card type IN ('I', 'P')),

begin date Date NOT NULL,
end date Date,

position Varchar?2 (30) NOT NULL,
personal id Char (11),

id country Char (3) NOT NULL,

primary key (id employee)

)i

Script for relationship definition

Alter table L airport

add foreign key (zip, id country)

references L _town (zip, id country);

512 Appendix B — Model Flight

Table L_ PLANE_TYPE

This table contains information about the technical details of the airport category.

Such table is connected to the table L plane.

L PLE 4= ID_TYPE = ETTtYPE NN (PK)
@ ID_FLANE Integer NN (PK) belongs_ta_plane_type - meger MAR(A,
@ ID_COMPANY Integer NN (FK) jo— — — — — — — = — — — —| DESIGNATION Varchar2(30) NN
@ ID_TYPE Integer NN (FK) SN Iisgeg S

Fig. B.8: L plane_type submodel

Attributes

7
°n*

id_type is the identification key of the kind of airplane.
» attribute id_type is the primary key of the table.
» value is the integer
» Example:
= 1

designation determines the type of airplane.
» value is the string with variable length limited to 30 characters.
» Example:

= Boeing 360

capacity determines the number of seats on the airplane.
» value is the positive integer number belonging to the dom_capacity domain.
» Example:

= 160

min_runway_dep expresses minimal distance of the runway of the airport
for the departure of the flight.
» value is the integer, expressed in meters.

» Example:
= 2000
“ min_runway_arr expresses minimal distance of the runway of the airport for the arrival
of the flight.
» value is the integer, expressed in meters.
» Example:
= 2000
Primary key

The primary key is attribute id type.

Foreign key

The table has no foreign keys.

Appendix B — Model Flight

513

SQL script for table creation

Create table L plane type
(

id type Integer NOT NULL,

designation Varchar2 (30) NOT NULL,

capacity Smallint NOT NULL
Check (capacity > 0),

min_runway_ dept Number,

min_runway arr Number,

primary key (id type)
)

Script for the relationship definition

None.

514 Appendix B — Model Flight

Table L_COUNTRY

This table contains information about the country. Such table is connected to the table
L person and L_town.

[_PERSON
9= ID_CARD Varchar2(20) NN (PK)
@ CARD_TYPE Char(1) NN (PK)
NAME Varchar2(30) NN
SURNAME Varchar2(30) NN
@ |ID_COUNTRY Char(3) NN (FK)
| | L_TOWN
| & ZIF Char(s) NN (PK]}
| ¢ [D_COUNTRY Char(3) NN (PFK)
NAME varchar2(60) NN

+ traveller_lives_in T

L_COUNTRY
9= I[D_COUNTRY Char(3) NN (PK) belonas to country
NAME Varchar2(30) NN

Fig. B.9: L_country submodel

Attributes

+« id_country is the identification key of the table.
» attribute id_country is the primary key of the table.
» value is the string with a length of (maximally) 3 characters.
» Example:
= SK

+ name — name of the country.
» value is the string with variable length limited to 30 characters.
» Example:
= Slovakia

Primary key
The primary key is attribute id_country.

Foreign key
The table has no foreign keys.

SQL script for table creation

Create table L country
(
id country Char (3) NOT NULL,
name Varchar2 (30) NOT NULL,
primary key (id country)

)

Script for the relationship definition

None.

Appendix B — Model Flight

515

Table L TOWN

This table contains information about the town. Such table is connected to the table

L _country, L_air_company, L _employee, and L_airport.

L_EMPLOYEE
4= ID_EMFLOYEE Integer NN (PK)
= |D_COMPANY Integer NM (FK)
= ZIP Char(5) NM (FK)
4= ID_CARD Varchar2(20) NN (FK)
4= CARD_TYPE Char(1) NM (FK)
BEGIN_DATE Date MM
POSITION Varchar2(30) NN
4= |D_COUNTRY Char(3) NN (FK)
L_COUNTRY
4= |D_COUNTRY Char(3) NN (PK)
MNAME Warchar2{30) NN

belonas to country
|

Fig. B.10: L _town submodel

Attributes

R/

Varchar2(60)

[_AIRPORT
4= ID_AIRFORT Char(3) NI (PK)
AIRPORT_NAME Varchar2(50) NN
o= ZIP Char(s) NN (FK)
4= ID_COUNTRY Char(3) NN _(FK)
z
lis_located
|
[_TOWN
Char(5) NN (PK)
45 ID_COUNTRY Char(3) NN (PFK)

MM

headquarter located

[_AIR_COMPANY

COMPANY_MNAME

Integer

Char(5)
Char(3)

Varchar2(60)

NN (PK)
NN

NN (FK)
NN (FK)

> attribute zip is part of the primary key of the table.
» value is the string with a fixed length of 5 numerical characters. Although
it expresses numerical value, it is stored as a string due to possible initial zeros.

» Example:
= 97251
= 01001

YV VYVY

Example:
= SK

°,

< name — name of the town.

¢ zip is the identification key of the town associated with the country.

+ id_country is the identification key associated with the country of the town.
attribute id_country is part of the primary key of the table.
attribute id_country is the foreign key referencing table L country.
value is the string with a length of (maximally) 3 characters.

» value is the string with variable length limited to 60 characters.

» Example:
= ZILINA
Primary key

The primary key is composite, formed by attributes zip and id _country.

Foreign key

Attribute id _country is the foreign key to the L_country table.

516 Appendix B — Model Flight

SQL script for table creation

Create table L town

(

zip Char (5) NOT NULL,
id country Char (3) NOT NULL,
name Varchar2 (60) NOT NULL,

primary key (zip, id country)
)7

Script for relationship definition

Alter table L town
add foreign key (id country)
references L country (id country);

Appendix B — Model Flight 517

Table L_AIR COMPANY

This table contains information about the details of the air company. Such table

is connected to the table L flight, L plane, L _town, and L_employee.

L_FLIGHT
@ |D_FLIGHT Integer NN (PK) T BLANE
@ DEPARTURE_AIRPORT Char(3) NN (FK) = -
N — ; / @ ID_PLANE Integer NN (PK)
LSl ! NN (FK) | operated by plane |g= |0_cOMPANY Integer NN (FK)
= ID_COMPANY NMC(FK) Bo— — — — — — — g |D_TYPE Integer NN (FK)
FLIGHT_DATE NN -
FLIGHT_LENGTH Integer NN T
I
PRICE Number(12,2) NN :
| owns
@ |D_PLANE Integer (FK) !
T I
! |
L_EMPLOYEE : operated_by_company !
@ ID_EMPLOYEE Integer NN PK)| ————— -~ ———-—=———-——-———-- F 4+
@ ID_COMPANY Integer NN (FK) S ECTITRE
ht %P . '-(?ahracr[ql';r'zuzo . HH :EE @ 1D_COMPANY Integer NN (PK)
_CAl V) “M(FR)
o CARD. TYPE T NN (FK) Bo- — — — — | COMPANY_NAME Varchar2(60) NN
BEGIN_DATE Date NN s_employed_by | o T NN (EK)
P e = gy
SrEmEy Varchar2(30) NN ID_COUNTRY Char(3) - NM_(FK)
@ |D_COUNTRY _ Char(3) NN_(FK) | eacquarter located
5 |
| employee_lives_in |
1 [L_TOWN | !
Lo _____ @ ZIP Char(s) NN (PK) I
¢= ID_COUNTRY Char(3) NN (PFK) L — — — — — — 1
NAME Varchar2(60) NN

Fig. B.11: L_air_company submodel

Attributes

°,
0.0

°,
*

id_company is the identification value for the air company.
» attribute id_company is the primary key for the air company.
» value is the integer number.
» Example:
= 5

company_name is the name of the air company.
» value is the string with variable length limited to 60 characters.
» Example:

= Czech Airlines

street is the street's name where the air company headquarters is located in value
is the string with variable length limited to 60 characters.
o Example:
= Ruzinska 21

zip is the identification key of the town associated with the air company.
» attribute zip is part of the foreign key referencing table L town.
» value is the string with a fixed length of 5 numerical characters. Although
it expresses numerical value, it is stored as the string due to possible initial zeros.
» Example:
= 97251
= 01001

518 Appendix B — Model Flight

« id_country is the identification key associated with the country of the town.
> attribute id_country is part of the foreign key referencing table L_town.
» value is the string with a length of (maximally) 3 characters.

» Example:
= SK
Primary key

The primary key is composite, formed by attributes zip and id_company.

Foreign key
The table has no foreign keys.

SQL script for table creation

Create table L_air company
(

id company Integer NOT NULL,
company name Varchar2 (60) NOT NULL,
street Varchar2 (30),

zip Char (5) NOT NULL,
id country Char (3) NOT NULL,

primary key (id company)
)7

Script for relationship definition

Alter table L air company
add foreign key (zip, id country)
references L _town (zip, id country);

Appendix C — Model Library 519

APPENDIX C - MODEL LIBRARY

Data model Library consists of seven tables (K person, K reader, K rent books,
K book, K title, K authors _of book, and K author). It deals with person management
(persons, readers), book management (authors, titles, physical books), and book renting.
For management simplicity, each table is prefixed by the “K ™. Therefore, it is easy
to distinguish the model, which it belongs to.

Table K PERSON

This table contains information about the details of the person. Such table is connected
to the table K reader.

K_PERSON
g= PERSON_ID Char(11) NN (PK)
NAME Varchar2(20) NN K READER
SURNAME Varchar2(20) NN is reader |@= READER ID Integer NN (PK)
— — — — —d4= PERSON_ID Char(11) NN (FK)
VALID_FROM Date NN

Fig. C.1: K _person submodel

Attributes

« person_id — unique identifier of the person.
» attribute person_id is the primary key of the table.
» The data type is the string with exactly 11 characters. It follows this structure:
» YYMMDD/XXXX where:
e YY is two digits for the year of birth of the person,
e MM is two digits for the month of birth of the person,
e DD is two digits for the day of birth of the person (for women, 50 is added
to the appropriate value),
e /" —geparator,
o XXXX are four digits for defining the order number of the person.
» Notice that in a standard environment, the personal_id value can be divided by 11
without the remainder.
» Example:
= 890811/0134 is the identification for the person born on 11th August 1989 with
order number 0134. It reflects the man.
= 895811/0137 is the identification for the person born on 11th August 1989 with
order number 0137. It reflects the woman.

+ name — first name of the person.
» value is the string with variable length limited to 20 characters.
» Example:
= Karol

520 Appendix C — Model Library

< surname — family name of the person.
» value is the string with variable length limited to 20 characters.
> Example:

= Matiasko

*» street — street and house number of the personal address.
» value is the string with variable length limited to 20 characters.
» Example:

= Moyzesova 20

% zip — zip code of the address of the person.
» value is the string with a fixed length of 5 numerical characters. Although
it expresses numerical value, it is stored as a string due to possible initial zeros.

» Example:
= 97251
= 01001

* town — the town of the address of the person.
» value is the string with variable length limited to 20 characters.
» Example:

* Podunajske Biskupice

¢ district — district name where the town belongs.
» value is the variable string with a maximal length of 20 characters.
» Example:
= Bratislava II ... Bratislava is divided into several parts, e.g., “Podunajske
Biskupice” belongs to “Bratislava II” district.

R/

¢ region — region abbreviation of the country.
» value is the string with a fixed length of 2 characters.
» Example:

= BA ... expresses “Bratislava region”

°,

% state — country abbreviation of the person.
» value is the string with a fixed length of 3 characters.
» Example:

= SVK ... expresses “Slovakia”

Primary key
The primary key is attribute person_id.

Foreign key
The table has no foreign keys.

Appendix C — Model Library 521

SQL script for table creation

Create table k Person

(

person_id Char (11) NOT NULL,
name Varchar?2 (20) NOT NULL,
surname Varchar2 (20) NOT NULL,
street Varchar?2 (20),

zip Char (5),

town Varchar2 (20),

district Varchar?2 (15),

region Char (2),

state Char (3),

primary key (person id)
)

Script for the relationship definition

None.

522 Appendix C — Model Library

Table K READER

This table contains details about a person registered as a reader. Such table is connected
to the table K person and K_rent_books.

K_PERSON
@<= PERSON_ID Char(11) NN (PK)
NAME Varchar2(20) NN K_READER
SURNAME Varchar2(20) NN is_reader |g@= READER_ID Integer NN (PK)
— — — —&dg= PERSON_ID Char(11) NN (FK)
VALID_FROM Date NN

+ has

A
‘ K_RENT_BOOKS |

4= BORROW_DATE Date NN (PK)

a= READER_ID Integer NN (FK)

4= BOOK_ID Integer NN (PFK)
STATUS Char(1) NN

Fig. C.2: K reader submodel

Attributes

R/

« reader_id — identification number of the reader.
» the attribute is the primary key of the table.
» value is the integer.
» Example:

= 11111

°,

+ person_id — identification key of the person.
» this attribute is the foreign key to the K_person table.
» The data type is the string with exactly 11 characters. It follows this structure:
* YYMMDD/XXXX where:
e YY is two digits for the year of birth of the person,
e MM is two digits for the month of birth of the person,
o DD is two digits for the day of birth of the person (for women, 50 is added
to the appropriate value),
e “/” _geparator,
e XXXX are four digits for defining the order number of the person.
» Notice that in a standard environment, the personal id value can be divided by 11
without the remainder.
» Example:
= 890811/0134 is the identification for the person born on 11th August 1989 with
order number 0134. It reflects the man.
= 895811/0137 is the identification for the person born on 11th August 1989 with
order number 0137. It reflects the woman.

®,

s valid_from — value expresses the start date of the evidence validity.
» Example:
= 15.6.2017

Appendix C — Model Library 523

« valid_until — value expresses the end date of the evidence validity.

» Example:
= 15.12.2017
Primary key

The primary key is attribute reader_id.

Foreign key
Attribute person_id is the foreign key to the K person table.

SQL script for table creation

Create table k Reader
(

reader_ id Integer NOT NULL,
person_id Char (11) NOT NULL,
valid from Date NOT NULL,
valid until Date,

primary key (reader id)

)i

Script for relationship definition

Alter table k Reader
add foreign key (person_id)
references k_Person (person_id);

524 Appendix C — Model Library

Table K RENT_BOOKS

This table contains information about the details of the rent books. Such table is connected
to the table K reader and K_book.

K_READER

4= READER_ID _ Integer NN (PK)

@= PERSON_ID Char(11) NN (FK)
VALID_FROM Date NN

| has
|

.4
‘ K_RENT_BOOKS |
4= BORROW_DATE Date NN (PK) K_BOOK

4= READER_ID Integer NN (FK) 4= BOOK_ID Integer NN (PK)
9= BOOK_ID Integer NN (PFK) | is_lended |a= TITLE_ID Integer NN (FK)
——— PRICE Number(10,2) NN
STATUS Char(1) NN

Fig. C.3: K _rent_books submodel

Attributes

R/

¢ borrow_date — value is the day the book was borrowed.
» the attribute is the part of the primary key of the table.
» value has the Date data type.
» Example:

= 25.6.2015

*,

% book_id — identification number of the book.
» the attribute is the part of the primary key of the table.
» value is the integer number.
» Example:
= 11111

+ reader_id — identification number of the reader.
» attribute reader_id is the foreign key referencing table K reader.
» value is the integer number.
» Example:
= 15

°,

+ price — the amount the reader has to pay the rent (e.g., due to book damage, loss,
or late return).
» value is the number composed of 10 digits with two decimal numbers.
» Example:
= 12320

¢ return_date — value expresses a day when a particular book was returned to the library.
» value has the Date data type.
» Example:

= 25.6.2015

= NULL

Appendix C — Model Library 525

« extension_date — value expresses a day rent was extended.
» value has the Date data type.

» Example:
= 25.6.2015
= NULL

¢ status — status of the book in a rent.
> value is the one character:
= L —lost
= B - borrowed
= R - returned
= D -—damaged

Primary key

The primary key is composite, formed by attributes borrow_date and book id.

Foreign key

Attribute reader_id is the foreign key to the K reader table.
Attribute book_id is the foreign key to the K book table.

SQL script for table creation

Create table k Rent books (

borrow_date Date NOT NULL,
reader_ id Integer NOT NULL,
book id Integer NOT NULL,
return_date Date,

extension date Date,

status Char (1) NOT NULL,
price Number (10, 2),

primary key (borrow_date, book id)

)i

Script for relationship definition

Alter table k Rent books
add foreign key (reader id)
references k Reader (reader id);

Alter table k Rent books
add foreign key (book_id)
references k Book (book id);

526 Appendix C — Model Library

Table K BOOK

This table contains information about the details of the physical books in the library.
Such table is connected to the table K rent books and K_title.

[K_RENT_BOOKS ‘
= BORROW_DATE Dale NN (PK) K_BOOK

a= READER_ID Integer NN (FK) @= BOOK_ID Integer NN (PK)
g= BOOK_ID Integer NN (PFK) is_lended (@= TITLE_ID Integer NN (FK)
PRICE Number(10,2) NN
STATUS Char(1) NN
T
K_TITLE |
a= TITLE_ID Integer NN (PK) !
TITLE_NAME Varchar2(50) NN exists |
GENRE Varchar2(11) NN H - - — - - - - 1

Fig. C.4: K _book submodel

Attributes

« book_id — identification key of the book.
» attribute book_id is the primary key of the table.
» value is the integer.
» Example:
= 111

s title_id — identification number of the title of the book.
> attribute title_id is the foreign key referencing the K_title table.
» value is the integer number.
» Example:
= 1234

¢ price — information about the price of the book (for how much the book was bought).
» value is the number composed of 10 digits with two decimal numbers.
» Example:

= 150

% registration_date — value is the day of the registration of the book.
» value has the Date data type.

» Example:
= 25.6.2015
= NULL

« disposal_date — value is the day of the disposal of the book.
» value has the Date data type.

» Example:
= 25.6.2015
= NULL

KD

S

lost_date — value is the day of the loss of the book.
» value has the Date data type.
» Example:

= 25.6.2015

= NULL

Appendix C — Model Library

527

Primary key
The primary key is attribute book id.

Foreign key
Attribute title id is the foreign key to the K _title table.

SQL script for table creation

Create table k Book
(

book id Integer NOT NULL,
title id Integer NOT NULL,
price Number (10, 2) NOT NULL,
registration_ date Date,
disposal_date Date,
lost date Date,

primary key (book id)
)7

Script for relationship definition

Alter table k Book
add foreign key (title id)
references k _Title (title_id);

528

Appendix C —

Model Library

Table K_TITLE

This table contains information about the details of the book titles in the library.
Such table is connected to the table K rent books and K_title.

K _BOOK
9= BOOK_ID Integer NN (PK)
@= TITLE_ID Integer NN (FK)
PRICE Number(10.2) NN
K
exists
K_TITLE
3= TITLE_ID Integer NN (PK)
K_AUTHORS_OF_BOOK
' = = | TITLE_NAME Varchar2(50) NN
Varchar2(11) NN

a= TITLE_ID Integer NN (PFK) GENRE_

d= AUTHOR_ID Integer NN (PFK) %belungs_lu
NO Integer NN

_

Fig. C.5: K_title submodel

Attributes

% title_id — identification number of the title of the book.

» attribute title_id is the primary key of the table.
» value is the integer number.
» Example:

= 11111

« title_name — the name of the book.

» string value composed maximally of 50 characters.

» Example:
= Database systems

< genre — category of literature.

» string value composed maximally of 11 characters.

» Example:
= Science

» Example:
= Pearson Prentice Hall

» value is the integer number.
» Example:
= 2017

book identifier.

» string value composed maximally of 20 characters.

» Example:
= 978-80-554-1311-2

+ publisher — the publisher is a commercial name of the publisher.
» string value composed maximally of 40 characters.

s year_of _issue — value expresses the year of the publishing.

< isbn — the International Standard Book Number (/SBN) is a unique numeric commercial

https://en.wikipedia.org/wiki/Category_of_being
https://en.wikipedia.org/wiki/Literature

Appendix C — Model Library 529

Primary key
The primary key is attribute title_id.

Foreign key
The table has no foreign keys.

SQL script for table creation

Create table k Title
(

title id Integer NOT NULL,
title name Varchar (50) NOT NULL,
genre Varchar (11) NOT NULL,
publisher Varchar (40),

year of issue Integer,

isbn Varchar (20),

primary key (title id)
)7

Script for the relationship definition

None.

530 Appendix C — Model Library

Table K AUTHOR

This table contains information about the details of the authors. Such table is connected
to the table K_authors_of book.

K_AUTHOR
g= AUTHOR_ID Integer NN (PK) | K_AUTHORS_OF_BOOK ‘
NAME Varchar2(20) NN is_author |4= AUTHOR_ID Integer NN (PFK)
SURNAME Varchar2(20) NN Cﬁ@: TITLE_ID Integer NN (PFK)

NO Integer NN

Fig. C.6: K_author submodel

Attributes

R/

+ author_id — identification number of the author.
» the attribute is the primary key of the table.
» value is the integer.
» Example:

= 11111

R/

% name — first name of the author.
» value is the string with variable length limited to 20 characters.
» Example:

= Karol

% surname — family name of the author.
» value is the string with variable length limited to 20 characters.
» Example:

= Matiasko

°,

¢ registration_date — value is the day of the registration of the author.
» value has the Date data type.

» Example:
= 25.6.2015
= NULL

¢ note — some remarks and comments about the author.
» value is the string with variable length limited to 100 characters.
» Example:

= Interested in Computer science

Primary key
The primary key is attribute author_id.

Foreign key
The table has no foreign keys.

Appendix C — Model Library 531

SQL script for table creation

Create table k Author
(

author id Integer NOT NULL,
name Varchar2 (20) NOT NULL,
surname Varchar?2 (20) NOT NULL,
registration date Date,

note Varchar2 (100),

primary key (author id)
)

Script for the relationship definition

None.

532 Appendix C — Model Library

Table K AUTHORS OF BOOK

This table contains information about the associations of the authors to the titles
of the book. Such table is connected to the table K author and K _title.

K_AUTHORS_OF_BOOK |
‘Q-?AUTHOR_\D Integer NN (PFK)

9= TITLE_ID Integer NN (PFK)
NO Integer NN
E1 S
is_author
belongs_fo
K_AUTHOR K_TITLE
4= AUTHOR_ID Integer NN (PK) C U] Integer NN (s

NAME Varchar2(20) NN TITLE_NAME Varchar2(50) NN
SURNAME Varchar2(20) NN GENRE Varchar2(11) NN

Fig. C.7: K_authors_of book submodel

Attributes

R/

« author_id — identification number of the author.

the attribute is the part of the primary key of the table.

the attribute is the part of the foreign key referencing K_author table.
value is the integer number.

Example:

= 11111

VYV VY

s title_id — identification number of the title of the book.
» the attribute is the part of the primary key of the table.
» the attribute is the part of the foreign key referencing K_title table.
» value is the integer number.
» Example:
= 11111

“ no — attribute represents the order of the author in the particular title.
» value is the integer number.

» Example:
= 2
Primary key

The primary key is composite, formed by attributes author_id and title_id.

Foreign key

Attribute author_id is the foreign key to the K author table.
Attribute title_id is the foreign key to the K _title table.

Appendix C — Model Library

533

SQL script for table creation

Create table k Rent books
(

borrow_date Date
reader id Integer
book id Integer
return date Date,
extension date Date,
status Char (1)
price Number (10,

primary key (borrow _date, book id)
)i

2)/

NOT NULL,
NOT NULL,
NOT NULL,

NOT NULL,

Script for relationship definition

Alter table k Authors of book
add foreign key (author id)
references k_Author (author id);

Alter table k Authors of book
add foreign key (title_id)
references k Title (title_id);

Appendix D — Syntax 535

APPENDIX D - SYNTAX

CREATE USER user name
IDENTIFIED { BY password | EXTERNALLY | GLOBALLY AS 'CN=user' }
[DEFAULT TABLESPACE tablespace]
[TEMPORARY TABLESPACE tablespace |
[QUOTA { number [K|M] | UNLIMITED } ON tablespace]
[, QUOTA { number [K|M] | UNLIMITED } ON tablespace]
[PROFILE profile name]
[PASSWORD EXPIRE]
[{ ACCOUNT LOCK | ACCOUNT UNLOCK }]

CREATE TABLE [schema.]table name
[(column name datatype [DEFAULT expr]
[{ [column constraint] } [...]
|
table constraint

column constraint ::=
[CONSTRAINT constraint name]
{
[NOT] NULL
|
{ UNIQUE | PRIMARY KEY }
|
REFERENCES [schema.]table name [(column name; [, column name;, ...])]
[ON DELETE CASCADE]
|
CHECK (condition)

table constraint ::=
[CONSTRAINT constraint name]
{
{ UNIQUE | PRIMARY KEY } ({ column name; } [, column name;, ...])
|
FOREIGN KEY (column name; [, column namez, ...])
REFERENCES [schema.]table name [column name; [, column name;,
.11 [ON DELETE CASCADE]
|
CHECK (condition)

DROP TABLE table name [CASCADE CONSTRAINTS | PURGE];

PURGE TABLE table name;

PURGE INDEX index name;

PURGE RECYCLEBIN;

PURGE TABLESPACE tablespace name;

PURGE TABLESPACE tablespace name USER user name;

FLASHBACK TABLE table name TO BEFORE DROP;
FLASHBACK TABLE table name TO BEFORE DROP
RENAME TO new_ table name;

536 Appendix D — Syntax

CREATE [UNIQUE] INDEX index name
ON table name (column name; [ASC | DESC], ...);

DROP INDEX index name;

CREATE SEQUENCE sequence name

[INCREMENT BY integer value]
START WITH integer value]
{MAXVALUE integepﬁvalue | NOMAXVALUE}]
{MINVALUE integepﬁvalue | NOMINVALUE}]
{CYCLE | NOCYCLE}]
{CACHE positive integer value | NOCACHE}]
{ORDER | NOORDER}];

ALTER SEQUENCE sequence name INCREMENT BY integer value;

ALTER SEQUENCE sequence name MAXVALUE integer value;

ALTER SEQUENCE sequence name {CYCLE | NOCYCLE};

ALTER SEQUENCE sequence name {CACHE positive integer value | NOCACHE};
ALTER SEQUENCE sequence name {ORDER | NOORDER};

DROP SEQUENCE sequence name;

schema name.object name@dblink name
schema name.object name
object name

INSERT INTO table name [(column 1list)]
{

VALUES (list of values)

|

SELECT-statement

DELETE FROM table name
[WHERE conditions];

UPDATE table name SET
{

column namel = expression;[, ...]
\
{ (column 1ist)
|
*
} = (expression 1list)

[WHERE conditions]

Appendix D — Syntax 537

SELECT [ALL | DISTINCT]
{ * | column name; | function name;|[(parameters;)] } [, ...]
FROM table reference; [table alias:] [, ...]
[WHERE conditions]
[GROUP BY column list]
[HAVING conditions]
[ORDER BY column list [ASC | DESC], ...]
FROM table name; [table alias;]

{ [{LEFT | RIGHT | FULL} [OUTER]] JOIN table name,
[table alias:]
{ ON (join conditions;) | USING(column list join;)}

|
[INNER] JOIN table name; [table alias;]
{ ON (join conditionss3) | USING(column list joinj)}

| {CROSS | NATURAL [INNER]} JOIN table namey
[table alias,]

}

expression; relational operation expression;
expression [NOT] BETWEEN expression; AND expression;
expression [NOT] IN (item set)
expression [NOT] LIKE 'string' [ESCAPE escape-character]
expression relational operation

{ALL | [ANY | SOME]} (SELECT-statement)
expression [NOT] IN (SELECT- statement)
[NOT] EXISTS (SELECT-statement)
expression IS [NOT] NULL

SELECT-statement;
{UNION [ALL] | INTERSECT | MINUS}
SELECT-statement;
[{UNION [ALL] | INTERSECT | MINUS}
SELECT-statement;

SUBSTR (string, m [, n])

LENGTH (string)

UPPER (string)

LOWER (string)

INITCAP (string)

Operator ||

CONCAT (string;, string.)

INSTR (string, substring, [m [, n]])

LIKE '3\ %' ESCAPE '\';
% any number of characters
one character only

ABS (expression)
ROUND (n [, m])
TRUNC (n [, m])

538 Appendix D — Syntax

ALTER SESSION
SET nls date format='DD.MM.YYYY HH24:MI:SS';
ALTER SESSION
SET nls timestamp format='DD.MM.YYYY HH24:MI:SS:FF';
ALTER SESSION
SET nls date language='English';
ALTER SESSION

SET nls_territory='Slovakia'; -- 1 (day number) - Monday
ALTER SESSION
SET nls territory= 'America'; -- 1 (day number) - Sunday

TO_CHAR (date_value, [format [, nls param]])
TO_DATE(string_value, [format [, nls param]])

SYSDATE
SYSTIMESTAMP

ADD MONTHS (d, n)

NEXT DAY (d, day value)
LAST DAY (d)

TRUNC (d [, format])
ROUND (d [, format])
EXTRACT (format FROM d)
MONTHS_BETWEEN (d;, d>)

COALESCE (expr;, exprz, ..., €XpIp)

DECODE (expression, 1if;, then; [, 1if,, then,] [, elsel)
NVL (expression;, expression;)

NVL2 (expression;, expression,, expressions;)

case expression
when value; then result;
[when value, then value,] [...]
[else result]

end

case
when condition; then result;
[when condition, then result,] [...]
[else result]

end
ROWID
USER
row_number () over ([partition by expression]
ORDER BY column list)
rank () over ([partition by expression]
ORDER BY column 1ist)
dense rank() over ([partition by expression]

ORDER BY column 1list)

GRANT database privilege 1list
TO {PUBLIC | list of users}
[WITH ADMIN OPTION]

GRANT object privilege list ON object name
TO {PUBLIC | list of users}
[WITH GRANT OPTION]

Appendix D — Syntax 539

REVOKE { privilege name ON object name
I
database privilege name
|
role name}
FROM {PUBLIC | Iist of users}

CREATE ROLE role name;

BEGIN WORK

COMMIT [WORK]

ROLLBACK [WORK]

SAVEPOINT savepoint name

ROLLBACK TO SAVEPOINT savepoint name

IF condition THEN
sStatements;
END IF;

IF condition; THEN
Statements;

ELSIF condition, THEN
Statements;

[ELSE
statements;]

END IF;

IF condition THEN
Statements;
[ELSE
statements;]
END IF;

LOOP
IF condition THEN
EXIT;
END IF;
END LOOP;

LOOP

EXIT WHEN condition;
END LOOP;

WHILE condition LOOP
Statements;
END LOOP;

FOR variable name IN min..max LOOP
Statements;
END LOOP;

540

FOR variable name IN REVERSE min..max LOOP
statements;
END LOOP;

[DECLARE -- variable declaration part
variable name data type [:= init value];
]
BEGIN
statements; -- execution part
[EXCEPTION -- exception processing
WHEN exception type; THEN
statements;
WHEN exception type, THEN
Statements;

END;

CREATE [OR REPLACE] PROCEDURE procedure name
[(parameterl [model] data typel,
parameter2 [modeZ2] data type2, ...)]
IS|AS
[variable name data type [:= init value];]
BEGIN
Statements;
[EXCEPTION
WHEN exception type; THEN
Statements;
[WHEN ...]
]
END [procedure name];

/

CREATE [OR REPLACE] FUNCTION function_name
[(parameterl [model] datatypel,
parameter?2 [mode2] datatype2, ...)]
RETURN datatype
IS|AS
[variable name data type [:= init value];]
BEGIN
statements;
RETURN expression;
[EXCEPTION
WHEN exception type; THEN
statements;
[WHEN ...]
]
END [function name];

/
DROP PROCEDURE procedure name;

DROP FUNCTION function name;

Appendix D — Syntax

RAISE APPLICATION ERROR (error code, error text [, {TRUE | FALSE}]);

Appendix D — Syntax 541

CREATE [OR REPLACE] TRIGGER [schema.]trigger

{ {BEFORE | AFTER}
{DELETE | INSERT | UPDATE [OF column; [, column, [, ...]] 1}
[OR {DELETE | INSERT | UPDATE [OF column; [, column, [, ...]1 1 1 }]
[...]
|
INSTEAD OF {DELETE | INSERT | UPDATE}

}

ON [schema.] [table name | view name]

[REFERENCING { OLD [AS] renamed old | NEW [AS] renamed new}]

[FOR EACH ROW]

[WHEN (condition)]
Trigger body

ALTER TRIGGER [schema.]trigger name {ENABLE | DISABLE};

ALTER TABLE [schema.]table name {ENABLE | DISABLE}
ALL TRIGGERS;

DROP TRIGGER [schema.]trigger name;

CREATE [OR REPLACE] [FORCE | NOFORCE]
VIEW [schema.]view name [(column alias; [, ...])]
AS Select statements
[WITH [READ ONLY | CHECK OPTION [CONSTRAINT constraint def]]

SELECT column list | function calls | expressions
INTO variable list
FROM table list

SELECT expr;, exprz ..., exXprp
BULK COLLECT INTO var;, vars ..
FROM table list

., var,

OPEN cursor name;
FETCH cursor name INTO list of variables;
CLOSE cursor name;

cursor name%ISOPEN
cursor name%FOUND
cursor name%¥NOTFOUND
cursor name%$ROWCOUNT

Appendix E — File management 543

APPENDIX E — FILE MANAGEMENT

Tab. E.1: Storage

File name Location

https://gofile.me/4voWB/07z1894BI

All materials

Data models

Flight

Library

https://gofile.me/4voWB/07zl894BI
https://gofile.me/4voWB/4HLYQykKg
https://gofile.me/4voWB/ToX7d1Yc8
https://gofile.me/4voWB/avlOV2nhj

544 Appendix E — File management

File name Location

https://gofile.me/4voWB/XTdRsaluR

Student

exp_flight.exp

exp_library.exp

exp_music.exp

exp_student ENG.exp

https://gofile.me/4voWB/XTdRsaluR
https://gofile.me/4voWB/PRwipZIXD
https://gofile.me/4voWB/kcgfvaEpO
https://gofile.me/4voWB/13teiA8f0
https://gofile.me/4voWB/L5q4hBI7p

Appendix E — File management 545

File name Location

https://gofile.me/4voWB/G2QwSAT4f

family tree script.txt

library part.txp

student_pref script.sql

SQL load _library.zip

document version 1.1

https://gofile.me/4voWB/G2QwSAT4f
https://gofile.me/4voWB/PVReZt0xE
https://gofile.me/4voWB/98J8QZgv7
https://gofile.me/4voWB/Agb9Fuqgz

doc. Ing. Michal Kvet, PhD., prof. Ing. Karol Matiasko, PhD., Ing. Stefan Toth, PhD.
PRACTICAL SQL FOR ORACLE CLOUD

Copyright © University of Zilina
Printed by EDIS-Publishing House of the University of Zilina, 2022
First edition, AA 32,40
Number of copies 100 USB
ISBN 978-80-554-1880-3

This proposed textbook is the first edition intented for the students
and practitioners to increase practical knowledge and skills in the
area of Database systems. The content of the book is prepared based
on our experiences with the education of the Database systems
at the University of Zilina, Faculty of Management Science and Infor-
matics, as well as discussion with the project consortium and Oracle
Academy.

Each chapter contains a short description of the theory, examples,
and tasks for evaluating the received knowledge. All tasks and the
proposed solutions are critically discussed.

The book aims is to provide complex self-teaching material for the
SQL and PL/SQL, with emphasis on data modeling, data integrity and
user reports.

The selected environment is the Oracle Cloud, which provides
robust autonomous database processing solution with no need for
installation, configuration, and administration. It highlights the bene-
fits of the Free Tier and Always Free option.

We hope that such textbook will drive you through the complexity
of the SQL and PL/SQL language and you will enjoy the study.

* Oracle Cloud *
* Select 1 * DML * Transactions *
* DDL * Modeling * Loading * DCL *

* Select 2 * PL/SQL * Triggers *
* Integrity * Views * Select 3 *
* Data dictionary * Reports *

	Preface
	Introduction
	Acknowledgment
	Oracle Academy
	Organization of the book

	Lab 1 – Oracle Cloud Infrastructure (OCI)
	1.1 SQL Developer connection specification
	1.2 SQL*Plus command-line – SQL Client
	1.2.1 Alternative 1 – full definition
	1.2.2 Alternative 2 – connect identifiers
	1.2.3 Capturing activities in SQL
	1.2.4 Working with Help
	1.2.5 Working with multiple commands
	1.2.6 Comments
	1.2.7 Working with procedures and functions
	1.2.8 Connection and session termination

	1.3 Syntax symbols

	Lab 2 – Basics of data retrieval
	2.1 Introduction
	2.2 Projection, selection, column alias
	2.2.1 Personal_id structure
	2.2.2 Dual table

	2.3 Using functions
	2.3.1 Character string functions
	ASCII function
	CONCAT function
	String character case management (LOWER, UPPER, INITCAP functions)
	LENGTH function
	SUBSTR function
	TRIM function

	2.3.2 Numeric and Math functions
	ABS function
	CEIL function
	ROUND function
	FLOOR function
	TRUNC function
	MOD function

	2.3.3 Date and Time functions
	SYSDATE function
	SYSTIMESTAMP function
	ADD_MONTHS function
	EXTRACT function
	LAST_DAY function
	MONTHS_BETWEEN function
	NEXT_DAY function
	TRUNC function

	2.3.4 Conversion functions
	TO_CHAR function
	TO_DATE function
	TO_NUMBER function
	TO_TIMESTAMP function

	2.3.5 Advanced functions
	CASE conversion function
	COALESCE function
	DECODE function
	NULLIF function
	NVL function
	NVL2 function
	USER function
	SYS_CONTEXT function

	2.4 Managing NULL values
	2.5 Comparing strings (equality, operator Like)
	2.6 Using Order By clause
	2.7 Table joining
	2.8 Cartesian product
	2.9 SETs operations (IN, EXISTS)
	2.10 Managing duplicate values
	2.11 Table alias
	2.12 Practice

	Lab 3 – Insert, Update, Delete statements and transactions
	3.1 Introduction
	3.2 Insert statement
	3.2.1 Insert – values type
	3.2.2 Insert – Select type

	3.3 Update statement
	3.4 Delete statement
	3.5 The order of operations
	3.6 Foreign key definition
	3.7 Changing the primary key value
	3.8 Transactions
	3.9 Practice
	3.9.1 Insert statements
	3.9.2 Update statements
	3.9.3 Delete statements

	Lab 4 – Data modeling
	4.1 Introduction
	4.1.1 System analysis
	4.1.2 System design
	4.1.3 Technical design

	4.2 Creating data model
	4.3 Conceptual modeling
	4.4 Entity-relational conceptual model
	4.4.1 Identifying key

	4.5 Conceptual schema notation in E-R model
	4.5.1 Linear notation

	4.6 Type diagram / Occurrence E-R diagram
	4.6.1 Type diagram
	4.6.2 Occurrence E-R diagram

	4.7 Attributes
	4.7.1 Non-atomic attributes
	4.7.2 Group attributes
	4.7.3 Multiple value attributes

	4.8 Relationships and integrity constraints
	4.8.1 Identifying and non-identifying relationship
	4.8.2 Relationship cardinality
	Cardinality 1:1
	Cardinality 1:N
	Cardinality M:N

	4.8.3 Decomposition of the M:N relationship cardinality
	4.8.4 Associative entity
	4.8.5 Membership types
	4.8.6 Multiple relationships between same tables
	4.8.7 Recursive (self) relationships

	4.9 Data modeling in Toad Modeler tool
	4.9.1 Environment settings
	4.9.2 Entity management
	4.9.3 User-defined domain
	4.9.4 Relationship management
	4.9.5 Generating SQL script
	4.9.6 Executing script on the server
	4.9.7 Working with directories and files

	4.10 Practice

	Lab 5 – Create, Alter and Drop commands
	5.1 Introduction
	5.2 Data types
	5.3 User management
	5.4 Table management
	5.4.1 Create command
	Foreign key
	Domain definition (check constraint)
	Default value
	Constraint naming
	Create table as Select

	5.4.2 Alter command
	Add option
	Modify option
	Drop option
	Table renaming

	5.4.3 Drop command
	Recycle bin

	5.5 Index
	5.5.1 ROWID
	5.5.2 Index management
	5.5.3 Types of indexes
	B+ tree index type
	Bitmap index
	Index organized table

	5.5.4 Access methods

	5.6 Practice

	Lab 6 – Data loading
	6.1 Introduction
	6.2 SQL Loader
	6.3 EXP / IMP utility
	6.4 Creating import/export using dump files
	6.4.1 Import using data pump
	Object storage
	Bucket
	Create_credentials procedure
	Authentication token
	Data Pump Import Wizard
	Bucket
	Object

	6.4.2 ExpDp
	6.4.3 Useful notes

	Lab 7 – Managing privileges
	7.1 Introduction
	7.2 Grant command
	7.2.1 System privilege management
	7.2.2 Object privilege management

	7.3 Accessing another schema object
	7.4 Revoke command
	7.5 Grouping privileges to roles
	7.6 Practice

	Lab 8 – Advanced techniques of data retrieval
	8.1 Introduction
	8.2 Aggregate functions
	8.3 Fundamentals for Group By clause management
	8.4 Working with aggregate function Count and Group By clause
	8.5 Having clause
	8.6 Extended versions of table joining
	8.6.1 INNER JOIN type
	8.6.2 ON / USING CLAUSE
	8.6.3 LEFT OUTER JOIN type
	8.6.4 RIGHT OUTER JOIN type
	8.6.5 FULL OUTER JOIN type
	8.6.6 SEMI JOIN type
	8.6.7 ANTI JOIN type
	8.6.8 NATURAL JOIN type

	8.7 Relational algebra operations
	8.7.1 Union operation
	8.7.2 Difference operation
	8.7.3 Intersection operation

	8.8 Recursive relationships
	8.9 Using the same table multiple times in the Select statement
	8.10 Practice

	Lab 9 – Procedures, functions and packages
	9.1 Introduction
	9.2 Code preliminaries
	9.2.1 Variable definition
	9.2.2 Assignment, NULL
	9.2.3 Conditional processing
	IF condition
	Condition CASE

	9.2.4 LOOPs
	Infinite loop, EXIT condition
	WHILE loop type
	FOR loop type

	9.3 PL/SQL anonymous block
	9.4 Procedure, function
	9.4.1 Procedure syntax
	9.4.2 Function syntax

	9.5 Executing stored method
	9.5.1 Disable procedure
	9.5.2 Enable procedure
	9.5.3 Get_line procedure
	9.5.4 Get_lines procedure
	9.5.5 New_line procedure
	9.5.6 Put procedure
	9.5.7 Put_line procedure

	9.6 Calling function from the Select statement
	9.7 Exception handling
	9.8 Ways of passing parameters
	9.8.1 Position way of passing parameters.
	9.8.2 Passing parameters using names
	9.8.3 Hybrid passing

	9.9 Differences between anonymous and stored (named) PL/SQL block
	9.10 Removing procedures and functions
	9.11 Select statement in PL/SQL
	9.11.1 SELECT INTO type
	9.11.2 CURSOR

	9.12 Increasing control – access rights
	9.13 Packages
	9.13.1 Package specification syntax
	9.13.2 Package body syntax
	9.13.3 Overloading
	9.13.4 Initialization block

	9.14 Practice

	Lab 10 – Triggers
	10.1 Introduction
	10.2 Syntax
	10.3 Restrictions for trigger definition
	10.4 Triggers turning on and off
	10.5 Changes monitoring
	10.6 Default values
	10.7 Conditions for trigger firing
	10.8 One trigger – multiple operations
	10.9 Referential integrity management
	10.10 Changing the value of the primary key
	10.11 Sequences and triggers
	10.11.1 Sequence syntax
	10.11.2 Sequence and transaction correlation

	10.12 DDL triggers
	10.13 Event triggers
	10.14 Practice

	Lab 11 – Relational integrity
	11.1 Introduction
	11.2 Integrity constraints classification
	11.3 Entity integrity
	11.3.1 Primary key candidate
	11.3.2 Primary key
	11.3.3 Alternative key
	11.3.4 Superkey

	11.4 Referential integrity
	11.4.1 Referential integrity rule
	11.4.2 Referential integrity consequences
	11.4.3 Cascade option example
	11.4.4 Restricted option example
	11.4.5 Nullified option example

	11.5 User integrity
	11.6 Column integrity
	11.7 Domain integrity
	11.8 Integrity constraints controlling and processing
	11.9 Practice

	Lab 12 – Views
	12.1 Introduction
	12.2 Syntax
	12.3 Exceptions
	12.4 Managing data in views
	12.5 Attribute name redefinition in views
	12.6 Check option clause
	12.7 Read only view
	12.8 View based on multiple tables and triggers
	12.9 Triggers associated with views
	12.10 Summary
	12.11 Practice

	Lab 13 – Date and Time value management
	13.1 NLS parameters & session format
	13.1.1 NLS_Language
	13.1.2 NLS_Territory
	13.1.3 NLS_Date_Language
	13.1.4 NLS_Date_format

	13.2 Transformation of the personal_id into the date of birth
	13.3 Get the list of persons who celebrate a birthday today
	13.4 Get the list of students who passed the exam this month
	13.5 Get the list of students who passed the exam previous last month
	13.6 Get the list of the persons, who will celebrate their birthday next Sunday
	13.7 Get the Date of the second Sunday of the month
	13.8 Get the list of the persons, who will celebrate their birthday next week
	13.9 Get the difference between Date values
	13.10 Get the difference between Date values – a sophisticated solution
	13.11 YY vs. RR
	13.12 Actual employees
	13.13 Period models and Allen relationships
	13.14 Unlimited validity definition
	13.15 Data type Interval management
	13.15.1 Interval Year to Month data type
	13.15.2 Interval Day to Second data type
	13.15.3 Examples – Interval data types
	13.15.4 Update validity definition based on Interval data value

	Lab 14 – Data dictionary views
	14.1 Introduction
	14.2 Data dictionary – structure
	14.3 Querying data dictionary
	14.3.1 List of tables owned actual user
	14.3.2 List of table attributes
	14.3.3 Get attribute data type and characteristics
	14.3.4 Get system identifier and definition of the primary key
	14.3.5 Get system identifier and definition of the foreign key
	14.3.6 Listing triggers for a particular table
	14.3.7 Listing developed methods (procedures, functions)
	14.3.8 Managing sequences

	14.4 Practice

	Lab 15 – Reports
	15.1 Overview
	15.2 Environment settings, background
	15.3 Filtering, sorting
	15.4 Hidden columns
	15.5 Binding multiple reports – Master – Child
	15.6 Graph reports
	15.7 Pie graph type reports
	15.8 Line type reports
	15.9 Three-dimensional (3D) graph types
	15.10 Binding multiple reports of various types
	15.11 Exports
	15.11.1 CSV format
	15.11.2 Delimited format
	15.11.3 Text format
	15.11.4 Excel format
	15.11.5 XML format
	15.11.6 HTML format
	15.11.7 Exporting to PDF

	15.12 Script format (Insert)

	Summary
	References
	Abbreviations
	Index
	Appendices
	Appendix A – Model Student
	Table PERSONAL_DATA
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition
	Table data example

	Table STUDENT
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition
	Table data example

	Table STUDY_SUBJECTS
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition
	Table data example

	Table ST_FIELD
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition
	Table data example

	Table SUBJECT
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition
	Table data example

	Table TEACHER
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition
	Table data example

	Table SUBJECT_YEAR
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition
	Table data example

	Table ST_PROGRAM
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition
	Table data example

	Table CONTACT
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition
	Table data example

	Appendix B – Model Flight
	Table L_PERSON
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_FLIGHT TICKET
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_CLASS
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_FLIGHT
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_PLANE
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_EMPLOYEE
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_AIRPORT
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_PLANE_TYPE
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition

	Table L_COUNTRY
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition

	Table L_TOWN
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table L_AIR_COMPANY
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Appendix C – Model Library
	Table K_PERSON
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition

	Table K_READER
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table K_RENT_BOOKS
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table K_BOOK
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Table K_TITLE
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition

	Table K_AUTHOR
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for the relationship definition

	Table K_AUTHORS_OF_BOOK
	Attributes
	Primary key
	Foreign key
	SQL script for table creation
	Script for relationship definition

	Appendix D – Syntax
	Appendix E – File management

